Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://fyfluiddynamics.com/rss

  1. <?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
  2. xmlns:content="http://purl.org/rss/1.0/modules/content/"
  3. xmlns:wfw="http://wellformedweb.org/CommentAPI/"
  4. xmlns:dc="http://purl.org/dc/elements/1.1/"
  5. xmlns:atom="http://www.w3.org/2005/Atom"
  6. xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
  7. xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
  8. xmlns:georss="http://www.georss.org/georss"
  9. xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
  10. >
  11.  
  12. <channel>
  13. <title>FYFD</title>
  14. <atom:link href="https://fyfluiddynamics.com/feed/" rel="self" type="application/rss+xml" />
  15. <link>https://fyfluiddynamics.com</link>
  16. <description>Celebrating the physics of all that flows</description>
  17. <lastBuildDate>Mon, 26 Feb 2024 16:23:49 +0000</lastBuildDate>
  18. <language>en-US</language>
  19. <sy:updatePeriod>
  20. hourly </sy:updatePeriod>
  21. <sy:updateFrequency>
  22. 1 </sy:updateFrequency>
  23. <generator>https://wordpress.org/?v=6.4.3</generator>
  24.  
  25. <image>
  26. <url>https://i0.wp.com/fyfluiddynamics.com/wp-content/uploads/2019/11/FYFD_logo-e1573082043478.png?fit=32%2C32&#038;ssl=1</url>
  27. <title>FYFD</title>
  28. <link>https://fyfluiddynamics.com</link>
  29. <width>32</width>
  30. <height>32</height>
  31. </image>
  32. <site xmlns="com-wordpress:feed-additions:1">169405895</site> <item>
  33. <title>That Drain Life</title>
  34. <link>https://fyfluiddynamics.com/2024/03/that-drain-life/</link>
  35. <comments>https://fyfluiddynamics.com/2024/03/that-drain-life/#respond</comments>
  36. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  37. <pubDate>Wed, 27 Mar 2024 15:00:00 +0000</pubDate>
  38. <category><![CDATA[Phenomena]]></category>
  39. <category><![CDATA[biology]]></category>
  40. <category><![CDATA[fluid dynamics]]></category>
  41. <category><![CDATA[hydrophobic]]></category>
  42. <category><![CDATA[insects]]></category>
  43. <category><![CDATA[physics]]></category>
  44. <category><![CDATA[science]]></category>
  45. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=20949</guid>
  46.  
  47. <description><![CDATA[No matter your cleaning habits, it&#8217;s possible to get some unexpected roommates. This variety is the drain fly, a species well-adapted to the moist environment of our pipes. As larvae, <a class="read-more" href="https://fyfluiddynamics.com/2024/03/that-drain-life/">Keep reading</a>]]></description>
  48. <content:encoded><![CDATA[
  49. <div class="wp-block-envira-envira-gallery"><div class="envira-gallery-feed-output"><img decoding="async" class="envira-gallery-feed-image" tabindex="0" src="https://i0.wp.com/fyfluiddynamics.com/wp-content/uploads/drainfly1.png?fit=1024%2C576&#038;ssl=1" title="Meet the drain fly, who wants to live in your bathroom." alt="Meet the drain fly, who wants to live in your bathroom." /></div></div>
  50.  
  51.  
  52.  
  53. <p>No matter your cleaning habits, it&#8217;s possible to get some unexpected roommates. This variety is the drain <a href="/tagged/insects/">fly</a>, a species well-adapted to the moist environment of our pipes. As larvae, they slither and squirm in the biofilms that form from the hair, saliva, and food that make their way down our drains. Being fully immersed is no problem for them, since they carry their own air bubble like a mini scuba tank. In adulthood, these tiny flies are incredibly hairy, all the better to escape from water. All those little hairs trap air near the fly, making it <a href="/tagged/hydrophobic/">hydrophobic</a> so that water just slides off. It takes a serious dowsing to immerse them enough to drown. (Image and video credit: Deep Look)</p>
  54. ]]></content:encoded>
  55. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/that-drain-life/feed/</wfw:commentRss>
  56. <slash:comments>0</slash:comments>
  57. <post-id xmlns="com-wordpress:feed-additions:1">20949</post-id> </item>
  58. <item>
  59. <title>Tornadoes in a Bucket</title>
  60. <link>https://fyfluiddynamics.com/2024/03/tornadoes-in-a-bucket/</link>
  61. <comments>https://fyfluiddynamics.com/2024/03/tornadoes-in-a-bucket/#respond</comments>
  62. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  63. <pubDate>Tue, 26 Mar 2024 15:00:00 +0000</pubDate>
  64. <category><![CDATA[Research]]></category>
  65. <category><![CDATA[2022gofm]]></category>
  66. <category><![CDATA[flow visualization]]></category>
  67. <category><![CDATA[fluid dynamics]]></category>
  68. <category><![CDATA[instability]]></category>
  69. <category><![CDATA[physics]]></category>
  70. <category><![CDATA[science]]></category>
  71. <category><![CDATA[tornado]]></category>
  72. <category><![CDATA[vortices]]></category>
  73. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=21067</guid>
  74.  
  75. <description><![CDATA[In nature, some powerful tornadoes form additional tornadoes within their shear layer. These subvortices revolve around the main tornado, causing massive destruction in their wake. In the laboratory, researchers create <a class="read-more" href="https://fyfluiddynamics.com/2024/03/tornadoes-in-a-bucket/">Keep reading</a>]]></description>
  76. <content:encoded><![CDATA[
  77. <p>In nature, some powerful <a href="/tagged/tornado/">tornadoes</a> form additional tornadoes within their shear layer. These subvortices revolve around the main tornado, causing massive destruction in their wake. In the laboratory, researchers create a similar multi-tornado system with a spinning disk at the bottom of a shallow, cylindrical layer of water. Depending on how fast the disk spins, different numbers of subvortices form around the main vortex. </p>
  78.  
  79.  
  80.  
  81. <p>In this poster, researchers show the transition from a 3-subvortex system to a 2-subvortex one. Starting at the 12 o&#8217;clock position and moving clockwise, we see 3 subvortices arranged in a triangle. A sudden change in the disk&#8217;s rotation speed destabilizes the system, causing the subvortices to break down and shift into a new 2-subvortex configuration. As this happens, material that was isolated in each subvortex (darker blue regions) is suddenly able to mix. That suggests that a real-world multiple vortex tornado might suddenly shed debris if it lost enough angular momentum. Back in the lab, though, the shift to a stable 2-subvortex system once again isolates material in individual subvortices and prevents it from mixing with the rest of the flow. (Image and research credit: G. Di Labbio et al. <a href="https://doi.org/10.1103/APS.DFD.2022.GFM.P0005">1</a>, <a href="https://doi.org/10.1103/PhysRevFluids.8.110504">2</a>)</p>
  82. ]]></content:encoded>
  83. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/tornadoes-in-a-bucket/feed/</wfw:commentRss>
  84. <slash:comments>0</slash:comments>
  85. <post-id xmlns="com-wordpress:feed-additions:1">21067</post-id> </item>
  86. <item>
  87. <title>Farewell, Saffire!</title>
  88. <link>https://fyfluiddynamics.com/2024/03/farewell-saffire/</link>
  89. <comments>https://fyfluiddynamics.com/2024/03/farewell-saffire/#respond</comments>
  90. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  91. <pubDate>Mon, 25 Mar 2024 15:00:00 +0000</pubDate>
  92. <category><![CDATA[Phenomena]]></category>
  93. <category><![CDATA[combustion]]></category>
  94. <category><![CDATA[experimental fluid dynamics]]></category>
  95. <category><![CDATA[flames]]></category>
  96. <category><![CDATA[flow visualization]]></category>
  97. <category><![CDATA[fluid dynamics]]></category>
  98. <category><![CDATA[microgravity]]></category>
  99. <category><![CDATA[physics]]></category>
  100. <category><![CDATA[science]]></category>
  101. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=21011</guid>
  102.  
  103. <description><![CDATA[After eight years and six flight tests, NASA said a fiery farewell to the Spacecraft Fire Safety Experiment, or Saffire, mission. Each Saffire test took place on an uncrewed Cygnus <a class="read-more" href="https://fyfluiddynamics.com/2024/03/farewell-saffire/">Keep reading</a>]]></description>
  104. <content:encoded><![CDATA[
  105. <p>After eight years and six flight tests, NASA said a fiery farewell to the Spacecraft Fire Safety Experiment, or Saffire, mission. Each Saffire test took place on an uncrewed Cygnus supply vehicle after undocking from the space station. Cygnus craft burn up during atmospheric re-entry, so using them as a platform guaranteed safety for the station&#8217;s crew. </p>
  106.  
  107.  
  108.  
  109. <figure class="wp-block-embed is-type-video is-provider-youtube wp-block-embed-youtube wp-embed-aspect-4-3 wp-has-aspect-ratio"><div class="wp-block-embed__wrapper">
  110. <div class="jetpack-video-wrapper"><iframe title="Saffire Ignites New Discoveries in Space | NASA Glenn Research Center" width="1170" height="878" src="https://www.youtube.com/embed/pwEF_IXBeo8?feature=oembed" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe></div>
  111. </div><figcaption class="wp-element-caption">A Plexiglass sample burns as part of Saffire-V&#8217;s experiments. In this experiment, researchers found that flames grew and spread faster on thin ribs of Plexiglass (left) than on thicker samples (right).</figcaption></figure>
  112.  
  113.  
  114.  
  115. <p>Saffire itself used a small wind tunnel to push air past its burning materials. The tests included materials like plexiglass, cotton, Nomex, and other fabrics that might be found on a spacecraft or its occupants. The goal, of course, is to understand <a href="/tagged/combustion/">how fires grow</a> and spread <a href="/tagged/microgravity/">in a spacecraft</a> in order to protect the crew. To that end, Saffire experiments recorded not only what went on inside their test unit, but also what the conditions were in the spacecraft as Saffire burned. (Image and video credit: NASA; via <a href="https://gizmodo.com/nasa-fire-in-space-experiment-ends-in-flames-saffire-1851264484">Gizmodo</a> and <a href="https://www.nasa.gov/centers-and-facilities/glenn/flame-burns-out-on-nasas-long-running-spacecraft-fire-experiment/">NASA Glenn</a>)</p>
  116. ]]></content:encoded>
  117. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/farewell-saffire/feed/</wfw:commentRss>
  118. <slash:comments>0</slash:comments>
  119. <post-id xmlns="com-wordpress:feed-additions:1">21011</post-id> </item>
  120. <item>
  121. <title>&#8220;Origin&#8221;</title>
  122. <link>https://fyfluiddynamics.com/2024/03/origin/</link>
  123. <comments>https://fyfluiddynamics.com/2024/03/origin/#respond</comments>
  124. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  125. <pubDate>Fri, 22 Mar 2024 15:00:00 +0000</pubDate>
  126. <category><![CDATA[Art]]></category>
  127. <category><![CDATA[DIY fluids]]></category>
  128. <category><![CDATA[fluid dynamics]]></category>
  129. <category><![CDATA[fluids as art]]></category>
  130. <category><![CDATA[instability]]></category>
  131. <category><![CDATA[physics]]></category>
  132. <category><![CDATA[science]]></category>
  133. <category><![CDATA[surface tension]]></category>
  134. <category><![CDATA[turbulence]]></category>
  135. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=21058</guid>
  136.  
  137. <description><![CDATA[Billowing turbulence, mushroom-like Rayleigh-Taylor instabilities, and spreading flows abound in Vadim Sherbakov&#8217;s &#8220;Origin.&#8221; The short film takes a macro looks at fluids &#8212; inks, alcohols, soaps, and other household liquids. <a class="read-more" href="https://fyfluiddynamics.com/2024/03/origin/">Keep reading</a>]]></description>
  138. <content:encoded><![CDATA[
  139. <div class="wp-block-envira-envira-gallery"><div class="envira-gallery-feed-output"><img decoding="async" class="envira-gallery-feed-image" tabindex="0" src="https://i0.wp.com/fyfluiddynamics.com/wp-content/uploads/origin3.png?fit=1024%2C429&#038;ssl=1" title="From &quot;Origin&quot; by Vadim Sherbakov." alt="From &quot;Origin&quot; by Vadim Sherbakov." /></div></div>
  140.  
  141.  
  142.  
  143. <p>Billowing <a href="/tagged/turbulence/">turbulence</a>, mushroom-like <a href="/tagged/Rayleigh-Taylor-instability/">Rayleigh-Taylor instabilities</a>, and spreading flows abound in Vadim Sherbakov&#8217;s &#8220;Origin.&#8221; The short film takes a macro looks at fluids &#8212; inks, alcohols, soaps, and other household liquids. It was filmed entirely on a <a href="https://www.dji.com/pocket-2">DJI Pocket 2</a>, a rather small, stabilized pocket camera. It&#8217;s a testament to what you can achieve with some experimentation and relatively inexpensive equipment.  (Video and image credit: <a href="https://www.vadimsherbakov.com/">V. Sherbakov</a>)</p>
  144. ]]></content:encoded>
  145. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/origin/feed/</wfw:commentRss>
  146. <slash:comments>0</slash:comments>
  147. <post-id xmlns="com-wordpress:feed-additions:1">21058</post-id> </item>
  148. <item>
  149. <title>Vortex Below</title>
  150. <link>https://fyfluiddynamics.com/2024/03/vortex-below/</link>
  151. <comments>https://fyfluiddynamics.com/2024/03/vortex-below/#respond</comments>
  152. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  153. <pubDate>Thu, 21 Mar 2024 15:00:00 +0000</pubDate>
  154. <category><![CDATA[Research]]></category>
  155. <category><![CDATA[flow visualization]]></category>
  156. <category><![CDATA[fluid dynamics]]></category>
  157. <category><![CDATA[marangoni effect]]></category>
  158. <category><![CDATA[physics]]></category>
  159. <category><![CDATA[plumes]]></category>
  160. <category><![CDATA[science]]></category>
  161. <category><![CDATA[shear layers]]></category>
  162. <category><![CDATA[vortex rings]]></category>
  163. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=20994</guid>
  164.  
  165. <description><![CDATA[When a drop of ethanol lands on a pool of water, surface tension forces draw it into a fast-spreading film. Evenly-spaced plumes form at the edges of the film, then <a class="read-more" href="https://fyfluiddynamics.com/2024/03/vortex-below/">Keep reading</a>]]></description>
  166. <content:encoded><![CDATA[
  167. <p>When a drop of ethanol lands on a pool of water, <a href="/tagged/Marangoni-effect/">surface tension forces</a> draw it into a fast-spreading film. Evenly-spaced <a href="/tagged/plumes/">plumes</a> form at the edges of the film, then the film stops spreading and instead retracts. All of this takes place in about 0.6 seconds. But, as the image above shows, there&#8217;s more that goes on beneath the surface. A <a href="/tagged/vortex-rings/">vortex ring</a> forms and spreads under the film, driven by the shear layer under the edge of the plumes. Here, the vortex ring is visible in the swirling particles near the water surface. (Image and research credit: <a href="https://doi.org/10.1103/PhysRevFluids.9.L012701">A. Pant and B. Puthenveettil</a>)</p>
  168. ]]></content:encoded>
  169. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/vortex-below/feed/</wfw:commentRss>
  170. <slash:comments>0</slash:comments>
  171. <post-id xmlns="com-wordpress:feed-additions:1">20994</post-id> </item>
  172. <item>
  173. <title>Langebaan Lagoon</title>
  174. <link>https://fyfluiddynamics.com/2024/03/langebaan-lagoon/</link>
  175. <comments>https://fyfluiddynamics.com/2024/03/langebaan-lagoon/#respond</comments>
  176. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  177. <pubDate>Wed, 20 Mar 2024 15:00:00 +0000</pubDate>
  178. <category><![CDATA[Phenomena]]></category>
  179. <category><![CDATA[astronaut]]></category>
  180. <category><![CDATA[flow visualization]]></category>
  181. <category><![CDATA[fluid dynamics]]></category>
  182. <category><![CDATA[meander]]></category>
  183. <category><![CDATA[physics]]></category>
  184. <category><![CDATA[science]]></category>
  185. <category><![CDATA[tides]]></category>
  186. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=20977</guid>
  187.  
  188. <description><![CDATA[Strands of green and brown mix in Langebaan Lagoon on the South African coast in this astronaut photograph. The shallow tidal estuary has a sandy floor and, since no river <a class="read-more" href="https://fyfluiddynamics.com/2024/03/langebaan-lagoon/">Keep reading</a>]]></description>
  189. <content:encoded><![CDATA[
  190. <p>Strands of green and brown mix in Langebaan Lagoon on the South African coast in this <a href="/tagged/astronaut/">astronaut</a> photograph. The shallow tidal estuary has a sandy floor and, since no river flows into it, the deeper green sections seen here are channels carved solely by the back-and-forth flow of the tides. To the north of the lagoon, Saldanha Bay is a busy hub for fishing and industry. The long reddish line extending into the water is a railroad pier responsible for loading 96 percent of South Africa&#8217;s iron ore gets loaded onto ships. (Image credit: NASA; via <a href="https://earthobservatory.nasa.gov/images/152408/saldanha-bay-and-langebaan-lagoon">NASA Earth Observatory</a>)</p>
  191. ]]></content:encoded>
  192. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/langebaan-lagoon/feed/</wfw:commentRss>
  193. <slash:comments>0</slash:comments>
  194. <post-id xmlns="com-wordpress:feed-additions:1">20977</post-id> </item>
  195. <item>
  196. <title>Spreading the Word</title>
  197. <link>https://fyfluiddynamics.com/2024/03/spreading-the-word/</link>
  198. <comments>https://fyfluiddynamics.com/2024/03/spreading-the-word/#respond</comments>
  199. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  200. <pubDate>Tue, 19 Mar 2024 15:00:00 +0000</pubDate>
  201. <category><![CDATA[Research]]></category>
  202. <category><![CDATA[biology]]></category>
  203. <category><![CDATA[flow visualization]]></category>
  204. <category><![CDATA[fluid dynamics]]></category>
  205. <category><![CDATA[physics]]></category>
  206. <category><![CDATA[plants]]></category>
  207. <category><![CDATA[science]]></category>
  208. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=20837</guid>
  209.  
  210. <description><![CDATA[Just as prairie dogs bark to warn the colony of danger, many plants can signal their neighbors when they&#8217;re under attack. This thale cress releases calcium when caterpillars eat it; <a class="read-more" href="https://fyfluiddynamics.com/2024/03/spreading-the-word/">Keep reading</a>]]></description>
  211. <content:encoded><![CDATA[
  212. <p>Just as prairie dogs bark to warn the colony of danger, many plants can signal their neighbors when they&#8217;re under attack. This thale cress releases calcium when caterpillars eat it; neighboring plants pick up the chemical signal and pass it along. To better understand how the signal gets passed, researchers genetically modified this plant to fluoresce when extra calcium is on the move. It&#8217;s incredible to watch the flow from one side of a leaf to another. (Image and research credit: <a href="https://doi.org/10.1038/s41467-023-41589-9">Y. Aratani et al.</a>; via <a href="https://www.thisiscolossal.com/2024/01/plants-talking/">Colossal</a>)</p>
  213. ]]></content:encoded>
  214. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/spreading-the-word/feed/</wfw:commentRss>
  215. <slash:comments>0</slash:comments>
  216. <post-id xmlns="com-wordpress:feed-additions:1">20837</post-id> </item>
  217. <item>
  218. <title>Convection in Action</title>
  219. <link>https://fyfluiddynamics.com/2024/03/convection-in-action/</link>
  220. <comments>https://fyfluiddynamics.com/2024/03/convection-in-action/#respond</comments>
  221. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  222. <pubDate>Mon, 18 Mar 2024 15:00:00 +0000</pubDate>
  223. <category><![CDATA[Phenomena]]></category>
  224. <category><![CDATA[buoyancy]]></category>
  225. <category><![CDATA[convection]]></category>
  226. <category><![CDATA[DIY fluids]]></category>
  227. <category><![CDATA[flow visualization]]></category>
  228. <category><![CDATA[fluid dynamics]]></category>
  229. <category><![CDATA[instability]]></category>
  230. <category><![CDATA[laminar flow]]></category>
  231. <category><![CDATA[physics]]></category>
  232. <category><![CDATA[Rayleigh-Benard convection]]></category>
  233. <category><![CDATA[science]]></category>
  234. <category><![CDATA[turbulence]]></category>
  235. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=21020</guid>
  236.  
  237. <description><![CDATA[We&#8217;re surrounded daily by convection &#8212; a buoyancy-driven flow &#8212; but most of the time it&#8217;s invisible to us. In this video, Steve Mould shows off what convection really looks <a class="read-more" href="https://fyfluiddynamics.com/2024/03/convection-in-action/">Keep reading</a>]]></description>
  238. <content:encoded><![CDATA[
  239. <div class="wp-block-envira-envira-gallery"><div class="envira-gallery-feed-output"><img decoding="async" class="envira-gallery-feed-image" tabindex="0" src="https://i0.wp.com/fyfluiddynamics.com/wp-content/uploads/conv1.png?fit=1024%2C576&#038;ssl=1" title="A turbulent plume visualized with rheoscopic fluid. The center portion of the enclosure&#039;s bottom is heated." alt="A turbulent plume visualized with rheoscopic fluid. The center portion of the enclosure&#039;s bottom is heated." /></div></div>
  240.  
  241.  
  242.  
  243. <p>We&#8217;re surrounded daily by <a href="/tagged/convection/">convection</a> &#8212; a <a href="/tagged/buoyancy/">buoyancy</a>-driven flow &#8212; but most of the time it&#8217;s invisible to us. In this video, Steve Mould shows off what convection really looks like with some of his excellent tabletop demos. The first half of the video gives profile views of <a href="/tagged/turbulence/">turbulent</a> convection, with chaotic and unsteady patterns. When he switches to oil instead of water, the higher viscosity (and lower <a href="/tagged/Reynolds-number/">Reynolds number</a>) offer a more structured, <a href="/tagged/laminar-flow/">laminar</a> look. And finally, he shows a little <a href="/tagged/solutal-convection/">non-temperature-dependent convection</a> with a mixture of Tia Maria and cream, which convects due to evaporation changing the density. (Image and video credit: S. Mould; submitted by Eric W.)</p>
  244. ]]></content:encoded>
  245. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/convection-in-action/feed/</wfw:commentRss>
  246. <slash:comments>0</slash:comments>
  247. <post-id xmlns="com-wordpress:feed-additions:1">21020</post-id> </item>
  248. <item>
  249. <title>&#8220;Lucid&#8221;</title>
  250. <link>https://fyfluiddynamics.com/2024/03/lucid/</link>
  251. <comments>https://fyfluiddynamics.com/2024/03/lucid/#respond</comments>
  252. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  253. <pubDate>Fri, 15 Mar 2024 15:00:00 +0000</pubDate>
  254. <category><![CDATA[Art]]></category>
  255. <category><![CDATA[fluid dynamics]]></category>
  256. <category><![CDATA[fluids as art]]></category>
  257. <category><![CDATA[instability]]></category>
  258. <category><![CDATA[marangoni effect]]></category>
  259. <category><![CDATA[physics]]></category>
  260. <category><![CDATA[science]]></category>
  261. <category><![CDATA[surface tension]]></category>
  262. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=21006</guid>
  263.  
  264. <description><![CDATA[Artist Roman Hill made this official music video to go with Thomas Vanz&#8217;s &#8220;Lucid.&#8221; The imagery, formed from ink and other fluids, warps our sense of scale. Though the camera <a class="read-more" href="https://fyfluiddynamics.com/2024/03/lucid/">Keep reading</a>]]></description>
  265. <content:encoded><![CDATA[
  266. <div class="wp-block-envira-envira-gallery"><div class="envira-gallery-feed-output"><img decoding="async" class="envira-gallery-feed-image" tabindex="0" src="https://i0.wp.com/fyfluiddynamics.com/wp-content/uploads/lucid1.png?fit=1024%2C402&#038;ssl=1" title="From &quot;Lucid&quot; by Roman Hill." alt="From &quot;Lucid&quot; by Roman Hill." /></div></div>
  267.  
  268.  
  269.  
  270. <p>Artist Roman Hill made this official music video to go with Thomas Vanz&#8217;s &#8220;Lucid.&#8221; The imagery, formed from ink and other fluids, warps our sense of scale. Though the camera focuses on an extremely small area, to our eyes the results shift from nebulas to oceans and back again. There are likely a whole host of phenomena going on here, but without knowing more about Hill&#8217;s ingredients, I can only speculate that there are <a href="/tagged/Marangoni-effect/">Marangoni flows</a> driven by variations in surface tension and maybe some <a href="/tagged/accidental-painting">density instabilities</a> going on between fluid layers. I&#8217;m also fairly confident that Hill has played with time reversal in the video editing. Regardless of the secrets in its making, the film is captivating and gorgeous. (Image and video credit: <a href="https://www.instagram.com/roman.hill">R. Hill</a>)</p>
  271. ]]></content:encoded>
  272. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/lucid/feed/</wfw:commentRss>
  273. <slash:comments>0</slash:comments>
  274. <post-id xmlns="com-wordpress:feed-additions:1">21006</post-id> </item>
  275. <item>
  276. <title>Superfluid Heat Transfer</title>
  277. <link>https://fyfluiddynamics.com/2024/03/superfluid-heat-transfer/</link>
  278. <comments>https://fyfluiddynamics.com/2024/03/superfluid-heat-transfer/#respond</comments>
  279. <dc:creator><![CDATA[Nicole Sharp]]></dc:creator>
  280. <pubDate>Thu, 14 Mar 2024 15:00:00 +0000</pubDate>
  281. <category><![CDATA[Research]]></category>
  282. <category><![CDATA[fluid dynamics]]></category>
  283. <category><![CDATA[heat transfer]]></category>
  284. <category><![CDATA[physics]]></category>
  285. <category><![CDATA[science]]></category>
  286. <category><![CDATA[second sound]]></category>
  287. <category><![CDATA[superfluid]]></category>
  288. <guid isPermaLink="false">https://fyfluiddynamics.com/?p=20989</guid>
  289.  
  290. <description><![CDATA[Near absolute zero, as atoms slow down, some materials become a superfluid, a type of matter with zero viscosity. Superfluids do all kinds of strange things like generate fountains, leak <a class="read-more" href="https://fyfluiddynamics.com/2024/03/superfluid-heat-transfer/">Keep reading</a>]]></description>
  291. <content:encoded><![CDATA[
  292. <p>Near absolute zero, as atoms slow down, some materials become a <a href="/tagged/superfluid/">superfluid</a>, a type of matter with zero viscosity. Superfluids do all kinds of strange things like <a href="/2011/11/superfluids-a-special-type-of-fluid-located-below/">generate fountains</a>, <a href="/2011/01/below-a-temperature-of-217-kelvin-helium-becomes/">leak from sealed containers</a>, and <a href="/2012/11/cooling-helium-to-a-few-degrees-kelvin-above/">form quantized vortices</a>. Theorists also predicted that in a superfluid heat would slosh back and forth like a wave, even without any flow. They call this &#8220;second sound&#8221; and <a href="https://doi.org/10.1126/science.adg3430">researchers have now detected it</a> for the first time. </p>
  293.  
  294.  
  295.  
  296. <p>In a typical experiment, we&#8217;d use an infrared camera to see how heat moves in a substance, but at the frigid temperatures of superfluids, that&#8217;s not possible. Instead, the team developed a method that measured the temperature of their atomic gas using radio frequency. When their lithium-6 fermions were at a higher temperature, they resonated with a higher radio frequency. Using radio frequency to probe the substance, they were able to observe exactly when heat stopped diffusing like in normal matter and switched to the superfluid second sound state. Since superfluids may <a href="/2011/02/this-image-shows-a-composite-x-ray-red-green/">live at the heart of neutron stars</a>, further experiments will help us understand these exotic forms of matter. (Image credit: <a href="https://news.mit.edu/2024/mit-physicists-capture-first-sounds-heat-sloshing-superfluid-0208" target="_blank" rel="noreferrer noopener">J. Olivares/MIT</a>; research credit: <a href="https://doi.org/10.1126/science.adg3430">Z. Yan et al.</a>; via <a href="https://news.mit.edu/2024/mit-physicists-capture-first-sounds-heat-sloshing-superfluid-0208">MIT News</a> and <a href="https://gizmodo.com/physicists-captured-images-of-heats-second-sound-what-1851243081">Gizmodo</a>)</p>
  297. ]]></content:encoded>
  298. <wfw:commentRss>https://fyfluiddynamics.com/2024/03/superfluid-heat-transfer/feed/</wfw:commentRss>
  299. <slash:comments>0</slash:comments>
  300. <post-id xmlns="com-wordpress:feed-additions:1">20989</post-id> </item>
  301. </channel>
  302. </rss>
  303.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//fyfluiddynamics.com/rss

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda