Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://fyfluiddynamics.com/rss

  1. <?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
  2. xmlns:content="http://purl.org/rss/1.0/modules/content/"
  3. xmlns:wfw="http://wellformedweb.org/CommentAPI/"
  4. xmlns:dc="http://purl.org/dc/elements/1.1/"
  5. xmlns:atom="http://www.w3.org/2005/Atom"
  6. xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
  7. xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
  8. >
  9.  
  10. <channel>
  11. <title>FYFD</title>
  12. <atom:link href="https://fyfluiddynamics.com/feed/" rel="self" type="application/rss+xml" />
  13. <link>https://fyfluiddynamics.com</link>
  14. <description>Celebrating the physics of all that flows</description>
  15. <lastBuildDate>Mon, 16 Jun 2025 20:21:12 +0000</lastBuildDate>
  16. <language>en-US</language>
  17. <sy:updatePeriod>
  18. hourly </sy:updatePeriod>
  19. <sy:updateFrequency>
  20. 1 </sy:updateFrequency>
  21. <generator>https://wordpress.org/?v=6.8.1</generator>
  22.  
  23. <image>
  24. <url>https://fyfluiddynamics.com/wp-content/uploads/2019/11/FYFD_logo-150x150.png</url>
  25. <title>FYFD</title>
  26. <link>https://fyfluiddynamics.com</link>
  27. <width>32</width>
  28. <height>32</height>
  29. </image>
  30. <site xmlns="com-wordpress:feed-additions:1">169405895</site> <item>
  31. <title>Rolling Down Soft Surfaces</title>
  32. <link>https://fyfluiddynamics.com/2025/07/rolling-down-soft-surfaces/</link>
  33. <comments>https://fyfluiddynamics.com/2025/07/rolling-down-soft-surfaces/#respond</comments>
  34. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  35. <pubDate>Tue, 01 Jul 2025 15:00:00 +0000</pubDate>
  36. <category><![CDATA[Research]]></category>
  37. <category><![CDATA[adhesion]]></category>
  38. <category><![CDATA[fluid dynamics]]></category>
  39. <category><![CDATA[physics]]></category>
  40. <category><![CDATA[science]]></category>
  41. <category><![CDATA[slip]]></category>
  42. <category><![CDATA[soft matter]]></category>
  43. <category><![CDATA[solid mechanics]]></category>
  44. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=24328</guid>
  45.  
  46. <description><![CDATA[Place a rigid ball on a hard vertical surface, and it will free fall. Stick a liquid drop there, and it will slide down. But researchers discovered that with a <a class="read-more" href="https://fyfluiddynamics.com/2025/07/rolling-down-soft-surfaces/">Keep reading</a>]]></description>
  47. <content:encoded><![CDATA[
  48. <p>Place a rigid ball on a hard vertical surface, and it will free fall. Stick a liquid drop there, and it will slide down. But <a href="https://doi.org/10.1039/D4SM01490A">researchers discovered</a> that with a soft sphere and a soft surface, it&#8217;s possible to roll down a vertical wall. The effect requires just the right level of squishiness for both the wall and sphere, but when conditions are right, the 1-millimeter radius sphere rolls (with a little slipping) down the wall. </p>
  49.  
  50.  
  51.  
  52. <p>Rolling requires torque, something that&#8217;s usually lacking on a vertical surface. But the team found that their soft spheres got the torque needed to roll from their asymmetric contact with the surface. More of the sphere contacted above its centerline than below it. The researchers compared the way the sphere contacted the surface to a crack opening (at the back of the sphere) and a crack closing (at the front of the sphere). That asymmetry creates just enough torque to roll the sphere slowly. The team hopes their discovery opens up new possibilities for soft robots to climb and descend vertical surfaces. (Image and research credit: <a href="https://doi.org/10.1039/D4SM01490A">S. Mitra et al.</a>; via <a href="https://gizmodo.com/cool-physics-feat-makes-a-sphere-roll-down-a-vertical-wall-2000610612?__readwiseLocation=">Gizmodo</a>)</p>
  53. ]]></content:encoded>
  54. <wfw:commentRss>https://fyfluiddynamics.com/2025/07/rolling-down-soft-surfaces/feed/</wfw:commentRss>
  55. <slash:comments>0</slash:comments>
  56. <post-id xmlns="com-wordpress:feed-additions:1">24328</post-id> </item>
  57. <item>
  58. <title>Seeing the Sun&#8217;s South Pole For the First Time</title>
  59. <link>https://fyfluiddynamics.com/2025/06/seeing-the-suns-south-pole-for-the-first-time/</link>
  60. <comments>https://fyfluiddynamics.com/2025/06/seeing-the-suns-south-pole-for-the-first-time/#respond</comments>
  61. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  62. <pubDate>Mon, 30 Jun 2025 15:00:00 +0000</pubDate>
  63. <category><![CDATA[Phenomena]]></category>
  64. <category><![CDATA[fluid dynamics]]></category>
  65. <category><![CDATA[magnetohydrodynamics]]></category>
  66. <category><![CDATA[physics]]></category>
  67. <category><![CDATA[plasma]]></category>
  68. <category><![CDATA[science]]></category>
  69. <category><![CDATA[solar dynamics]]></category>
  70. <category><![CDATA[sun]]></category>
  71. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=24361</guid>
  72.  
  73. <description><![CDATA[The ESA-led Solar Orbiter recently used a Venus flyby to lift itself out of the ecliptic &#8212; the equatorial plane of the Sun where Earth sits. This maneuver offers us <a class="read-more" href="https://fyfluiddynamics.com/2025/06/seeing-the-suns-south-pole-for-the-first-time/">Keep reading</a>]]></description>
  74. <content:encoded><![CDATA[
  75. <p>The ESA-led Solar Orbiter recently used a Venus flyby to lift itself out of the <a href="https://en.wikipedia.org/wiki/Ecliptic">ecliptic</a> &#8212; the equatorial plane of the Sun where Earth sits. This maneuver offers us the first-ever glimpse of the Sun&#8217;s south pole, a region that&#8217;s not visible from the ecliptic plane. A close-up view of plasma rising off the pole is shown above, and the video below has even more. </p>
  76.  
  77.  
  78.  
  79. <p>Solar Orbiter will get even better views of the Sun&#8217;s poles in the coming months, perfect for watching what goes on as the Sun&#8217;s 11-year-solar-cycle approaches its maximum. During this time, the Sun&#8217;s magnetic poles will flip their polarity; already Solar Orbiter&#8217;s instruments show that the south pole contains pockets of both positive and negative magnetic polarity &#8212; a messy state that&#8217;s likely a precursor to the big flip. (Image and video credit: <a href="https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter/Solar_Orbiter_gets_world-first_views_of_the_Sun_s_poles">ESA &amp; NASA/Solar Orbiter/EUI Team, D. Berghmans (ROB) &amp; ESA/Royal Observatory of Belgium</a>; via <a href="https://gizmodo.com/solar-orbiter-captures-first-clear-views-of-suns-south-pole-and-its-a-hot-mess-2000614511?__readwiseLocation=">Gizmodo</a>)</p>
  80.  
  81.  
  82.  
  83. <figure class="wp-block-embed is-type-video is-provider-youtube wp-block-embed-youtube wp-embed-aspect-16-9 wp-has-aspect-ratio"><div class="wp-block-embed__wrapper">
  84. <div class="jetpack-video-wrapper"><iframe title="Solar Orbiter zooms into the Sun’s south pole" width="1170" height="658" src="https://www.youtube.com/embed/TU4DcDgaMM0?feature=oembed" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe></div>
  85. </div></figure>
  86. ]]></content:encoded>
  87. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/seeing-the-suns-south-pole-for-the-first-time/feed/</wfw:commentRss>
  88. <slash:comments>0</slash:comments>
  89. <post-id xmlns="com-wordpress:feed-additions:1">24361</post-id> </item>
  90. <item>
  91. <title>&#8220;Now I See &#8211; The Collection Vol. 2&#8221;</title>
  92. <link>https://fyfluiddynamics.com/2025/06/now-i-see-the-collection-vol-2/</link>
  93. <comments>https://fyfluiddynamics.com/2025/06/now-i-see-the-collection-vol-2/#respond</comments>
  94. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  95. <pubDate>Fri, 27 Jun 2025 15:00:00 +0000</pubDate>
  96. <category><![CDATA[Art]]></category>
  97. <category><![CDATA[flow visualization]]></category>
  98. <category><![CDATA[fluid dynamics]]></category>
  99. <category><![CDATA[fluids as art]]></category>
  100. <category><![CDATA[laminar flow]]></category>
  101. <category><![CDATA[physics]]></category>
  102. <category><![CDATA[river delta]]></category>
  103. <category><![CDATA[science]]></category>
  104. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=24311</guid>
  105.  
  106. <description><![CDATA[In the next video of his current collection, Roman De Giuli takes us flying over liquid landscapes that look like our Earth in miniature. Many of them have the feeling <a class="read-more" href="https://fyfluiddynamics.com/2025/06/now-i-see-the-collection-vol-2/">Keep reading</a>]]></description>
  107. <content:encoded><![CDATA[
  108. <div class="wp-block-envira-envira-gallery"><div class="envira-gallery-feed-output"><img decoding="async" class="envira-gallery-feed-image" tabindex="0" src="https://fyfluiddynamics.com/wp-content/uploads/nowisee2_a-1024x571.png" title="From &quot;Now I See - The Collection Vol. 2&quot; by Roman De Giuli." alt="From &quot;Now I See - The Collection Vol. 2&quot; by Roman De Giuli." /></div></div>
  109.  
  110.  
  111.  
  112. <p>In the next video of his current collection, <a href="https://fyfluiddynamics.com/?s=De+Giuli">Roman De Giuli</a> takes us flying over liquid landscapes that look like our Earth in miniature. Many of them have the feeling of <a href="/tagged/river-delta/">river deltas</a> or <a href="/tagged/glacier/">glaciers</a>. Sharp-eyed viewers will notice bubbles and flotsam in some of these streams. If you follow them, you can see how the flows vary &#8212; wiggling around islands, speeding up through constrictions and slowing down when the stream widens. It is, as always, a beautiful form of <a href="/tagged/flow-visualization/">flow visualization</a>. (Video and image credit: <a href="http://terracollage.com">R. De Giuli</a>)</p>
  113. ]]></content:encoded>
  114. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/now-i-see-the-collection-vol-2/feed/</wfw:commentRss>
  115. <slash:comments>0</slash:comments>
  116. <post-id xmlns="com-wordpress:feed-additions:1">24311</post-id> </item>
  117. <item>
  118. <title>Predicting Yield</title>
  119. <link>https://fyfluiddynamics.com/2025/06/predicting-yield/</link>
  120. <comments>https://fyfluiddynamics.com/2025/06/predicting-yield/#respond</comments>
  121. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  122. <pubDate>Thu, 26 Jun 2025 15:00:00 +0000</pubDate>
  123. <category><![CDATA[Research]]></category>
  124. <category><![CDATA[fluid dynamics]]></category>
  125. <category><![CDATA[physics]]></category>
  126. <category><![CDATA[rheology]]></category>
  127. <category><![CDATA[science]]></category>
  128. <category><![CDATA[yield-stress fluid]]></category>
  129. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=24273</guid>
  130.  
  131. <description><![CDATA[We&#8217;ve all experienced the frustration of ketchup refusing to leave the bottle or toothpaste that shoots out suddenly. These materials are yield stress fluids, which transition from solid-like behavior to <a class="read-more" href="https://fyfluiddynamics.com/2025/06/predicting-yield/">Keep reading</a>]]></description>
  132. <content:encoded><![CDATA[
  133. <p>We&#8217;ve all experienced the frustration of ketchup refusing to leave the bottle or toothpaste that shoots out suddenly. These materials are <a href="/tagged/yield-stress-fluid/">yield stress fluids</a>, which transition from solid-like behavior to liquid flow once the right amount of force is applied. A <a href="https://doi.org/10.1103/PhysRevLett.134.208202">new study suggests</a> that &#8212; despite their wide range of characteristics &#8212; these fluids share a universal relation: their yield transition (when they start to flow) depends on their characteristics when at rest. Interestingly, this relationship seems to hold not only for polymeric fluids like the one in the study but also nonpolymeric ones.   (Image credit: <a href="https://unsplash.com/photos/a-red-liquid-dripping-from-a-pipe-on-a-counter-4hq7g3pWgTY">haideyy</a>; research credit: <a href="https://doi.org/10.1103/PhysRevLett.134.208202">D. Keane et al.</a>; via <a href="https://physics.aps.org/articles/v18/107?__readwiseLocation=">APS Physics</a>)</p>
  134.  
  135.  
  136.  
  137. <p></p>
  138. ]]></content:encoded>
  139. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/predicting-yield/feed/</wfw:commentRss>
  140. <slash:comments>0</slash:comments>
  141. <post-id xmlns="com-wordpress:feed-additions:1">24273</post-id> </item>
  142. <item>
  143. <title>Evaporating Off Butterfly Scales</title>
  144. <link>https://fyfluiddynamics.com/2025/06/evaporating-off-butterfly-scales/</link>
  145. <comments>https://fyfluiddynamics.com/2025/06/evaporating-off-butterfly-scales/#respond</comments>
  146. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  147. <pubDate>Wed, 25 Jun 2025 15:00:00 +0000</pubDate>
  148. <category><![CDATA[Phenomena]]></category>
  149. <category><![CDATA[adhesion]]></category>
  150. <category><![CDATA[biology]]></category>
  151. <category><![CDATA[butterfly]]></category>
  152. <category><![CDATA[evaporation]]></category>
  153. <category><![CDATA[fluid dynamics]]></category>
  154. <category><![CDATA[hydrophobic]]></category>
  155. <category><![CDATA[physics]]></category>
  156. <category><![CDATA[science]]></category>
  157. <category><![CDATA[sessile drop]]></category>
  158. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=22139</guid>
  159.  
  160. <description><![CDATA[This award-winning macro video shows scattered water droplets evaporating off a butterfly&#8216;s wing. At first glance, it&#8217;s hard to see any motion outside of the camera&#8217;s sweep, but if you <a class="read-more" href="https://fyfluiddynamics.com/2025/06/evaporating-off-butterfly-scales/">Keep reading</a>]]></description>
  161. <content:encoded><![CDATA[
  162. <p>This award-winning macro video shows scattered water droplets <a href="/tagged/evaporation/">evaporating</a> off a <a href="/tagged/butterfly/">butterfly</a>&#8216;s wing. At first glance, it&#8217;s hard to see any motion outside of the camera&#8217;s sweep, but if you focus on one drop at a time, you&#8217;ll see them shrinking. For most of their lifetime, these tiny drops are nearly spherical; that&#8217;s due to the <a href="/2020/06/how-animals-stay-dry-in-the-rain/">hydrophobic, water-shedding nature of the wing</a>. But as the drops get smaller and less spherical, you may notice how the drop distorts the scales it adheres to. Wherever the drop touches, the wing scales are pulled up, and, when the drop is gone, the scales settle back down. This is a subtle but neat demonstration of the water&#8217;s <a href="/tagged/adhesion/">adhesive</a> power. (Video and image credit: J. McClellan; via <a href="https://www.nikonsmallworld.com/galleries/2024-small-world-in-motion-competition">Nikon Small World in Motion</a>)</p>
  163.  
  164.  
  165. <div class="wp-block-image">
  166. <figure class="aligncenter size-full"><img fetchpriority="high" decoding="async" width="720" height="405" src="https://fyfluiddynamics.com/wp-content/uploads/nikon_evap_main.gif" alt="Water droplets evaporate from the wing of a peacock butterfly." class="wp-image-22143"/><figcaption class="wp-element-caption">Water droplets evaporate from the wing of a peacock butterfly.</figcaption></figure></div>]]></content:encoded>
  167. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/evaporating-off-butterfly-scales/feed/</wfw:commentRss>
  168. <slash:comments>0</slash:comments>
  169. <post-id xmlns="com-wordpress:feed-additions:1">22139</post-id> </item>
  170. <item>
  171. <title>Io&#8217;s Missing Magma Ocean</title>
  172. <link>https://fyfluiddynamics.com/2025/06/ios-missing-magma-ocean/</link>
  173. <comments>https://fyfluiddynamics.com/2025/06/ios-missing-magma-ocean/#respond</comments>
  174. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  175. <pubDate>Tue, 24 Jun 2025 15:00:00 +0000</pubDate>
  176. <category><![CDATA[Research]]></category>
  177. <category><![CDATA[fluid dynamics]]></category>
  178. <category><![CDATA[geophysics]]></category>
  179. <category><![CDATA[Io]]></category>
  180. <category><![CDATA[magma]]></category>
  181. <category><![CDATA[physics]]></category>
  182. <category><![CDATA[planetary science]]></category>
  183. <category><![CDATA[science]]></category>
  184. <category><![CDATA[subsurface oceans]]></category>
  185. <category><![CDATA[tidal heating]]></category>
  186. <category><![CDATA[volcano]]></category>
  187. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=24174</guid>
  188.  
  189. <description><![CDATA[In the late 1970s, scientists conjectured that Io was likely a volcanic world, heated by tidal forces from Jupiter that squeeze it along its elliptical orbit. Only months later, images <a class="read-more" href="https://fyfluiddynamics.com/2025/06/ios-missing-magma-ocean/">Keep reading</a>]]></description>
  190. <content:encoded><![CDATA[
  191. <p>In the late 1970s, scientists conjectured that <a href="/tagged/io/">Io</a> was likely a <a href="/tagged/volcano/">volcanic</a> world, heated by <a href="https://en.wikipedia.org/wiki/Tidal_heating">tidal forces</a> from Jupiter that squeeze it along its elliptical orbit. Only months later, images from Voyager 1&#8217;s flyby confirmed the moon&#8217;s volcanism. Magnetometer data from Galileo&#8217;s later flyby suggested that tidal heating had created a shallow magma ocean that powered the moon&#8217;s volcanic activity. But <a href="https://doi.org/10.1038/s41586-024-08442-5">newly analyzed data</a> from Juno&#8217;s flyby shows that Io doesn&#8217;t have a magma ocean after all.</p>
  192.  
  193.  
  194.  
  195. <p>The new flyby used radio transmission data to measure any little wobbles that Io caused by tugging Juno off its expected course. The team expected a magma ocean to cause plenty of distortions for the spacecraft, but the effect was much slighter than expected. Their conclusion? Io has no magma ocean lurking under its crust. The results don&#8217;t preclude a deeper magma ocean, but at what point do you distinguish a magma ocean from a body&#8217;s liquid core?</p>
  196.  
  197.  
  198.  
  199. <p>Instead, scientists are now exploring the possibility that Io&#8217;s magma shoots up from much smaller pockets of magma rather than one enormous, shared source. (Image credit: NASA/JPL/USGS; research credit: <a href="https://doi.org/10.1038/s41586-024-08442-5">R. Park et al.</a>; see also <a href="https://www.quantamagazine.org/whats-going-on-inside-io-jupiters-volcanic-moon-20250425/?__readwiseLocation=">Quanta</a>)</p>
  200. ]]></content:encoded>
  201. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/ios-missing-magma-ocean/feed/</wfw:commentRss>
  202. <slash:comments>0</slash:comments>
  203. <post-id xmlns="com-wordpress:feed-additions:1">24174</post-id> </item>
  204. <item>
  205. <title>&#8220;Droplet on a Plucked Wire&#8221;</title>
  206. <link>https://fyfluiddynamics.com/2025/06/droplet-on-a-plucked-wire/</link>
  207. <comments>https://fyfluiddynamics.com/2025/06/droplet-on-a-plucked-wire/#respond</comments>
  208. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  209. <pubDate>Mon, 23 Jun 2025 15:00:00 +0000</pubDate>
  210. <category><![CDATA[Phenomena]]></category>
  211. <category><![CDATA[2024gofm]]></category>
  212. <category><![CDATA[droplets]]></category>
  213. <category><![CDATA[fluid dynamics]]></category>
  214. <category><![CDATA[physics]]></category>
  215. <category><![CDATA[science]]></category>
  216. <category><![CDATA[viscoelasticity]]></category>
  217. <category><![CDATA[viscous flow]]></category>
  218. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=23768</guid>
  219.  
  220. <description><![CDATA[What happens to a droplet hanging on a wire when the wire gets plucked? That&#8217;s the fundamental question behind this video, which shows the effects of wire speed, viscosity, and <a class="read-more" href="https://fyfluiddynamics.com/2025/06/droplet-on-a-plucked-wire/">Keep reading</a>]]></description>
  221. <content:encoded><![CDATA[
  222. <div class="wp-block-envira-envira-gallery"><div class="envira-gallery-feed-output"><img decoding="async" class="envira-gallery-feed-image" tabindex="0" src="https://fyfluiddynamics.com/wp-content/uploads/drop_string1-1024x576.png" title="Close-up image of a red-dyed water droplet on a guitar string that&#039;s just been plucked. A blurry finger is just visible on the right side. Text reads: &quot;When the string is plucked&quot;" alt="Close-up image of a red-dyed water droplet on a guitar string that&#039;s just been plucked. A blurry finger is just visible on the right side. Text reads: &quot;When the string is plucked&quot;" /></div></div>
  223.  
  224.  
  225.  
  226. <p>What happens to a droplet hanging on a wire when the wire gets plucked? That&#8217;s the fundamental question behind this video, which shows the effects of wire speed, viscosity, and <a href="/tagged/viscoelasticity/">viscoelasticity</a> on a drop&#8217;s detachment. With lovely high-speed video and close-up views, you get to appreciate even subtle differences between each drop. <a href="/tagged/capillary-waves/">Capillary waves</a>, viscoelastic waves, and <a href="/tagged/plateau-rayleigh-instability/">Plateau-Rayleigh instabilities</a> abound! (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2691248">D. Maity et al.</a>)</p>
  227. ]]></content:encoded>
  228. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/droplet-on-a-plucked-wire/feed/</wfw:commentRss>
  229. <slash:comments>0</slash:comments>
  230. <post-id xmlns="com-wordpress:feed-additions:1">23768</post-id> </item>
  231. <item>
  232. <title>&#8220;C R Y S T A L S&#8221;</title>
  233. <link>https://fyfluiddynamics.com/2025/06/c-r-y-s-t-a-l-s/</link>
  234. <comments>https://fyfluiddynamics.com/2025/06/c-r-y-s-t-a-l-s/#respond</comments>
  235. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  236. <pubDate>Fri, 20 Jun 2025 15:00:00 +0000</pubDate>
  237. <category><![CDATA[Art]]></category>
  238. <category><![CDATA[crystal growth]]></category>
  239. <category><![CDATA[evaporation]]></category>
  240. <category><![CDATA[fluid dynamics]]></category>
  241. <category><![CDATA[fluids as art]]></category>
  242. <category><![CDATA[physics]]></category>
  243. <category><![CDATA[science]]></category>
  244. <category><![CDATA[timelapse]]></category>
  245. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=24236</guid>
  246.  
  247. <description><![CDATA[In &#8220;C R Y S T A L S,&#8221; filmmaker Thomas Blanchard captures the slow, inexorable growth of potassium phosphate crystals. He took over 150,000 images &#8212; one per minute <a class="read-more" href="https://fyfluiddynamics.com/2025/06/c-r-y-s-t-a-l-s/">Keep reading</a>]]></description>
  248. <content:encoded><![CDATA[
  249. <div class="wp-block-envira-envira-gallery"><div class="envira-gallery-feed-output"><img decoding="async" class="envira-gallery-feed-image" tabindex="0" src="https://fyfluiddynamics.com/wp-content/uploads/crystals3-1024x506.png" title="Image from &quot;C R Y S T A L S&quot; by Thomas Blanchard." alt="Image from &quot;C R Y S T A L S&quot; by Thomas Blanchard." /></div></div>
  250.  
  251.  
  252.  
  253. <p>In &#8220;C R Y S T A L S,&#8221; filmmaker Thomas Blanchard captures the slow, inexorable growth of potassium phosphate crystals. He took over 150,000 images &#8212; one per minute &#8212; to document the way crystals formed as the originally transparent liquid evaporated. Some crystals branch into fractals. Others bulge outward like a condensing cloud or a sprouting mushroom. (Video and image credit: <a href="https://thomas-blanchard.com">T. Blanchard</a>)</p>
  254. ]]></content:encoded>
  255. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/c-r-y-s-t-a-l-s/feed/</wfw:commentRss>
  256. <slash:comments>0</slash:comments>
  257. <post-id xmlns="com-wordpress:feed-additions:1">24236</post-id> </item>
  258. <item>
  259. <title>Stunning Interstellar Turbulence</title>
  260. <link>https://fyfluiddynamics.com/2025/06/stunning-interstellar-turbulence/</link>
  261. <comments>https://fyfluiddynamics.com/2025/06/stunning-interstellar-turbulence/#respond</comments>
  262. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  263. <pubDate>Thu, 19 Jun 2025 15:00:00 +0000</pubDate>
  264. <category><![CDATA[Research]]></category>
  265. <category><![CDATA[astrophysics]]></category>
  266. <category><![CDATA[compressibility]]></category>
  267. <category><![CDATA[flow visualization]]></category>
  268. <category><![CDATA[fluid dynamics]]></category>
  269. <category><![CDATA[fluids as art]]></category>
  270. <category><![CDATA[magnetohydrodynamics]]></category>
  271. <category><![CDATA[numerical simulation]]></category>
  272. <category><![CDATA[physics]]></category>
  273. <category><![CDATA[science]]></category>
  274. <category><![CDATA[turbulence]]></category>
  275. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=24225</guid>
  276.  
  277. <description><![CDATA[The space between stars, known as the interstellar medium, may be sparse, but it is far from empty. Gas, dust, and plasma in this region forms compressible magnetized turbulence, with <a class="read-more" href="https://fyfluiddynamics.com/2025/06/stunning-interstellar-turbulence/">Keep reading</a>]]></description>
  278. <content:encoded><![CDATA[
  279. <p>The space between stars, known as the interstellar medium, may be sparse, but it is far from empty. Gas, dust, and plasma in this region forms <a href="/tagged/compressibility/">compressible</a> <a href="/tagged/magnetohydrodynamics/">magnetized</a> <a href="/tagged/turbulence/">turbulence</a>, with some pockets moving supersonically and others moving slower than sound. The flows here influence <a href="/tagged/star-formation/">how stars form</a>, how cosmic rays spread, and where metals and other planetary building blocks wind up. To better understand the physics of this region, <a href="https://doi.org/10.1038/s41550-025-02551-5">researchers built</a> a <a href="/tagged/numerical-simulation/">numerical simulation</a> with over 1,000 billion grid points, creating an unprecedentedly detailed picture of this turbulence.</p>
  280.  
  281.  
  282.  
  283. <p>The images above are two-dimensional slices from the full 3D simulation. The upper image shows the current density while the lower one shows mass density. On the right side of the images, magnetic field lines are superimposed in white. The results are gorgeous. Can you imagine a fly-through video? (Image and research credit: <a href="https://doi.org/10.1038/s41550-025-02551-5">J. Beattie et al.</a>; via <a href="https://gizmodo.com/most-detailed-simulation-of-magnetic-turbulence-in-space-is-surprisingly-beautiful-2000606528?__readwiseLocation=">Gizmodo</a>)</p>
  284. ]]></content:encoded>
  285. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/stunning-interstellar-turbulence/feed/</wfw:commentRss>
  286. <slash:comments>0</slash:comments>
  287. <post-id xmlns="com-wordpress:feed-additions:1">24225</post-id> </item>
  288. <item>
  289. <title>Ponding on the Ice Shelf</title>
  290. <link>https://fyfluiddynamics.com/2025/06/ponding-on-the-ice-shelf/</link>
  291. <comments>https://fyfluiddynamics.com/2025/06/ponding-on-the-ice-shelf/#respond</comments>
  292. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  293. <pubDate>Wed, 18 Jun 2025 15:00:00 +0000</pubDate>
  294. <category><![CDATA[Phenomena]]></category>
  295. <category><![CDATA[fluid dynamics]]></category>
  296. <category><![CDATA[geophysics]]></category>
  297. <category><![CDATA[glacier]]></category>
  298. <category><![CDATA[ice shelf]]></category>
  299. <category><![CDATA[melting]]></category>
  300. <category><![CDATA[physics]]></category>
  301. <category><![CDATA[planetary science]]></category>
  302. <category><![CDATA[satellite image]]></category>
  303. <category><![CDATA[science]]></category>
  304. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=23619</guid>
  305.  
  306. <description><![CDATA[Glaciers flow together and march out to sea along the Amery Ice Shelf in this satellite image of Antarctica. Three glaciers &#8212; flowing from the top, left, and bottom of <a class="read-more" href="https://fyfluiddynamics.com/2025/06/ponding-on-the-ice-shelf/">Keep reading</a>]]></description>
  307. <content:encoded><![CDATA[
  308. <p><a href="/tagged/glacier/">Glaciers</a> flow together and march out to sea along the Amery Ice Shelf in this satellite image of Antarctica. Three glaciers &#8212; flowing from the top, left, and bottom of the image &#8212; meet just to the right of center and pass from the continental bedrock onto the ice-covered ocean. The ice shelf is recognizable by its plethora of meltwater ponds, which appear as bright blue areas. Each austral summer, meltwater gathers in low-lying regions on the ice, potentially destabilizing the ice shelf through fracture and drainage. This region near the ice shelf&#8217;s grounding line is particularly prone to ponding. Regions further afield (right, beyond the image) are colder and drier, often allowing meltwater to refreeze. (Image credit: W. Liang; via <a href="https://earthobservatory.nasa.gov/images/153841/meltwater-ponds-on-the-amery-ice-shelf">NASA Earth Observatory</a>)</p>
  309.  
  310.  
  311.  
  312. <p></p>
  313. ]]></content:encoded>
  314. <wfw:commentRss>https://fyfluiddynamics.com/2025/06/ponding-on-the-ice-shelf/feed/</wfw:commentRss>
  315. <slash:comments>0</slash:comments>
  316. <post-id xmlns="com-wordpress:feed-additions:1">23619</post-id> </item>
  317. </channel>
  318. </rss>
  319.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//fyfluiddynamics.com/rss

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda