Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: https://www.nasa.gov/feed/

  1. <?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
  2. xmlns:content="http://purl.org/rss/1.0/modules/content/"
  3. xmlns:wfw="http://wellformedweb.org/CommentAPI/"
  4. xmlns:dc="http://purl.org/dc/elements/1.1/"
  5. xmlns:atom="http://www.w3.org/2005/Atom"
  6. xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
  7. xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
  8. xmlns:media="http://search.yahoo.com/mrss/" >
  9.  
  10. <channel>
  11. <title>NASA</title>
  12. <atom:link href="https://www.nasa.gov/feed/" rel="self" type="application/rss+xml" />
  13. <link>https://www.nasa.gov</link>
  14. <description>Official National Aeronautics and Space Administration Website</description>
  15. <lastBuildDate>Wed, 01 May 2024 22:23:56 +0000</lastBuildDate>
  16. <language>en-US</language>
  17. <sy:updatePeriod>
  18. hourly </sy:updatePeriod>
  19. <sy:updateFrequency>
  20. 1 </sy:updateFrequency>
  21. <generator>https://wordpress.org/?v=6.4.4</generator>
  22. <item>
  23. <title>The Marshall Star for May 1, 2024</title>
  24. <link>https://www.nasa.gov/centers-and-facilities/marshall/the-marshall-star-for-may-1-2024/</link>
  25. <dc:creator><![CDATA[Lee Mohon]]></dc:creator>
  26. <pubDate>Wed, 01 May 2024 22:23:55 +0000</pubDate>
  27. <category><![CDATA[Marshall Space Flight Center]]></category>
  28. <guid isPermaLink="false">https://www.nasa.gov/?p=656557</guid>
  29.  
  30. <description><![CDATA[Marshall Prepares for Strategic Facilities Updates&#160; NASA’s Marshall Space Flight Center is getting ready for the next big step in the evolution of its main campus. Through a series of multi-year infrastructure projects, Marshall is optimizing its footprint to assure its place as a vibrant and vital hub for the aerospace community in the next [&#8230;]]]></description>
  31. <content:encoded><![CDATA[<div id="" class="hds-article-hero-header nasa-gb-align-full bg-carbon-90 width-full maxw-full color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-article-hero-header"> <div class="hds-cover-wrapper width-full maxw-full minh-tablet grid-container minh-tablet flex-column padding-0">
  32. <div class="hds-foreground-wrapper display-flex flex-direction-column">
  33. <div class="grid-container grid-container-block margin-top-auto width-full maxw-desktop-lg padding-y-9 padding-x-3 desktop:padding-x-0 z-400">
  34. <div class="z-400 grid-col-12 tablet:grid-col-12 desktop:grid-col-7 z-400">
  35. <div class="margin-0">
  36. <div class="label color-spacesuit-white margin-bottom-2">23 Min Read</div>
  37. <h1 class="heading-41 line-height-md color-spacesuit-white-important">
  38. The Marshall Star for May 1, 2024 </h1>
  39. </div>
  40. </div>
  41. <div class="grid-col-12 tablet:grid-col-12 desktop:grid-col-5"></div>
  42. <div class="skrim-overlay skrim-left mobile-skrim-top z-200"></div>
  43. <figure class="hds-media-background  "><img fetchpriority="high" decoding="async" width="1920" height="1497" src="https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1920&amp;h=1497&amp;fit=clip&amp;crop=faces%2Cfocalpoint" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 0% 41%; object-position: 0% 41%; object-fit: cover;" block_context="nasa-block" srcset="https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1920&amp;h=1497&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1920w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=300&amp;h=234&amp;fit=crop&amp;crop=faces%2Cfocalpoint 300w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=768&amp;h=599&amp;fit=crop&amp;crop=faces%2Cfocalpoint 768w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1024&amp;h=798&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1024w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1536&amp;h=1198&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1536w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=400&amp;h=312&amp;fit=crop&amp;crop=faces%2Cfocalpoint 400w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=600&amp;h=468&amp;fit=crop&amp;crop=faces%2Cfocalpoint 600w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=900&amp;h=702&amp;fit=crop&amp;crop=faces%2Cfocalpoint 900w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1200&amp;h=936&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1200w" sizes="(max-width: 1920px) 100vw, 1920px" loading="eager" /></figure> </div>
  44. </div>
  45. </div>
  46. <div class="padding-y-3 padding-x-3">
  47. <div class="grid-container grid-container-block padding-x-0">
  48. </div>
  49. </div>
  50. </div>
  51.  
  52.  
  53. <h2 class="wp-block-heading"><strong>Marshall Prepares for Strategic Facilities Updates</strong>&nbsp;</h2>
  54.  
  55.  
  56.  
  57. <p>NASA’s Marshall Space Flight Center is getting ready for the next big step in the evolution of its main campus. Through a series of multi-year infrastructure projects, Marshall is optimizing its footprint to assure its place as a vibrant and vital hub for the aerospace community in the next era.&nbsp;</p>
  58.  
  59.  
  60.  
  61. <p>Near-term plans call for the carefully orchestrated take-down of 19 obsolete and idle structures – among them the 363-foot-tall Dynamic Test Stand, the Propulsion and Structural Test Facility, and Neutral Buoyancy Simulator. These facilities are not required for current or future missions, and the demolitions will help the center transition to a more modern, sustainable, and affordable infrastructure.</p>
  62.  
  63.  
  64. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1920&#038;h=1497&#038;fit=clip&#038;crop=faces%2Cfocalpoint" rel="noopener"><img decoding="async" width="1920" height="1497" src="https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1920&amp;h=1497&amp;fit=clip&amp;crop=faces%2Cfocalpoint" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1920&amp;h=1497&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1920w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=300&amp;h=234&amp;fit=crop&amp;crop=faces%2Cfocalpoint 300w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=768&amp;h=599&amp;fit=crop&amp;crop=faces%2Cfocalpoint 768w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1024&amp;h=798&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1024w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1536&amp;h=1198&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1536w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=400&amp;h=312&amp;fit=crop&amp;crop=faces%2Cfocalpoint 400w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=600&amp;h=468&amp;fit=crop&amp;crop=faces%2Cfocalpoint 600w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=900&amp;h=702&amp;fit=crop&amp;crop=faces%2Cfocalpoint 900w, https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1200&amp;h=936&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1200w" sizes="(max-width: 1920px) 100vw, 1920px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Test engineers fire up the Saturn I rocket’s first stage (S-1-10) at the Propulsion and Structural Test Facility, or “T-tower,” at NASA’s Marshall Space Flight Center in 1964.</div><div class="hds-credits">NASA</div></figcaption></div></div></div>
  65.  
  66.  
  67. <p>“These facilities helped NASA make history – the Dynamic Test Stand was the tallest manmade structure in North Alabama and helped us test both the Saturn V rocket and the space shuttle,” said Joseph Pelfrey, Marshall’s center director. “Without these structures, we wouldn’t have the space program we have today. While it is hard to let them go, the most important legacy remaining are the people that built and stewarded these facilities and the missions they enabled. That same bold spirit fuels us, today. We are committed to carrying it forward to inspire the workforce of tomorrow.”&nbsp;</p>
  68.  
  69.  
  70.  
  71. <p>Built in 1964, the Dynamic Test Stand initially was used to test fully assembled Saturn V rockets. In 1978, engineers there also integrated all space shuttle elements for the first time, including the orbiter, external fuel tank, and solid rocket boosters.</p>
  72.  
  73.  
  74.  
  75. <p>The Propulsion and Structural Test Facility – better known at Marshall as the “T-tower” due to its unique shape&nbsp;– was built in 1957 by the U.S. Army Ballistic Missile Agency and transferred to NASA when Marshall was founded in 1960. There, engineers tested components of the Saturn launch vehicles, the Army’s Redstone Rocket, and shuttle solid rocket boosters.</p>
  76.  
  77.  
  78.  
  79. <p>The Neutral Buoyancy Simulator, including its 1.3-million-gallon tank and control room, was built in the late 1960s. From 1969 until its closing in 1997, the facility enabled NASA astronauts and researchers to experience near-weightlessness, conducting underwater testing of space hardware and practice runs for servicing the Hubble Space Telescope. It was replaced in 1997 by a new facility at NASA’s Johnson Space Center.</p>
  80.  
  81.  
  82. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=1000&#038;h=657&#038;fit=clip&#038;crop=faces%2Cfocalpoint" rel="noopener"><img decoding="async" width="1000" height="657" src="https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=1000&amp;h=657&amp;fit=clip&amp;crop=faces%2Cfocalpoint" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1.2); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=1000&amp;h=657&amp;fit=crop&amp;crop=faces%2Cfocalpoint 1000w, https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=300&amp;h=197&amp;fit=crop&amp;crop=faces%2Cfocalpoint 300w, https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=768&amp;h=505&amp;fit=crop&amp;crop=faces%2Cfocalpoint 768w, https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=400&amp;h=263&amp;fit=crop&amp;crop=faces%2Cfocalpoint 400w, https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=600&amp;h=394&amp;fit=crop&amp;crop=faces%2Cfocalpoint 600w, https://images-assets.nasa.gov/image/9507185/9507185~orig.jpg?w=900&amp;h=591&amp;fit=crop&amp;crop=faces%2Cfocalpoint 900w" sizes="(max-width: 1000px) 100vw, 1000px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Astronauts conduct underwater testing on the International Space Station’s power module in the Neutral Buoyancy Simulator at Marshall in 1995.</div><div class="hds-credits">NASA</div></figcaption></div></div></div>
  83.  
  84.  
  85. <p><strong>Honoring the Past, Building the Future</strong></p>
  86.  
  87.  
  88.  
  89. <p>Marshall master planner Justin Taylor said the facilities team looked at every possibility for refurbishing the old sites.</p>
  90.  
  91.  
  92.  
  93. <p>“The upkeep of aging facilities is costly, and we have to put our funding where it does the most good for NASA’s mission,” he said. “These are tough choices, but we have to prioritize function and cost over nostalgia. We’re making way for what’s next.”</p>
  94.  
  95.  
  96.  
  97. <p>To preserve NASA history, the agency has worked with architectural historians over the years on detailed drawings, written histories, and large-format photographs of the sites. Those documents are part of the Library of Congress’s permanent <a href="https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Floc.gov%2Fpictures%2Fcollection%2Fhh%2F&amp;data=05%7C02%7Clance.d.davis%40nasa.gov%7C53865e605faa4f771ac508dc6629b123%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638497576449430700%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&amp;sdata=lrPNX0ATLWYo5gT2QLPvYyqw9Fx1piiZolhuWPCg48M%3D&amp;reserved=0" rel="noopener">Historic American Engineering Record</a>&nbsp;collection, making their history and accomplishments available to the public for generations to come.</p>
  98.  
  99.  
  100.  
  101. <p>Marshall facilities engineers are still finalizing the details and timeline for the demolitions. Work is expected to begin in late 2024 and end in late 2025.&nbsp;Additionally, to support the center’s employees and all the mission work they are doing, Marshall has a few infrastructure projects in design stages that will include the construction of two state-of-the-art buildings within the decade ahead.</p>
  102.  
  103.  
  104.  
  105. <p>A new Marshall Exploration Facility will offer a two to three story facility at approximately 55,000 square feet located within the 4200 complex. The facility will include an auditorium, along with conferencing, training, retail, and administrative spaces. The new Engineering Science Lab – at approximately 140,000 square feet – will provide a modern, flexible laboratory environment to accommodate a new focus for research and testing capabilities.</p>
  106.  
  107.  
  108.  
  109. <p>Ultimately, NASA’s vision for Marshall is a dynamic, interconnected campus. The center’s master plan features a central greenway connecting its two most densely populated zones – its administrative complex and engineering complex.</p>
  110.  
  111.  
  112.  
  113. <p>“As we look towards the aspirational goals we have as an agency, Marshall’s contributions may look different than our past but be no less important,” said Pelfrey.&nbsp;“And we want our partners, employees, and the community to be part of the evolution with us, bringing complementary skills and capabilities, innovative ideas, and a passion for exploration and discovery.”</p>
  114.  
  115.  
  116.  
  117. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  118.  
  119.  
  120.  
  121. <h2 class="wp-block-heading"><strong>Center Helps Grow Team Redstone’s Green Canopy for Earth Day</strong></h2>
  122.  
  123.  
  124. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg"><img decoding="async" width="2048" height="1479" src="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Redstone Arsenal and Marshall Space Flight Center leaders stand beside a carefully selected Ginkgo tree during Earth Day activities April 25 at Marshall’s food truck corral. The “Autumn Gold” Ginkgo will grow behind the Medical Center at Building 4249 as a living reminder of Marshall’s commitment to sustainability and environmental stewardship. From left, Redstone Arsenal Garrison Commander Col. Brian Cozine; Deputy Garrison Commander Martin Traylor; Deputy Director of Marshall’s Office of Center Operations Bill Marks; Environmental Engineering and Occupational Health Manager Farley Davis; Director of Center Operations June Malone; and Associate Center Director, Technical, Larry Leopard." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg 3600w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=300,217 300w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=768,555 768w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=1024,740 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=1536,1109 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=2048,1479 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=400,289 400w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=600,433 600w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=900,650 900w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=1200,867 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8176.jpg?resize=2000,1444 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Redstone Arsenal and Marshall Space Flight Center leaders stand beside a carefully selected Ginkgo tree during Earth Day activities April 25 at Marshall’s food truck corral. The “Autumn Gold” Ginkgo will grow behind the Medical Center at Building 4249 as a living reminder of Marshall’s commitment to sustainability and environmental stewardship. From left, Redstone Arsenal Garrison Commander Col. Brian Cozine; Deputy Garrison Commander Martin Traylor; Deputy Director of Marshall’s Office of Center Operations Bill Marks; Environmental Engineering and Occupational Health Manager Farley Davis; Director of Center Operations June Malone; and Associate Center Director, Technical, Larry Leopard. </div><div class="hds-credits">NASA/Charles Beason</div></figcaption></div></div></div>
  125.  
  126. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg"><img loading="lazy" decoding="async" width="2048" height="1440" src="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Earth Day volunteers Sahana Parker, center, and Jacob Jolley, right, help hand out hundreds of saplings April 25 in a tree giveaway organized by Marshall’s Environmental Engineering and Occupational Health Office and Green Team." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg 3600w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=300,211 300w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=768,540 768w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=1024,720 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=1536,1080 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=2048,1440 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=400,281 400w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=600,422 600w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=900,633 900w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=1200,844 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8156.jpg?resize=2000,1407 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Earth Day volunteers Sahana Parker, center, and Jacob Jolley, right, help hand out hundreds of saplings April 25 in a tree giveaway organized by Marshall’s Environmental Engineering and Occupational Health Office and Green Team. </div><div class="hds-credits">NASA/Charles Beason</div></figcaption></div></div></div>
  127.  
  128. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg"><img loading="lazy" decoding="async" width="2048" height="1484" src="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Environmental Protection Specialist Joni Melson, right, lends a helping hand to a fellow plant lover at Marshall’s Earth Day celebration April 25. Melson led Marshall’s planning and coordination for the event, a joint effort with Team Redstone." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg 3000w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=300,217 300w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=768,557 768w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=1024,742 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=1536,1113 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=2048,1484 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=400,290 400w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=600,435 600w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=900,652 900w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=1200,870 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/ceb-8196.jpg?resize=2000,1449 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Environmental Protection Specialist Joni Melson, right, lends a helping hand to a fellow plant lover at Marshall’s Earth Day celebration April 25. Melson led Marshall’s planning and coordination for the event, a joint effort with Team Redstone. </div><div class="hds-credits">NASA/Charles Beason</div></figcaption></div></div></div>
  129.  
  130.  
  131. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  132.  
  133.  
  134.  
  135. <h2 class="wp-block-heading"><strong>Michoud Workforce ‘Goes Green’ in Celebration of Earth Day</strong></h2>
  136.  
  137.  
  138.  
  139. <p>Team members at NASA’s Michoud Assembly Facility marked Earth Day 2024 on April 22 by planting satsuma trees and small plants near administrative and office buildings.</p>
  140.  
  141.  
  142. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg"><img loading="lazy" decoding="async" width="2048" height="1758" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="From left, Boeing Michoud Deputy Site Leader Brad Saxton, Michoud Assembly Facility Director Hansel Gill, Textron Supervisor Inventory Control/Shipping MAF/Stone Road Wendy Dedeaux, Lockheed Martin Environmental Health and Safety Engineer Darrell Christian, Michoud Environmental Officer Ben Ferrell, and Syncom Space Services Environmental Manager Eric Stack pack in dirt and mulch around a newly planted satsuma tree at Michoud." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg 5612w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=300,257 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=768,659 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=1024,879 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=1536,1318 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=2048,1758 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=400,343 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=600,515 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=900,772 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=1200,1030 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-52.jpg?resize=2000,1716 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">From left, Boeing Michoud Deputy Site Leader Brad Saxton, Michoud Assembly Facility Director Hansel Gill, Textron Supervisor Inventory Control/Shipping MAF/Stone Road Wendy Dedeaux, Lockheed Martin Environmental Health and Safety Engineer Darrell Christian, Michoud Environmental Officer Ben Ferrell, and Syncom Space Services Environmental Manager Eric Stack pack in dirt and mulch around a newly planted satsuma tree at Michoud.</div><div class="hds-credits">NASA/Steven Seipel</div></figcaption></div></div></div>
  143.  
  144.  
  145. <p>Nearly 50 employees from NASA, Boeing, Lockheed Martin, Syncom Space Services (S3), Textron, and various other contractors worked together to weed flower beds and pick up litter and debris around the 829-acre site on Earth Day.</p>
  146.  
  147.  
  148.  
  149. <p>“The Earth Day activities this morning were not only good for the environment, but also good for our workforce,” said Michoud Director Hansel Gill, “It was a pleasure to see folks from various contractors and tenants come together, get their hands dirty, and enjoy the comradery. Everyone was smiling, the weather was perfect, morale was high, and we look forward to hosting more opportunities such as this in the future.”</p>
  150.  
  151.  
  152. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg"><img loading="lazy" decoding="async" width="2048" height="1469" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Nearly 50 employees from NASA, Boeing, Lockheed Martin, Syncom Space Services (S3), Textron, and various other contractors worked together to weed flower beds and pick up litter and debris around the 829-acre site on Earth Day." style="transform: scale(1.2); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg 7565w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=300,215 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=768,551 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=1024,735 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=1536,1102 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=2048,1469 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=400,287 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=600,430 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=900,646 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=1200,861 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-174.jpg?resize=2000,1435 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Earth Day-Tree Planting and Building 101/102 Alley Clean Up</div><div class="hds-credits">NASA/Steven Seipel</div></figcaption></div></div></div>
  153.  
  154. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Crystal Farmer, left, and Jennifer York of Boeing show off “MAF Goes Green” giveaways handed out during the April 22 cleanup activities." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg 8640w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-80.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Crystal Farmer, left, and Jennifer York of Boeing show off “MAF Goes Green” giveaways handed out during the April 22 cleanup activities. </div><div class="hds-credits">NASA/Steven Seipel</div></figcaption></div></div></div>
  155.  
  156. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Michoud Environmental Officer Ben Ferrell plants purple and gold flowers in the freshly weeded landscaping next to Building 101." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg 8640w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-166.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Earth Day-Tree Planting and Building 101/102 Alley Clean Up</div><div class="hds-credits">NASA/Steven Seipel</div></figcaption></div></div></div>
  157.  
  158. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="NASA’s Michoud Assembly Facility team members join in cleanup and beautification efforts at Michoud in celebration of Earth Day 2024." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg 8640w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240422-earth-day-129.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">NASA’s Michoud Assembly Facility team members join in cleanup and beautification efforts at Michoud in celebration of Earth Day 2024.</div><div class="hds-credits">NASA/Steven Seipel</div></figcaption></div></div></div>
  159.  
  160.  
  161. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  162.  
  163.  
  164.  
  165. <h2 class="wp-block-heading"><strong>Export Control Office Keeps Marshall Safe and Secure When Sharing Knowledge</strong>&nbsp;</h2>
  166.  
  167.  
  168.  
  169. <p><em>By Jessica Barnett</em>&nbsp;</p>
  170.  
  171.  
  172.  
  173. <p>As a team member at NASA’s Marshall Space Flight Center, it’s your responsibility to help make sure information doesn’t fall into the wrong hands. That includes checking in with the center’s Export Control Office before a presentation or visit with foreign nationals or entities.</p>
  174.  
  175.  
  176.  
  177. <p>Marshall’s Export Control Program features four staff members and a multitude of certified Center Export Representatives (CERs) who will work with team members to ensure organizations can get their work done without violating export control laws.</p>
  178.  
  179.  
  180. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg"><img loading="lazy" decoding="async" width="1736" height="1121" src="https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?w=1736" class="attachment-2048x2048 size-2048x2048" alt="Marshall Space Flight Center’s Export Control Program team includes, from left, Elizabeth Ewald, senior export compliance specialist; Sean Benson, center export administrator; Chris Jones, export compliance specialist; and Chris Mathews, assistant center export administrator." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg 1736w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=300,194 300w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=768,496 768w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=1024,661 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=1536,992 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=400,258 400w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=600,387 600w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=900,581 900w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-group-pic.jpg?resize=1200,775 1200w" sizes="(max-width: 1736px) 100vw, 1736px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Marshall Space Flight Center’s Export Control Program team includes, from left, Elizabeth Ewald, senior export compliance specialist; Sean Benson, center export administrator; Chris Jones, export compliance specialist; and Chris Mathews, assistant center export administrator. </div><div class="hds-credits">NASA/Jessica Barnett</div></figcaption></div></div></div>
  181.  
  182.  
  183. <p>“We’re a service organization with a mission to help NASA employees navigate the very complex world of export controls,” said Sean Benson, who serves as Marshall’s center export administrator. “They’re laws that all U.S. entities – government included – must follow. Our role is to help the exporter navigate those in an efficient and compliant way.”</p>
  184.  
  185.  
  186.  
  187. <p>It’s important to note that exports aren’t just physical goods being shipped overseas. They can include items shared virtually with foreign companies, visits from foreign nationals, presentations with non-U.S. schools or universities, and more.</p>
  188.  
  189.  
  190.  
  191. <p>“I often get asked to review presentations for export control content,” said Elizabeth Ewald, senior export compliance specialist at Marshall. “I also help with international shipping.”</p>
  192.  
  193.  
  194.  
  195. <p>“We review if NASA’s going to be disposing of property, selling it out to markets. We make sure that if it’s going, it’s going to the proper parties,” Benson said. “We also do a lot of work with foreign national visits. We do risk assessment for every foreign national visit that comes from Marshall Space Flight Center, including Michoud Assembly Facility and the National Space Science Technology Center.”</p>
  196.  
  197.  
  198.  
  199. <p>CERs play an important role in the process. Benson and Ewald advise each technical organization at Marshall to have at least one CER.</p>
  200.  
  201.  
  202.  
  203. <p>“They’re our eyes, ears, hands, and feet on the ground within the individual areas of the center,” Ewald said. “They speak engineering, and we don’t; we speak export, and they don’t. Together, we make a great team to help when reviewing papers, presentations, and what-have-you.”</p>
  204.  
  205.  
  206.  
  207. <p>To become a CER, a team member must complete 10 prerequisite courses in SATERN, then complete two live Teams sessions, which are four hours each. Once certified, they’ll need to complete annual recertification to remain on the office’s active CERs list.</p>
  208.  
  209.  
  210. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg"><img loading="lazy" decoding="async" width="1588" height="1059" src="https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?w=1588" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg 1588w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/jmb-xc-review-pic.jpg?resize=1200,800 1200w" sizes="(max-width: 1588px) 100vw, 1588px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">One of the export control team’s many roles at Marshall is reviewing presentations, images, and other information that might be shared virtually with foreign nationals or entities. </div><div class="hds-credits">NASA/Jessica Barnett</div></figcaption></div></div></div>
  211.  
  212.  
  213. <p>That list is just one of the many tools available for team members who visit the office’s SharePoint page on Inside Marshall. The page also features contact information for the office’s staff members, ways to file a request for export authorization or policy review, and access to the International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR), which are the two rulebooks that govern the Export Control Program.</p>
  214.  
  215.  
  216.  
  217. <p>“You can request training, too,” Benson said. “You can also see our reference materials, including some helpful job aids for things like marking Controlled Unclassified Information (CUI) documents.”</p>
  218.  
  219.  
  220.  
  221. <p>Each NASA center has its own Export Control Program to match that center’s focus. Benson said he’s proud to work at Marshall, where – in the words of Center Director Joseph Pelfrey – he can work on a rocket that’s going to the Moon in the morning and on a rocket that’s coming back from Mars in the afternoon.</p>
  222.  
  223.  
  224.  
  225. <p>“The best part of my job is being involved with helping programs and projects work with their national partners to do cool stuff in space,” Benson said. “I never thought that I would be involved in things like helping people get satellites from one place to another and safely to a launchpad.”</p>
  226.  
  227.  
  228.  
  229. <p>“We’re here to help,” Ewald said. “We want you guys to be able to do what you want to do, so get us involved. Sometimes the things we need to help you with will take more than 90 days to accomplish, so the sooner you get us involved, the better.”</p>
  230.  
  231.  
  232.  
  233. <p>Team members can learn more about Marshall’s Export Control Office by visiting its SharePoint page on Inside Marshall. Organizations can also reach out to the office to request a training or presentation tailored to that organization’s specific export control needs.</p>
  234.  
  235.  
  236.  
  237. <p><em>Barnett, a Media Fusion employee, supports the Marshall Office of Communications.</em></p>
  238.  
  239.  
  240.  
  241. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  242.  
  243.  
  244.  
  245. <h2 class="wp-block-heading"><strong>Marshall’s Energy and Water Team Wins Federal Energy Management Program Award</strong></h2>
  246.  
  247.  
  248.  
  249. <p><em>By Celine Smith</em></p>
  250.  
  251.  
  252.  
  253. <p>It’s easy to see the green pastures and rolling hills surrounding NASA’s Marshall Space Flight Center on Redstone Arsenal and think of them as untouched.</p>
  254.  
  255.  
  256.  
  257. <p>In reality, the energy and water team within Marshall’s Center of Operations Office takes great care in managing the sustainable use of the environment. Not only does their work benefit the environment, but their commitment to decrease the usage of water and energy can save taxpayer’s money. The team was recently rewarded for their efforts, earning an award March 27 from the Federal Energy Management Program for their project: water leak detection and advanced metering infrastructure.</p>
  258.  
  259.  
  260. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg 5945w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/formal-femp.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.</div><div class="hds-credits">NASA/FEMP</div></figcaption></div></div></div>
  261.  
  262.  
  263. <p>“I love saving energy and money for the taxpayer,” said Rhonda Truitt, the energy and water manager for Marshall. “I also feel like it’s the right thing to do as a good steward of our planet and for our community.”</p>
  264.  
  265.  
  266.  
  267. <p>The team ensures the center meets and exceeds federal expectations of efficient usage of energy and water. With this objective in mind, it implements innovative methods to conserve resources. The energy and water team partnered with the Army and Huntsville Utilities for the two projects.</p>
  268.  
  269.  
  270.  
  271. <p>For the water leak detection project, a team comprised of Truitt, Marshall’s Operation &amp; Maintenance, and the SMART center initiative, placed acoustic sensors mimicking hydrant caps on hydrants across Marshall. The sensor monitors irregular sounds that indicate a leak and identifies its approximate location, decreasing the time needed in what was previously an hours-long process to find leaks.</p>
  272.  
  273.  
  274.  
  275. <p>Truitt said the technology has more benefits other than saving money. Fixing leaks prevents clean water from being contaminated by historical industrial operations and flowing into natural water resources like the Tennessee River. Leaks can also cause sinkholes that could endanger team members and buildings, so discovering them early is important.</p>
  276.  
  277.  
  278. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="From left, Thaller, Truitt, and Bertrand together at the FEMP award ceremony." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg 6720w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/casual-femp.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">From left, Thaller, Truitt, and Bertrand together at the FEMP award ceremony.</div><div class="hds-credits">NASA/FEMP</div></figcaption></div></div></div>
  279.  
  280.  
  281. <p>For example, the team discovered three leaks the first day the project was put into place. A hole causing one leak measured at one-sixteenth of an inch and was leaking 900 gallons of water a day. The sensors have led to four leaks being repaired, with about $10,000 saved for each.</p>
  282.  
  283.  
  284.  
  285. <p>“Small things can make a difference,” Truitt said. “With the number of employees at Marshall, small actions like allowing a leak or drip to go unreported can add up.”</p>
  286.  
  287.  
  288.  
  289. <p>The advanced metering infrastructure works together with water leak detection by calculating how much water used across the center. The energy and water team can ensure Marshall is accurately charged for water and keep track of overall water usage. The success of the two projects won’t only benefit Huntsville. According to Truitt, federal sites across the U.S. could adopt these methods, leading to water and money savings nationwide.</p>
  290.  
  291.  
  292.  
  293. <p>“My role doesn’t only make a difference financially, I get to support NASA’s missions while sustaining and protecting the world we live in,” Truitt said. “It’s really cool to feel like you make short-term <em>and</em> long-term differences.”</p>
  294.  
  295.  
  296.  
  297. <p><em>Smith,</em> <em>a Media Fusion employee, supports the Marshall Office of Communications.</em></p>
  298.  
  299.  
  300.  
  301. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  302.  
  303.  
  304.  
  305. <h2 class="wp-block-heading"><strong>Michoud All-Hands Provides Updates, Introductions to New Leadership and Initiatives</strong></h2>
  306.  
  307.  
  308.  
  309. <p>NASA’s Michoud Assembly Facility Director Hansel Gill held a Michoud All-Hands meeting for facility team members April 24.</p>
  310.  
  311.  
  312. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg"><img loading="lazy" decoding="async" width="2048" height="1366" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="NASA’s Michoud Assembly Facility Director Hansel Gill speaks to attendees during his first Michoud All-Hands since being named director in early April." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg 6062w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=2048,1366 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands02.jpg?resize=2000,1334 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">NASA’s Michoud Assembly Facility Director Hansel Gill speaks to attendees during his first Michoud All-Hands since being named director in early April. </div><div class="hds-credits">NASA/Michael DeMocker</div></figcaption></div></div></div>
  313.  
  314.  
  315. <p>The meeting was the first formal all-hands for Gill since officially taking on his new role earlier in the month.</p>
  316.  
  317.  
  318. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Michoud civil servants and direct support employees attend the facility’s all-hands meeting April 24, getting updates on topics including hardware production, infrastructure, and NASA 2040." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg 7280w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands03.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Michoud civil servants and direct support employees attend the facility’s all-hands meeting April 24, getting updates on topics including hardware production, infrastructure, and NASA 2040. </div><div class="hds-credits">NASA/Michael DeMocker</div></figcaption></div></div></div>
  319.  
  320.  
  321. <p>Michoud civil servants and direct support employees attended the event, which included updates on hardware production and infrastructure improvements and repairs, as well as discussions on Michoud’s culture.</p>
  322.  
  323.  
  324. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="MAF Ambassadors Ben Ferrell, Jesse Lemonte, and Kevin Stiede address attendees on NASA 2040 and other Marshall Space Flight Center’s Center Action Team initiatives." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg 6638w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/maf-20240424-gillallhands08.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">MAF Ambassadors Ben Ferrell, Jesse Lemonte, and Kevin Stiede address attendees on NASA 2040 and other Marshall Space Flight Center’s Center Action Team initiatives.</div><div class="hds-credits">NASA/Michael DeMocker</div></figcaption></div></div></div>
  325.  
  326.  
  327. <p>Gill then introduced the “MAF Ambassadors” from NASA Marshall Space Flight Center’s Center Action Team to speak on NASA 2040 and other future initiatives before opening the floor to questions.</p>
  328.  
  329.  
  330.  
  331. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  332.  
  333.  
  334.  
  335. <h2 class="wp-block-heading"><strong>NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles</strong></h2>
  336.  
  337.  
  338.  
  339. <p>Riding aboard NASA’s&nbsp;<a href="https://www.jpl.nasa.gov/missions/psyche" rel="noopener">Psyche spacecraft</a>, the agency’s Deep Space Optical Communications&nbsp;<a href="https://www.jpl.nasa.gov/missions/deep-space-optical-communications-dsoc" rel="noopener">technology demonstration</a>&nbsp;continues to break records. While the asteroid-bound spacecraft doesn’t rely on optical communications to send data, the new technology has proven that it’s up to the task. After interfacing with the Psyche’s radio frequency transmitter, the laser communications demo sent a copy of engineering data from over 140 million miles away, 1½ times the distance between Earth and the Sun.</p>
  340.  
  341.  
  342.  
  343. <p>This achievement provides a glimpse into how spacecraft could use optical communications in the future, enabling higher-data-rate communications of complex scientific information as well as high-definition imagery and video in support of humanity’s next giant leap:&nbsp;<a href="https://www.nasa.gov/moontomarsarchitecture/">sending humans to Mars</a>.</p>
  344.  
  345.  
  346. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg"><img loading="lazy" decoding="async" width="1723" height="969" src="https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?w=1723" class="attachment-2048x2048 size-2048x2048" alt="NASA’s Psyche spacecraft is shown in a clean room" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg 1723w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=300,169 300w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=768,432 768w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=1024,576 1024w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=1536,864 1536w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=400,225 400w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=600,337 600w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=900,506 900w, https://www.nasa.gov/wp-content/uploads/2024/04/1-pia25664-psyche-dsoc.jpg?resize=1200,675 1200w" sizes="(max-width: 1723px) 100vw, 1723px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center on Dec. 8, 2022. The optical communications gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft.</div><div class="hds-credits">NASA/Ben Smegelsky</div></figcaption></div></div></div>
  347.  
  348.  
  349. <p>“We downlinked about 10 minutes of duplicated spacecraft data during a pass on April 8,” said Meera Srinivasan, the project’s operations lead at NASA’s Jet Propulsion Laboratory. “Until then, we’d been sending test and diagnostic data in our downlinks from Psyche. This represents a significant milestone for the project by showing how optical communications can interface with a spacecraft’s radio frequency comms system.”</p>
  350.  
  351.  
  352.  
  353. <p>The laser communications technology in this demo is designed to transmit data from deep space at rates 10 to 100 times faster than the state-of-the-art radio frequency systems used by deep space missions today.</p>
  354.  
  355.  
  356.  
  357. <p>After&nbsp;<a href="https://www.jpl.nasa.gov/news/nasas-psyche-spacecraft-optical-comms-demo-en-route-to-asteroid" rel="noopener">launching</a>&nbsp;on Oct. 13, 2023, the spacecraft remains healthy and stable as it journeys to the main asteroid belt between Mars and Jupiter to visit the asteroid Psyche.</p>
  358.  
  359.  
  360.  
  361. <p>NASA’s optical communications demonstration has shown that it can transmit test data at a maximum rate of 267 megabits per second (Mbps) from the flight laser transceiver’s near-infrared downlink laser – a bit rate comparable to broadband internet download speeds.</p>
  362.  
  363.  
  364.  
  365. <p><a href="https://www.jpl.nasa.gov/news/nasas-tech-demo-streams-first-video-from-deep-space-via-laser" rel="noopener">That was achieved</a>&nbsp;on Dec. 11, 2023, when the experiment beamed a 15-second ultra-high-definition video to Earth from 19 million miles away (31 million kilometers, or about 80 times the Earth-Moon distance). The video, along with other test data, including digital versions of Arizona State University’s&nbsp;<a href="https://psyche.asu.edu/get-involved/psyche-inspired/" rel="noopener">Psyche Inspired</a>&nbsp;artwork, had been loaded onto the&nbsp;<a href="https://photojournal.jpl.nasa.gov/catalog/PIA24569" rel="noopener">flight laser transceiver</a>&nbsp;before Psyche launched last year.</p>
  366.  
  367.  
  368.  
  369. <p>Now that the spacecraft is more than seven times farther away, the rate at which it can send and receive data is reduced, as expected. During the April 8 test, the spacecraft transmitted test data at a maximum rate of 25 Mbps, which far surpasses the project’s goal of proving at least 1 Mbps was possible at that distance.</p>
  370.  
  371.  
  372.  
  373. <p>The project team also commanded the transceiver to transmit Psyche-generated data optically. While Psyche was transmitting data over its radio frequency channel to NASA’s&nbsp;<a href="https://www.nasa.gov/directorates/somd/space-communications-navigation-program/what-is-the-deep-space-network/">Deep Space Network</a>&nbsp;(DSN), the optical communications system simultaneously transmitted a portion of the same data to the Hale Telescope at&nbsp;<a href="https://sites.astro.caltech.edu/palomar/homepage.html" rel="noopener">Caltech’s Palomar Observatory</a>&nbsp;in San Diego County, California – the tech demo’s primary downlink ground station.</p>
  374.  
  375.  
  376.  
  377. <p>“After receiving the data from the DSN and Palomar, we verified the optically downlinked data at JPL,” said Ken Andrews, project flight operations lead at JPL. “It was a small amount of data downlinked over a short time frame, but the fact we’re doing this now has surpassed all of our expectations.”</p>
  378.  
  379.  
  380. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png"><img loading="lazy" decoding="async" width="1556" height="1556" src="https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?w=1556" class="attachment-2048x2048 size-2048x2048" alt="This visualization shows the Psyche spacecraft’s position on April 8" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png 1556w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=150,150 150w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=300,300 300w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=768,768 768w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=1024,1024 1024w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=1536,1536 1536w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=50,50 50w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=100,100 100w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=200,200 200w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=400,400 400w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=600,600 600w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=900,900 900w, https://www.nasa.gov/wp-content/uploads/2024/04/e-psyche-earth-distance-eyes.png?resize=1200,1200 1200w" sizes="(max-width: 1556px) 100vw, 1556px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">This visualization shows the Psyche spacecraft’s position on April 8 when the optical communications flight laser transceiver transmitted data at a rate of 25 Mbps over 140 million miles to a downlink station on Earth.</div><div class="hds-credits">NASA/JPL-Caltech</div></figcaption></div></div></div>
  381.  
  382.  
  383. <p>After Psyche launched, the optical communications demo was initially used to downlink pre-loaded data, including the&nbsp;<a href="https://www.youtube.com/watch?v=GvJtVOmFs5Q" rel="noopener">Taters the cat video</a>. Since then, the project has proven that the transceiver can receive data from the&nbsp;<a href="https://scienceandtechnology.jpl.nasa.gov/optical-communications-laboratory" rel="noopener">high-power uplink laser</a>&nbsp;at JPL’s Table Mountain facility, near Wrightwood, California. Data can even be sent to the transceiver and then downlinked back to Earth on the same night, as the project proved in a recent “turnaround experiment.”</p>
  384.  
  385.  
  386.  
  387. <p>This experiment relayed test data – as well as digital pet photographs – to Psyche and back again, a round trip of up to 280 million miles. It also downlinked large amounts of the tech demo’s own engineering data to study the characteristics of the optical communications link.</p>
  388.  
  389.  
  390.  
  391. <p>“We’ve learned a great deal about how far we can push the system when we do have clear skies, although&nbsp;<a href="https://www.jpl.nasa.gov/news/swot-satellite-catches-coastal-flooding-during-california-storms" rel="noopener">storms</a>&nbsp;have interrupted operations at both Table Mountain and Palomar on occasion,” said Ryan Rogalin, the project’s receiver electronics lead at JPL. (Whereas radio frequency communications can operate in most weather conditions, optical communications require relatively clear skies to transmit high-bandwidth data.)</p>
  392.  
  393.  
  394.  
  395. <p>JPL recently led an experiment to combine Palomar, the experimental&nbsp;<a href="https://www.jpl.nasa.gov/news/nasas-new-experimental-antenna-tracks-deep-space-laser" rel="noopener">radio frequency-optical antenna</a>&nbsp;at the DSN’s Goldstone Deep Space Communications Complex in Barstow, California, and a detector at Table Mountain to receive the same signal in concert. “Arraying” multiple ground stations to mimic one large receiver can help boost the deep space signal. This strategy can also be useful if one ground station is forced offline due to weather conditions; other stations can still receive the signal.</p>
  396.  
  397.  
  398.  
  399. <p>Managed by JPL, this demonstration is the latest in a series of optical communication experiments funded by the Technology Demonstration Missions (TDM) program under NASA’s Space Technology Mission Directorate and the agency’s SCaN (Space Communications and Navigation) program within the Space Operations Mission Directorate. The Technology Demonstration Missions Program Office is at NASA’s Marshall Space Flight Center. Development of the flight laser transceiver is supported by MIT Lincoln Laboratory, L3 Harris, CACI, First Mode, and Controlled Dynamics Inc., and Fibertek, Coherent, and Dotfast support the ground systems. Some of the technology was developed through&nbsp;<a href="https://www.nasa.gov/centers-and-facilities/nssc/small-business-innovation-research-sbir-and-small-business-technology-transfer-sttr/">NASA’s Small Business Innovation Research program</a>.</p>
  400.  
  401.  
  402.  
  403. <p>Arizona State University leads the Psyche mission. JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Psyche is the 14th mission selected as part of NASA’s Discovery Program under the Science Mission Directorate, managed by Marshall. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center managed the launch service. Maxar Technologies provided the high-power solar electric propulsion spacecraft chassis from Palo Alto, California.</p>
  404.  
  405.  
  406.  
  407. <p><a href="https://www.jpl.nasa.gov/missions/deep-space-optical-communications-dsoc" rel="noopener">Read</a> more about the laser communications demo.</p>
  408.  
  409.  
  410.  
  411. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  412.  
  413.  
  414.  
  415. <h2 class="wp-block-heading"><strong>Chandra Releases Doubleheader of Blockbuster Hits</strong></h2>
  416.  
  417.  
  418.  
  419. <p>New movies of two of the most famous objects in the sky – the Crab Nebula and Cassiopeia A – are being released from NASA’s Chandra X-ray Observatory. Each includes X-ray data collected by Chandra over about two decades. They show dramatic changes in the debris and radiation remaining after the explosion of two massive stars in our galaxy.</p>
  420.  
  421.  
  422. <div id="" class="width-full maxw-full margin-left-auto margin-right-auto hds-media-align-inline hds-module wp-block-nasa-blocks-video"><div class="hds-cover-wrapper width-full maxw-full flex-column"><div class="hds-video-container width-full embed-container"><video title="Cassiopeia A &amp; Crab Nebula Timelapses (Side by Side)" id="nasa-plus-rzlaY" class="video-js video-player vjs-fluid width-full" data-setup='{"controls":true,"preload":"auto","plugins":{"mux":{"debug":false,"data":{"env_key":"91nns8oppqdfqc44lgo4b1gni","player_name":"www.nasa.gov Player","video_name":"Cassiopeia A &amp; Crab Nebula Timelapses (Side by Side)"}}}}'  ><source src="https://www.nasa.gov/wp-content/uploads/2024/04/timelapse.mp4" type="video/mp4"><p class="vjs-no-js">To view this video please enable JavaScript, and consider upgrading to a web browser that
  423. <a href="https://videojs.com/html5-video-support/" target="_blank" rel="noopener">supports HTML5 video</a></p></video></div></div><div class="hds-media-caption hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0"><div>These two movies of the Cassiopeia A and Crab Nebula supernova remnants show Chandra’s capabilities of documenting changes in astronomical objects over human timeframes. Dramatic changes are apparent in the debris and radiation remaining after the explosion of these two massive stars in our galaxy. Such time-lapse movies would not be possible without Chandra’s archives that serve as public repositories for the data collected over Chandra’s nearly 25 years of operations.</div></div><div class="hds-credits"><div>X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Image Processing: NASA/CXC/SAO/J. Major, A. Jubett, K. Arcand</div></div></div></div>
  424.  
  425.  
  426. <p>The Crab Nebula, the result of a bright supernova explosion seen by Chinese and other astronomers in the year 1054, is 6,500 light-years from Earth. At its center is a neutron star, a super-dense star produced by the supernova. As it rotates at about 30 times per second, its beam of radiation passes over the Earth every orbit, like a cosmic lighthouse.</p>
  427.  
  428.  
  429.  
  430. <p>As the young pulsar slows down, large amounts of energy are injected into its surroundings. In particular, a high-speed wind of matter and anti-matter particles plows into the surrounding nebula, creating a shock wave that forms the expanding ring seen in the movie. Jets from the poles of the pulsar spew X-ray emitting matter and antimatter particles in a direction perpendicular to the ring.</p>
  431.  
  432.  
  433.  
  434. <p>Over 22 years, Chandra has taken many observations of the Crab Nebula. With this long runtime, astronomers see clear changes in both the ring and the jets in the new movie. Previous Chandra movies showed images taken from much shorter time periods – a 5-month period&nbsp;<a href="https://chandra.si.edu/photo/2002/0052/" rel="noopener">between 2000 and 2001</a>&nbsp;and over 7 months&nbsp;<a href="https://chandra.si.edu/photo/2011/crab/" rel="noopener">between 2010 and 2011</a>&nbsp;for another. The longer timeframe highlights mesmerizing fluctuations, including whip-like variations in the X-ray jet that are only seen in this much longer movie. A new set of Chandra observations will be conducted later this year to follow changes in the jet since the last Chandra data was obtained in early 2022.</p>
  435.  
  436.  
  437. <div id="" class="width-full maxw-full margin-left-auto margin-right-auto hds-media-align-inline hds-module wp-block-nasa-blocks-video"><div class="hds-cover-wrapper width-full maxw-full flex-column"><div class="hds-video-container width-full embed-container"><video title="Crab Nebula Timelapse" id="nasa-plus-lplhW" class="video-js video-player vjs-fluid width-full" data-setup='{"controls":true,"preload":"auto","plugins":{"mux":{"debug":false,"data":{"env_key":"91nns8oppqdfqc44lgo4b1gni","player_name":"www.nasa.gov Player","video_name":"Crab Nebula Timelapse"}}}}'  ><source src="https://www.nasa.gov/wp-content/uploads/2024/04/timelapse-crab-comp-to-blue.mp4" type="video/mp4"><p class="vjs-no-js">To view this video please enable JavaScript, and consider upgrading to a web browser that
  438. <a href="https://videojs.com/html5-video-support/" target="_blank" rel="noopener">supports HTML5 video</a></p></video></div></div><div class="hds-media-caption hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0"><div>This video begins with a composite version of the Crab Nebula, combining Chandra X-ray data with infrared data from the James Webb Space Telescope. Over 22 years, Chandra has taken many observations of the Crab Nebula. With this long runtime, astronomers see clear changes in both the ring and the jets in the new movie. Previous Chandra movies showed images taken from much shorter time periods – a 5-month period between 2000 and 2001 and over 7 months between 2010 and 2011 for another. The longer timeframe highlights mesmerizing fluctuations, including whip-like variations in the X-ray jet that are only seen in this much longer movie. A new set of Chandra observations will be conducted later this year to follow changes in the jet since the last Chandra data was obtained in early 2022.</div></div><div class="hds-credits"><div>X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Image Processing: NASA/CXC/SAO/J. Major, A. Jubett, K. Arcand</div></div></div></div>
  439.  
  440.  
  441. <p>The second billing in this doubleheader is just as spectacular. Cassiopeia A (Cas A for short) is the remains of a supernova that is estimated to have exploded about 340 years ago in Earth’s sky. While other Chandra movies of Cas A have previously been released, including one with data extending&nbsp;<a href="https://chandra.harvard.edu/photo/2019/firstlight/" rel="noopener">from 2000 to 2013</a>, this new movie is substantially longer featuring data from 2000 through to 2019.</p>
  442.  
  443.  
  444.  
  445. <p>The outer region of Cas A shows the expanding blast wave of the explosion. The blast wave is composed of shock waves, similar to the sonic booms generated by a supersonic aircraft. These expanding shock waves are sites where particles are being accelerated to energies that are higher than the most powerful accelerator on Earth, the Large Hadron Collider. As the blast wave travels outwards it encounters surrounding material and slows down, generating a second shock wave that travels backwards relative to the blast wave, analogous to a traffic jam travelling backwards from the scene of an accident on a highway.</p>
  446.  
  447.  
  448.  
  449. <p>Cas A has been one of the most highly observed targets and publicly released images from the Chandra mission. It was Chandra’s official first-light image in 1999 after the Space Shuttle Columbia launched into orbit and quickly discovered&nbsp;<a href="https://chandra.si.edu/press/99_releases/press_082699.html" rel="noopener">a point source of X-rays in Cas A’s center</a>&nbsp;for the first time, later confirmed to be a neutron star. Over the years, astronomers have used Chandra to discover evidence for&nbsp;<a href="https://chandra.si.edu/photo/2011/casa/" rel="noopener">“superfluid” inside Cas A’s neutron star</a>, to reveal that the original massive star may have&nbsp;<a href="https://chandra.si.edu/photo/2012/casa/" rel="noopener">turned inside out as it exploded</a>&nbsp;and to take an important step in&nbsp;<a href="https://chandra.si.edu/press/21_releases/press_042121.html" rel="noopener">pinpointing how giant stars explode</a>. Chandra has also&nbsp;<a href="https://chandra.si.edu/photo/2017/casa_life/" rel="noopener">mapped the elements forged inside the star</a>, which are now moving into space to help seed the next generation of stars and planets. More recently, Chandra data was combined with data from NASA’s James Webb Space Telescope to help&nbsp;<a href="https://chandra.si.edu/press/24_releases/press_010824.html" rel="noopener">determine the origin of mysterious structures within the remnant</a>.</p>
  450.  
  451.  
  452. <div id="" class="width-full maxw-full margin-left-auto margin-right-auto hds-media-align-inline hds-module wp-block-nasa-blocks-video"><div class="hds-cover-wrapper width-full maxw-full flex-column"><div class="hds-video-container width-full embed-container"><video title="Cassiopeia A Timelapse" id="nasa-plus-mjssU" class="video-js video-player vjs-fluid width-full" data-setup='{"controls":true,"preload":"auto","plugins":{"mux":{"debug":false,"data":{"env_key":"91nns8oppqdfqc44lgo4b1gni","player_name":"www.nasa.gov Player","video_name":"Cassiopeia A Timelapse"}}}}'  ><source src="https://www.nasa.gov/wp-content/uploads/2024/04/timelapse-casa-comp-to-blue.mp4" type="video/mp4"><p class="vjs-no-js">To view this video please enable JavaScript, and consider upgrading to a web browser that
  453. <a href="https://videojs.com/html5-video-support/" target="_blank" rel="noopener">supports HTML5 video</a></p></video></div></div><div class="hds-media-caption hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0"><div>This video begins with a composite version of the Cassiopeia A, combining Chandra X-ray data with infrared data from the James Webb Space Telescope. Cassiopeia A (Cas A for short) is the remains of a supernova that is estimated to have exploded about 340 years ago in Earth’s sky. This new Cas A movie features data from 2000 through to 2019. The images used in the latest Cas A movie have been processed using a state-of-the-art processing technique, led by Yusuke from Rikkyo University in Japan, to fully capitalize on Chandra&#039;s sharp X-ray vision.</div></div><div class="hds-credits"><div>X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Image Processing: NASA/CXC/SAO/J. Major, A. Jubett, K. Arcand</div></div></div></div>
  454.  
  455.  
  456. <p>The images used in the latest Cas A movie have been processed using a state-of-the-art processing technique, led by Yusuke from Rikkyo University in Japan, to fully capitalize on Chandra’s sharp X-ray vision. The paper describing their work was published in The Astrophysical Journal and is&nbsp;<a href="https://iopscience.iop.org/article/10.3847/1538-4357/acd9b3" rel="noopener">available online</a>.</p>
  457.  
  458.  
  459.  
  460. <p>These two movies show Chandra’s capabilities of documenting changes in astronomical objects over human timeframes. Such movies would not be possible without Chandra’s archives that serve as public repositories for the data collected over Chandra’s nearly 25 years of operations.</p>
  461.  
  462.  
  463.  
  464. <p>NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.</p>
  465.  
  466.  
  467.  
  468. <p><a href="https://chandra.harvard.edu/photo/2024/timelapse/animations.html" rel="noopener">Read more from NASA’s Chandra X-ray Observatory.</a></p>
  469.  
  470.  
  471.  
  472. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  473.  
  474.  
  475.  
  476. <h2 class="wp-block-heading"><strong>NASA Sets Coverage for Boeing Starliner’s First Crewed Launch, Docking</strong></h2>
  477.  
  478.  
  479.  
  480. <p>NASA will provide live coverage of prelaunch and launch activities for the agency’s Boeing Crew Flight Test, which will carry NASA astronauts Butch Wilmore and Suni Williams to and from the International Space Station.</p>
  481.  
  482.  
  483.  
  484. <p>Launch of the ULA (United Launch Alliance) Atlas V rocket and Boeing Starliner spacecraft is targeted for 9:34 p.m. CDT May 6, from Space Launch Complex-41 at Cape Canaveral Space Force Station.</p>
  485.  
  486.  
  487. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg"><img loading="lazy" decoding="async" width="2047" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?w=2047" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg 2047w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/04/starliner.jpg?resize=2000,1334 2000w" sizes="(max-width: 2047px) 100vw, 2047px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Boeing’s Starliner spacecraft approaches the International Space Station. NASA astronauts Butch Wilmore and Suni Williams will launch aboard Starliner on a United Launch Alliance Atlas V rocket for NASA’s Boeing Crew Flight Test.</div><div class="hds-credits">Credits: NASA</div></figcaption></div></div></div>
  488.  
  489.  
  490. <p>The flight test will carry&nbsp;<a href="https://www.nasa.gov/people/barry-butch-e-wilmore/">Wilmore</a>&nbsp;and&nbsp;<a href="https://www.nasa.gov/people/sunita-l-williams/">Williams</a>&nbsp;to the space station for about a week to test the Starliner spacecraft and its subsystems before NASA certifies the transportation system for rotational missions to the orbiting laboratory for the agency’s Commercial Crew Program.</p>
  491.  
  492.  
  493.  
  494. <p>The HOSC (Huntsville Operations Support Center) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions.</p>
  495.  
  496.  
  497.  
  498. <p>Starliner will dock to the forward-facing port of the station’s Harmony module at 11:48 p.m., May 8.</p>
  499.  
  500.  
  501.  
  502. <p>NASA’s mission coverage is as follows (all times Central and subject to change based on real-time operations):</p>
  503.  
  504.  
  505.  
  506. <p><strong>May 3</strong><br>11:30 a.m. – Prelaunch news conference at Kennedy (no earlier than one hour after completion of the Launch Readiness Review) with the following participants:</p>
  507.  
  508.  
  509.  
  510. <ul>
  511. <li>NASA Administrator Bill Nelson</li>
  512.  
  513.  
  514.  
  515. <li>Steve Stich, manager, NASA’s Commercial Crew Program</li>
  516.  
  517.  
  518.  
  519. <li>Dana Weigel, manager, NASA’s International Space Station Program</li>
  520.  
  521.  
  522.  
  523. <li>Emily Nelson, chief flight director, NASA</li>
  524.  
  525.  
  526.  
  527. <li>Jennifer Buchli, chief scientist, NASA’s International Space Station Program</li>
  528.  
  529.  
  530.  
  531. <li>Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing</li>
  532.  
  533.  
  534.  
  535. <li>Gary Wentz, vice president, Government and Commercial Programs, ULA</li>
  536.  
  537.  
  538.  
  539. <li>Brian Cizek, launch weather officer, 45th Weather Squadron, Cape Canaveral Space Force Station</li>
  540. </ul>
  541.  
  542.  
  543.  
  544. <p>Coverage of the prelaunch news conference will stream live on&nbsp;<a href="https://plus.nasa.gov/scheduled-video/nasas-boeing-crew-flight-test-prelaunch-news-conference/" rel="noopener">NASA+</a>, NASA Television, the&nbsp;<a href="https://www.nasa.gov/apps/">NASA app</a>,&nbsp;<a href="https://www.youtube.com/@NASA" rel="noopener">YouTube</a>, and the&nbsp;agency’s&nbsp;<a href="http://nasa.gov/nasatv" rel="noopener">website</a>.</p>
  545.  
  546.  
  547.  
  548. <p>2:30 p.m. – NASA Social panel live stream event at Kennedy with the following participants:</p>
  549.  
  550.  
  551.  
  552. <ul>
  553. <li>Ian Kappes, deputy launch vehicle office manager, NASA’s Commercial Crew Program</li>
  554.  
  555.  
  556.  
  557. <li>Amy Comeau Denker, Starliner associate chief engineer, Boeing</li>
  558.  
  559.  
  560.  
  561. <li>Caleb Weiss, system engineering and test leader, ULA</li>
  562.  
  563.  
  564.  
  565. <li>Jennifer Buchli, chief scientist, NASA’s International Space Station Program</li>
  566. </ul>
  567.  
  568.  
  569.  
  570. <p>Coverage of the panel live stream event will stream live at&nbsp;<a href="https://www.youtube.com/channel/UCjJtr2fFcUp6yljzJOzpHUg" rel="noopener">@NASAKennedy</a>&nbsp;on YouTube,&nbsp;<a href="https://twitter.com/NASAKennedy" rel="noopener">@NASAKennedy</a>&nbsp;on X, and&nbsp;<a href="https://www.facebook.com/NASAKennedy" rel="noopener">@NASAKennedy</a>&nbsp;on Facebook. Members of the public may ask questions online by posting questions to the YouTube, X, and Facebook livestreams using #AskNASA.</p>
  571.  
  572.  
  573.  
  574. <p><strong>May 6</strong></p>
  575.  
  576.  
  577.  
  578. <p>5:30 p.m. – Launch coverage begins on&nbsp;<a href="https://plus.nasa.gov/scheduled-video/nasas-boeing-crew-flight-test-launch/" rel="noopener">NASA+</a>, NASA Television, the&nbsp;<a href="https://www.nasa.gov/apps/">NASA app</a>,&nbsp;<a href="https://www.youtube.com/@NASA" rel="noopener">YouTube</a>, and the&nbsp;agency’s&nbsp;<a href="http://nasa.gov/nasatv" rel="noopener">website</a>.</p>
  579.  
  580.  
  581.  
  582. <p>9:34 p.m. – Launch</p>
  583.  
  584.  
  585.  
  586. <p>Launch coverage on NASA+ will end shortly after Starliner orbital insertion. NASA Television will provide&nbsp;<a href="https://www.nasa.gov/nasatv/">continuous coverage</a>&nbsp;leading up to docking and through hatch opening and welcome remarks.</p>
  587.  
  588.  
  589.  
  590. <p>All times are estimates and could be adjusted based on operations after launch. Follow the&nbsp;<a href="https://blogs.nasa.gov/spacestation/" rel="noopener">space station blog</a>&nbsp;for the most up-to-date operations information.</p>
  591.  
  592.  
  593.  
  594. <p>NASA will provide a live video feed of Space Launch Complex-41 approximately 48 hours prior to the planned liftoff of the mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA Television, approximately four hours prior to launch. Once the feed is live, find it here:&nbsp;<a href="https://gcc02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fyoutube.com%2Fkscnewsroom&amp;data=04%7C01%7Ckathleen.h.ellis%40nasa.gov%7C0436fee226b24aadc60308d8fa9b5415%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C637534892316187560%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&amp;sdata=oKooc4Zo4Tm7LGM1rPkcn5TG%2B34D16lPDBfc0u9hjd8%3D&amp;reserved=0" rel="noopener">http://youtube.com/kscnewsroom</a>.</p>
  595.  
  596.  
  597.  
  598. <p>Launch day coverage of the mission will be available on the agency’s&nbsp;<a href="https://www.nasa.gov/nasatv">website</a>. Coverage will include live streaming and blog updates beginning no earlier than 5:30 p.m., May 6 as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.</p>
  599.  
  600.  
  601.  
  602. <p><strong><strong><a href="#top">› Back to Top</a></strong></strong></p>
  603. ]]></content:encoded>
  604. <media:content url="https://www.nasa.gov/wp-content/uploads/2024/04/timelapse.mp4" medium="video" width="1280" height="720">
  605. <media:player url="https://www.nasa.gov/wp-content/uploads/2024/04/timelapse.mp4" />
  606. <media:title type="plain">The Marshall Star for May 1, 2024 - NASA</media:title>
  607. <media:description type="html"><![CDATA[NASA’s Marshall Space Flight Center is getting ready for the next big step in the evolution of its main campus. Through a series of multi-year infrastructure projects, Marshall is optimizing its footprint to assure its place as a vibrant and vital hub for the aerospace community in the next era.&nbsp;]]></media:description>
  608. <media:thumbnail url="https://images-assets.nasa.gov/image/6413599/6413599~large.jpg?w=1920&#038;h=1497&#038;fit=clip&#038;crop=faces%2Cfocalpoint" />
  609. <media:rating scheme="urn:simple">nonadult</media:rating>
  610. </media:content>
  611. </item>
  612. <item>
  613. <title>NASA Selects BAE Systems to Develop Air Quality Instrument for NOAA</title>
  614. <link>https://www.nasa.gov/news-release/nasa-selects-bae-systems-to-develop-air-quality-instrument-for-noaa/</link>
  615. <dc:creator><![CDATA[Tiernan P. Doyle]]></dc:creator>
  616. <pubDate>Wed, 01 May 2024 20:36:20 +0000</pubDate>
  617. <category><![CDATA[Science & Research]]></category>
  618. <category><![CDATA[GOES-R]]></category>
  619. <category><![CDATA[NOAA (National Oceanic and Atmospheric Administration)]]></category>
  620. <category><![CDATA[Planetary Science]]></category>
  621. <guid isPermaLink="false">https://www.nasa.gov/?post_type=press-release&#038;p=656568</guid>
  622.  
  623. <description><![CDATA[NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected BAE Systems (formerly known as Ball Aerospace &#38; Technologies Corporation) of Boulder, Colorado, to develop an instrument to monitor air quality and provide information about the impact of air pollutants on Earth for NOAA’s Geostationary Extended Observations (GeoXO) satellite program. This cost-plus-award-fee [&#8230;]]]></description>
  624. <content:encoded><![CDATA[<div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/picture2.png"><img loading="lazy" decoding="async" width="747" height="419" src="https://www.nasa.gov/wp-content/uploads/2024/05/picture2.png?w=747" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/picture2.png 747w, https://www.nasa.gov/wp-content/uploads/2024/05/picture2.png?resize=300,168 300w, https://www.nasa.gov/wp-content/uploads/2024/05/picture2.png?resize=400,224 400w, https://www.nasa.gov/wp-content/uploads/2024/05/picture2.png?resize=600,337 600w" sizes="(max-width: 747px) 100vw, 747px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Smog over a deep mountain valley.</div><div class="hds-credits">Credit: NOAA</div></figcaption></div></div></div>
  625.  
  626.  
  627. <p>NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected BAE Systems (formerly known as Ball Aerospace &amp; Technologies Corporation) of Boulder, Colorado, to develop an instrument to monitor air quality and provide information about the impact of air pollutants on Earth for NOAA’s Geostationary Extended Observations (GeoXO) satellite program.</p>
  628.  
  629.  
  630.  
  631. <p>This cost-plus-award-fee contract is valued at approximately $365 million. It includes the development of one flight instrument as well as options for additional units. The anticipated period of performance for this contract includes support for 10 years of on-orbit operations and five years of on-orbit storage, for a total of 15 years for each flight model. The work will take place at BAE Systems, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the agency’s Kennedy Space Center in Florida.</p>
  632.  
  633.  
  634.  
  635. <p>The GeoXO Atmospheric Composition (ACX) instrument is a hyperspectral spectrometer that measures a wide spectrum of light from ultraviolet to visible. The instrument will provide hourly observations of air pollutants emitted by transportation, power generation, industry, oil and gas extraction, volcanoes, and wildfires as well as secondary pollutants generated from these emissions once they are in the atmosphere. By providing continuous observations and measurements of atmospheric composition, ACX data will improve air quality forecasting and monitoring and mitigate health impacts from severe pollution and smoke events, such as asthma, cardiovascular disease, and neurological disorders. Data from ACX also will help scientists better understand linkages between weather, air quality and climate.</p>
  636.  
  637.  
  638.  
  639. <p>The contract scope includes the tasks and deliverables necessary to design, analyze, develop, fabricate, integrate, test, verify, evaluate, support launch, supply and maintain the instrument ground support equipment, and support mission operations at the NOAA Satellite Operations Facility in Suitland, Maryland.</p>
  640.  
  641.  
  642.  
  643. <p>The GeoXO program is the follow-on to the Geostationary Operational Environmental Satellites – R (GOES-R) Series Program.</p>
  644.  
  645.  
  646.  
  647. <p>The GeoXO satellite system will advance Earth observations from geostationary orbit. The mission will supply vital information to address major environmental challenges of the future in support of weather, ocean, and climate operations in the United States. Advanced capabilities from GeoXO will help address our changing planet and the evolving needs of NOAA’s data users. NOAA and NASA are working to ensure these critical observations are in place by the early 2030s when the GOES-R Series nears the end of its operational lifetime.</p>
  648.  
  649.  
  650.  
  651. <p>Together, NOAA and NASA will oversee the development, launch, testing, and operation of all the satellites in the GeoXO program. NOAA funds and manages the program, operations, and data products. On behalf of NOAA, NASA and commercial partners develop and build the instruments and spacecraft and launch the satellites.</p>
  652.  
  653.  
  654.  
  655. <p>For more information on the GeoXO program, visit:</p>
  656.  
  657.  
  658.  
  659. <p class="has-text-align-center"><a href="https://www.nesdis.noaa.gov/geoxo" rel="noopener">https://www.nesdis.noaa.gov/geoxo</a></p>
  660.  
  661.  
  662.  
  663. <p class="has-text-align-center">-end-</p>
  664.  
  665.  
  666.  
  667. <p>Liz Vlock<br>Headquarters, Washington<br>202-358-1600<br><a href="mailto:elizabeth.a.vlock@nasa.gov">elizabeth.a.vlock@nasa.gov</a></p>
  668.  
  669.  
  670.  
  671. <p>Jeremy Eggers<br>Goddard Space Flight Center, Greenbelt, Md.<br>757-824-2958<br><a href="mailto:jeremy.l.eggers@nasa.gov">jeremy.l.eggers@nasa.gov</a></p>
  672.  
  673.  
  674.  
  675. <p>John Leslie<br>NOAA’s National Environmental Satellite, Data, and Information Service<br>202-527-3504<br><a href="mailto:nesdis.pa@noaa.gov">nesdis.pa@noaa.gov</a></p>
  676.  
  677.  
  678. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 article_a hds-module hds-module-full wp-block-nasa-blocks-credits-and-details">
  679. <section class="padding-x-0 padding-top-5 padding-bottom-2 desktop:padding-top-7 desktop:padding-bottom-9">
  680. <div class="grid-row grid-container maxw-widescreen padding-0">
  681. <div class="grid-col-12 desktop:grid-col-2 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  682. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  683. <div class="margin-bottom-2">
  684. <h2 class="heading-14">Share</h2>
  685. </div>
  686. <div class="padding-bottom-2">
  687. <ul class="social-icons social-icons-round">
  688. <li class="social-icon social-icon-x">
  689. <a href="https://x.com/intent/tweet?via=NASA&#038;text=NASA%20Selects%20BAE%20Systems%20to%20Develop%20Air%20Quality%20Instrument%20for%20NOAA&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fnews-release%2Fnasa-selects-bae-systems-to-develop-air-quality-instrument-for-noaa%2F" aria-label="Share on X.">
  690. <svg width="1200" height="1227" viewBox="0 0 1200 1227" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M714.163 519.284L1160.89 0H1055.03L667.137 450.887L357.328 0H0L468.492 681.821L0 1226.37H105.866L515.491 750.218L842.672 1226.37H1200L714.137 519.284H714.163ZM569.165 687.828L521.697 619.934L144.011 79.6944H306.615L611.412 515.685L658.88 583.579L1055.08 1150.3H892.476L569.165 687.854V687.828Z" fill="white"/></svg>
  691. </a>
  692. </li>
  693. <li class="social-icon social-icon-facebook">
  694. <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.nasa.gov%2Fnews-release%2Fnasa-selects-bae-systems-to-develop-air-quality-instrument-for-noaa%2F" aria-label="Share on Facebook.">
  695. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M9 8h-3v4h3v12h5v-12h3.642l.358-4h-4v-1.667c0-.955.192-1.333 1.115-1.333h2.885v-5h-3.808c-3.596 0-5.192 1.583-5.192 4.615v3.385z"/></svg>
  696. </a>
  697. </li>
  698. <li class="social-icon social-icon-linkedin">
  699. <a href="https://www.linkedin.com/shareArticle?mini=true&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fnews-release%2Fnasa-selects-bae-systems-to-develop-air-quality-instrument-for-noaa%2F" aria-label="Share on LinkedIn.">
  700. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M4.98 3.5c0 1.381-1.11 2.5-2.48 2.5s-2.48-1.119-2.48-2.5c0-1.38 1.11-2.5 2.48-2.5s2.48 1.12 2.48 2.5zm.02 4.5h-5v16h5v-16zm7.982 0h-4.968v16h4.969v-8.399c0-4.67 6.029-5.052 6.029 0v8.399h4.988v-10.131c0-7.88-8.922-7.593-11.018-3.714v-2.155z"/></svg>
  701. </a>
  702. </li>
  703. <li class="social-icon social-icon-rss">
  704. <a href="/feed/" aria-label="Subscribe to RSS feed.">
  705. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" aria-hidden="true"><path d="M493 652H392c0-134-111-244-244-244V307c189 0 345 156 345 345zm71 0c0-228-188-416-416-416V132c285 0 520 235 520 520z"/><circle cx="219" cy="581" r="71"/></svg>
  706. </a>
  707. </li>
  708. </ul>
  709. </div>
  710. </div>
  711. </div>
  712. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  713. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  714. <div class="margin-bottom-2">
  715. <h2 class="heading-14">Details</h2>
  716. </div>
  717. <div class="grid-row margin-bottom-3">
  718. <div class="grid-col-4">
  719. <div class="subheading">Last Updated</div>
  720. </div>
  721. <div class="grid-col-8">May 01, 2024</div>
  722. </div>
  723. <div class="grid-row"><div class="grid-col-4"><div class="subheading">Location</div></div><div class="grid-col-8"><a class="hds-location-tag-name" href="https://www.nasa.gov/nasa-headquarters/"><span class="hds-meta-heading">NASA Headquarters</span></a></div></div> </div>
  724. </div>
  725. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0"><div class="padding-top-3 border-top-1px border-color-carbon-black "><div class="margin-bottom-2"><h2 class="heading-14">Related Terms</h2></div><ul class="article-tags"><li class="article-tag"><a href="https://science.nasa.gov/" rel="noopener">Science &amp; Research</a></li><li class="article-tag"><a href="https://www.nasa.gov/stem-content/meet-the-goes-r-satellite/">GOES-R</a></li><li class="article-tag"><a href="https://www.nasa.gov/directorates/smd/joint-agency-satellite-division/noaa/">NOAA (National Oceanic and Atmospheric Administration)</a></li><li class="article-tag"><a href="https://science.nasa.gov/planetary-science/" rel="noopener">Planetary Science</a></li></ul></div></div>
  726. </div>
  727. </section>
  728. </div>]]></content:encoded>
  729. </item>
  730. <item>
  731. <title>ScienceCraft for Outer Planet Exploration (SCOPE)</title>
  732. <link>https://www.nasa.gov/directorates/stmd/niac/niac-studies/sciencecraft-for-outer-planet-exploration-scope/</link>
  733. <dc:creator><![CDATA[Loura Hall]]></dc:creator>
  734. <pubDate>Wed, 01 May 2024 18:40:47 +0000</pubDate>
  735. <category><![CDATA[NIAC Studies]]></category>
  736. <guid isPermaLink="false">https://www.nasa.gov/?p=652337</guid>
  737.  
  738. <description><![CDATA[Mahmooda SultanaNASA Goddard Space Flight Center Missions to the outer solar system are an important part of NASA&#8217;s goals because these scarcely visited worlds, particularly the ice giants Neptune and Uranus, hold secrets about the formation and evolution of our solar system and countless others. However, due to the high cost, long travel time and [&#8230;]]]></description>
  739. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">2 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  740.  
  741. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/sciencecraft-outer-planet-exploration.jpg"><img loading="lazy" decoding="async" width="432" height="228" src="https://www.nasa.gov/wp-content/uploads/2024/04/sciencecraft-outer-planet-exploration.jpg?w=432" class="attachment-2048x2048 size-2048x2048" alt="Artist’s depiction of ScienceCraft, which integrates the science instrument with the spacecraft by printing a quantum dot spectrometer directly on the solar sail to form a monolithic, lightweight structure" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/sciencecraft-outer-planet-exploration.jpg 432w, https://www.nasa.gov/wp-content/uploads/2024/04/sciencecraft-outer-planet-exploration.jpg?resize=300,158 300w, https://www.nasa.gov/wp-content/uploads/2024/04/sciencecraft-outer-planet-exploration.jpg?resize=400,211 400w" sizes="(max-width: 432px) 100vw, 432px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Artist’s depiction of ScienceCraft, which integrates the science instrument with the spacecraft by printing a quantum dot spectrometer directly on the solar sail to form a monolithic, lightweight structure.</div><div class="hds-credits">Mahmooda Sultana</div></figcaption></div></div></div>
  742.  
  743.  
  744. <p><strong>Mahmooda Sultana</strong><br><em>NASA Goddard Space Flight Center</em></p>
  745.  
  746.  
  747.  
  748. <p>Missions to the outer solar system are an important part of NASA&#8217;s goals because these scarcely visited worlds, particularly the ice giants Neptune and Uranus, hold secrets about the formation and evolution of our solar system and countless others. However, due to the high cost, long travel time and narrow window for mission implementation, outer solar system exploration has been extremely limited in more than 60 years of space exploration. In this NIAC, we are developing a mission architecture that addresses all of these challenges by using a ScienceCraft and enables science missions at the outer planet system. Sciencraft integrates a science instrument and spacecraft into one monolithic and lightweight structure. By printing an ultra-lightweight quantum dot-based spectrometer, developed by the PI Sultana, directly on the solar sail we create a breakthrough spacecraft architecture allowing an unprecedented parallelism and throughput of data collection, and rapid travel across the solar system. Unlike conventional solar sails that serve only to propel small cubesats, ScienceCraft puts its area at use for spectroscopy, pushing the boundary of scientific exploration of the outer solar system. ScienceCraft offers an attractive low resource platform that can enable </p>
  749.  
  750.  
  751.  
  752. <p>science missions at a significantly lower cost and provide a large number of launch opportunities as a secondary payload. By leveraging these benefits, we propose a mission concept to Triton, a unique planetary body in our solar system, within the short window that closes around 2045 to answer compelling science questions about Triton&#8217;s atmosphere, ionosphere, plumes and internal structure. In Phase I, we performed an end-to-end feasibility study for a Neptune-Triton mission using a ScienceCraft, as well as identifying the key technologies needed for such a mission and tall poles that we need to address. As part of phase II, we plan to further mature the mission concept, develop and demonstrate some of the key technologies, address the tall poles identified in phase I and develop a roadmap for implementing SCOPE.</p>
  753.  
  754.  
  755.  
  756. <p><strong><a href="https://www.nasa.gov/general/niac-2024-selections">2024 Phase I Selection</a></strong></p>
  757.  
  758.  
  759.  
  760. <p><a href="https://www.nasa.gov/space-technology-mission-directorate/"></a></p>
  761.  
  762.  
  763. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards"> <div class="grid-container grid-container-block-lg padding-x-0">
  764. <div class="grid-row flex-align-center margin-bottom-3">
  765. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  766. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  767. <h2 class="heading-36 line-height-sm">Discover More NIAC Topics</h2>
  768. </div>
  769. </div>
  770. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  771. <a href="https://www.nasa.gov/space-technology-mission-directorate/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  772. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  773. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  774. <div>
  775. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  776. <span>Space Technology Mission Directorate</span>
  777. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  778. </p>
  779. </div>
  780. </div>
  781. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="525" height="800" src="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?w=525" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg 525w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=197,300 197w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=263,400 263w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=394,600 394w" sizes="(max-width: 525px) 100vw, 525px" /></figure> </div>
  782. </a>
  783. <a href="https://www.nasa.gov/stmd-the-nasa-innovative-advanced-concepts-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  784. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  785. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  786. <div>
  787. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  788. <span>NASA Innovative Advanced Concepts</span>
  789. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  790. </p>
  791. </div>
  792. </div>
  793. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1041" height="521" src="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?w=1041" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png 1041w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=300,150 300w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=768,384 768w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=1024,512 1024w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=400,200 400w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=600,300 600w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=900,450 900w" sizes="(max-width: 1041px) 100vw, 1041px" /></figure> </div>
  794. </a>
  795. <a href="https://www.nasa.gov/niac-funded-studies/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  796. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  797. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  798. <div>
  799. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  800. <span>NIAC Funded Studies</span>
  801. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  802. </p>
  803. </div>
  804. </div>
  805. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="473" src="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png 4053w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=300,92 300w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=768,236 768w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1024,315 1024w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1536,473 1536w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2048,630 2048w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=400,123 400w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=600,185 600w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=900,277 900w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1200,369 1200w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2000,615 2000w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure> </div>
  806. </a>
  807. <a href="https://www.nasa.gov/about-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  808. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  809. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  810. <div>
  811. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  812. <span>About NIAC</span>
  813. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  814. </p>
  815. </div>
  816. </div>
  817. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="649" height="766" src="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?w=649" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png 649w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=254,300 254w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=339,400 339w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=508,600 508w" sizes="(max-width: 649px) 100vw, 649px" /></figure> </div>
  818. </a>
  819. </div>
  820. </div>
  821. </div>]]></content:encoded>
  822. </item>
  823. <item>
  824. <title>Flexible Levitation on a Track (FLOAT)</title>
  825. <link>https://www.nasa.gov/directorates/stmd/niac/niac-studies/flexible-levitation-on-a-track-float/</link>
  826. <dc:creator><![CDATA[Loura Hall]]></dc:creator>
  827. <pubDate>Wed, 01 May 2024 18:40:23 +0000</pubDate>
  828. <category><![CDATA[NIAC Studies]]></category>
  829. <guid isPermaLink="false">https://www.nasa.gov/?p=652333</guid>
  830.  
  831. <description><![CDATA[Ethan SchalerNASA Jet Propulsion Laboratory We want to build the first lunar railway system, which will provide reliable, autonomous, and efficient payload transport on the Moon. A durable, long-life robotic transport system will be critical to the daily operations of a sustainable lunar base in the 2030&#8217;s, as envisioned in NASA&#8217;s Moon to Mars plan [&#8230;]]]></description>
  832. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">3 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  833.  
  834. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg"><img loading="lazy" decoding="async" width="2048" height="1374" src="https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Astronaut working on levitation track on lunar surface with Earth in distant sky." style="transform: scale(1); transform-origin: 0% 7%; object-position: 0% 7%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg 5005w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=300,201 300w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=768,515 768w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=1024,687 1024w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=1536,1030 1536w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=2048,1374 2048w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=400,268 400w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=600,402 600w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=900,604 900w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=1200,805 1200w, https://www.nasa.gov/wp-content/uploads/2024/04/float-revised-niac2024.jpg?resize=2000,1341 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Artist concept of novel approach proposed by a 2024 NIAC Phase II awardee for possible future missions depicting lunar surface with planet Earth on the horizon.</div><div class="hds-credits">Credit: Ethan Schaler</div></figcaption></div></div></div>
  835.  
  836.  
  837. <p><strong>Ethan Schaler</strong><br><em>NASA Jet Propulsion Laboratory</em></p>
  838.  
  839.  
  840.  
  841. <p>We want to build the first lunar railway system, which will provide reliable, autonomous, and efficient payload transport on the Moon. A durable, long-life robotic transport system will be critical to the daily operations of a sustainable lunar base in the 2030&#8217;s, as envisioned in NASA&#8217;s Moon to Mars plan and mission concepts like the Robotic Lunar Surface Operations 2 (RLSO2), to:</p>
  842.  
  843.  
  844.  
  845. <p>&#8212; Transport regolith mined for ISRU consumables (H2O, LOX, LH2) or construction</p>
  846.  
  847.  
  848.  
  849. <p>&#8212; Transport payloads around the lunar base and to / from landing zones or other outposts</p>
  850.  
  851.  
  852.  
  853. <p>We propose developing FLOAT &#8212; Flexible Levitation on a Track &#8212; to meet these transportation needs.</p>
  854.  
  855.  
  856.  
  857. <p>The FLOAT system employs unpowered magnetic robots that levitate over a 3-layer flexible film track: a graphite layer enables robots to passively float over tracks using diamagnetic levitation, a flex-circuit layer generates electromagnetic thrust to controllably propel</p>
  858.  
  859.  
  860.  
  861. <p>robots along tracks, and an optional thin-film solar panel layer generates power for the base when in sunlight. FLOAT robots have no moving parts and levitate over the track to minimize lunar dust abrasion / wear, unlike lunar robots with wheels, legs, or tracks.</p>
  862.  
  863.  
  864.  
  865. <p>FLOAT tracks unroll directly onto the lunar regolith to avoid major on-site construction &#8212; unlike conventional roads, railways, or cableways. Individual FLOAT robots will be able to transport payloads of varying shape / size (&gt;30 kg/m^2) at useful speeds (&gt;0.5m/s), and a large-scale FLOAT system will be capable of moving up to 100,000s kg of regolith / payload multiple kilometers per day. FLOAT will operate autonomously in the dusty, inhospitable lunar environment with minimal site preparation, and its network of tracks can be rolled-up / reconfigured over time to match evolving lunar base mission requirements.</p>
  866.  
  867.  
  868.  
  869. <p>In Phase 2, we will continue to retire risks related to the manufacture, deployment, control, and long-term operation of meter-scale robots / km-scale tracks that support human exploration (HEO) activities on the Moon, by accomplishing the following key tasks:</p>
  870.  
  871.  
  872.  
  873. <p>&#8212; Design, manufacture, and test a series of sub-scale robot / track prototypes, culminating with a demonstration in a lunar-analog testbed (that includes testing various site preparation and track deployment strategies)</p>
  874.  
  875.  
  876.  
  877. <p>&#8212; Investigate impacts of environmental effects (e.g. temperature, radiation, charging, lunar regolith simulant contamination, etc.) on system performance and longevity</p>
  878.  
  879.  
  880.  
  881. <p>&#8212; Investigate / define a technology roadmap to address technology gaps and mature manufacturing capability for critical hardware (e.g. large-area magnetic arrays with mm-scale magnetic domains, and large-area flex-circuit boards)</p>
  882.  
  883.  
  884.  
  885. <p>&#8212; Continue refining simulations of FLOAT system designs with increased fidelity, to provide improved performance estimates under the RLSO2 mission concept We will also leverage these sub-scale prototypes to explore opportunities for follow-on technology demonstrations on sub-orbital flights (via Flight Opportunities / TechFlights) or lunar technology demos (via LSII / CLPS landers)</p>
  886.  
  887.  
  888.  
  889. <p><strong><a href="https://www.nasa.gov/general/niac-2024-selections">2024 Phase I Selection</a></strong></p>
  890.  
  891.  
  892.  
  893. <p><a href="https://www.nasa.gov/space-technology-mission-directorate/"></a></p>
  894.  
  895.  
  896. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards"> <div class="grid-container grid-container-block-lg padding-x-0">
  897. <div class="grid-row flex-align-center margin-bottom-3">
  898. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  899. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  900. <h2 class="heading-36 line-height-sm">Discover More NIAC Topics</h2>
  901. </div>
  902. </div>
  903. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  904. <a href="https://www.nasa.gov/space-technology-mission-directorate/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  905. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  906. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  907. <div>
  908. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  909. <span>Space Technology Mission Directorate</span>
  910. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  911. </p>
  912. </div>
  913. </div>
  914. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="525" height="800" src="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?w=525" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg 525w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=197,300 197w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=263,400 263w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=394,600 394w" sizes="(max-width: 525px) 100vw, 525px" /></figure> </div>
  915. </a>
  916. <a href="https://www.nasa.gov/stmd-the-nasa-innovative-advanced-concepts-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  917. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  918. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  919. <div>
  920. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  921. <span>NASA Innovative Advanced Concepts</span>
  922. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  923. </p>
  924. </div>
  925. </div>
  926. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1041" height="521" src="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?w=1041" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png 1041w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=300,150 300w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=768,384 768w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=1024,512 1024w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=400,200 400w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=600,300 600w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=900,450 900w" sizes="(max-width: 1041px) 100vw, 1041px" /></figure> </div>
  927. </a>
  928. <a href="https://www.nasa.gov/niac-funded-studies/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  929. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  930. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  931. <div>
  932. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  933. <span>NIAC Funded Studies</span>
  934. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  935. </p>
  936. </div>
  937. </div>
  938. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="473" src="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png 4053w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=300,92 300w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=768,236 768w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1024,315 1024w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1536,473 1536w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2048,630 2048w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=400,123 400w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=600,185 600w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=900,277 900w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1200,369 1200w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2000,615 2000w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure> </div>
  939. </a>
  940. <a href="https://www.nasa.gov/about-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  941. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  942. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  943. <div>
  944. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  945. <span>About NIAC</span>
  946. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  947. </p>
  948. </div>
  949. </div>
  950. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="649" height="766" src="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?w=649" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png 649w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=254,300 254w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=339,400 339w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=508,600 508w" sizes="(max-width: 649px) 100vw, 649px" /></figure> </div>
  951. </a>
  952. </div>
  953. </div>
  954. </div>]]></content:encoded>
  955. </item>
  956. <item>
  957. <title>Radioisotope Thermoradiative Cell Power Generator</title>
  958. <link>https://www.nasa.gov/directorates/stmd/niac/niac-studies/radioisotope-thermoradiative-cell-power-generator-2/</link>
  959. <dc:creator><![CDATA[Loura Hall]]></dc:creator>
  960. <pubDate>Wed, 01 May 2024 18:39:59 +0000</pubDate>
  961. <category><![CDATA[NIAC Studies]]></category>
  962. <guid isPermaLink="false">https://www.nasa.gov/?p=652235</guid>
  963.  
  964. <description><![CDATA[Stephen PollyRochester Institute of Technology In this project we will continue our Phase I efforts to develop and demonstrate the feasibility of a revolutionary power source for missions to the outer planets utilizing a new paradigm in thermal power conversion, the thermoradiative cell (TRC). Operating like a solar cell in reverse, the TRC converts heat [&#8230;]]]></description>
  965. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">3 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  966.  
  967. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/radioisotope-thermoradiative-cell-power-generator.jpg"><img loading="lazy" decoding="async" width="432" height="278" src="https://www.nasa.gov/wp-content/uploads/2024/04/radioisotope-thermoradiative-cell-power-generator.jpg?w=432" class="attachment-2048x2048 size-2048x2048" alt="Artist’s depiction of Radioisotope Thermoradiative Cell Power Generator" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/radioisotope-thermoradiative-cell-power-generator.jpg 432w, https://www.nasa.gov/wp-content/uploads/2024/04/radioisotope-thermoradiative-cell-power-generator.jpg?resize=300,193 300w, https://www.nasa.gov/wp-content/uploads/2024/04/radioisotope-thermoradiative-cell-power-generator.jpg?resize=400,257 400w" sizes="(max-width: 432px) 100vw, 432px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Artist’s depiction of Radioisotope Thermoradiative Cell Power Generator</div><div class="hds-credits">Stephen Polly</div></figcaption></div></div></div>
  968.  
  969.  
  970. <p><strong>Stephen Polly</strong><br><em>Rochester Institute of Technology</em></p>
  971.  
  972.  
  973.  
  974. <p>In this project we will continue our Phase I efforts to develop and demonstrate the feasibility of a revolutionary power source for missions to the outer planets utilizing a new paradigm in thermal power conversion, the thermoradiative cell (TRC). Operating like a solar cell in reverse, the TRC converts heat from a radioisotope source into infrared light which is sent off into the cold universe. In this process, electricity is generated. In our Phase I study, we showed 8 W of electrical power is possible from the 62.5 W Pu-238 pellet from a general purpose heat source using a 0.28 eV bandgap TRC operating at 600 K. The necessary array includes 1,125 cm² of TRC emitters, or just over 50% of the surface area of a 6U cubesat. With a mass (heat source + TRC) of 622 g, a mass specific power of 12.7 W/kg is possible, over a 4.5x improvement from heritage multi-mission radioisotope thermoelectric generator (MMRTG) was shown. Building on our results from Phase I, we believe there is much more potential to unlock here.</p>
  975.  
  976.  
  977.  
  978. <p>Using low-bandgap III-V materials such as InAsSb in nanostructured arrays to limit potential loss mechanisms, a 25x improvement in mass specific power and a four order of magnitude decrease in volume from a MMRTG is an early estimate, with higher performance possible depending on operating conditions. TRC technology will allow a proliferation of small versatile spacecraft with power requirements not met by photovoltaic arrays or bulky, inefficient MMRTG systems. This will directly enable small-sat missions to the outer planets as well as operations in permanent shadow such as polar lunar craters. </p>
  979.  
  980.  
  981.  
  982. <p>This study will investigate the thermodynamics and feasibility of the development of a radioisotope enabled thermoradiative power source focusing on system size, weight, power (SWaP) while continuing to integrate the effects of potential power and efficiency loss mechanisms developed in Phase I. Experimentally, materials and TRC devices will be grown including InAsSb-based type-II superlattices by metalorganic vapor phase epitaxy (MOVPE) to target low-bandgap materials with suppressed Auger recombination. Metal-semiconductor contacts capable of surviving the required elevated temperatures will be investigated. TRC devices will be tested for performance at elevated temperature facing a cold ambient under vacuum in a modified cryostat testing apparatus developed in Phase I. </p>
  983.  
  984.  
  985.  
  986. <p>We will analyze a radioisotope thermoradiative converter to power a cubesat mission operating at Uranus. This will include an engineering design study of our reference mission with the Compass engineering team at NASA Glenn Research Center with expertise on the impact of new technologies on spacecraft design in the context of an overall mission, incorporating all engineering disciplines and combining them at a system level. Finally, we will develop a technological roadmap for the necessary components of the TRC to power a future mission.</p>
  987.  
  988.  
  989.  
  990. <p><strong><a href="https://www.nasa.gov/general/niac-2024-selections">2024 Phase I Selection</a></strong></p>
  991.  
  992.  
  993.  
  994. <p><a href="https://www.nasa.gov/space-technology-mission-directorate/"></a></p>
  995.  
  996.  
  997. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards"> <div class="grid-container grid-container-block-lg padding-x-0">
  998. <div class="grid-row flex-align-center margin-bottom-3">
  999. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  1000. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  1001. <h2 class="heading-36 line-height-sm">Discover More NIAC Topics</h2>
  1002. </div>
  1003. </div>
  1004. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  1005. <a href="https://www.nasa.gov/space-technology-mission-directorate/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1006. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1007. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1008. <div>
  1009. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1010. <span>Space Technology Mission Directorate</span>
  1011. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1012. </p>
  1013. </div>
  1014. </div>
  1015. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="525" height="800" src="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?w=525" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg 525w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=197,300 197w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=263,400 263w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=394,600 394w" sizes="(max-width: 525px) 100vw, 525px" /></figure> </div>
  1016. </a>
  1017. <a href="https://www.nasa.gov/stmd-the-nasa-innovative-advanced-concepts-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1018. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1019. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1020. <div>
  1021. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1022. <span>NASA Innovative Advanced Concepts</span>
  1023. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1024. </p>
  1025. </div>
  1026. </div>
  1027. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1041" height="521" src="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?w=1041" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png 1041w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=300,150 300w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=768,384 768w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=1024,512 1024w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=400,200 400w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=600,300 600w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=900,450 900w" sizes="(max-width: 1041px) 100vw, 1041px" /></figure> </div>
  1028. </a>
  1029. <a href="https://www.nasa.gov/niac-funded-studies/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1030. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1031. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1032. <div>
  1033. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1034. <span>NIAC Funded Studies</span>
  1035. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1036. </p>
  1037. </div>
  1038. </div>
  1039. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="473" src="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png 4053w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=300,92 300w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=768,236 768w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1024,315 1024w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1536,473 1536w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2048,630 2048w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=400,123 400w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=600,185 600w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=900,277 900w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1200,369 1200w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2000,615 2000w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure> </div>
  1040. </a>
  1041. <a href="https://www.nasa.gov/about-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1042. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1043. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1044. <div>
  1045. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1046. <span>About NIAC</span>
  1047. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1048. </p>
  1049. </div>
  1050. </div>
  1051. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="649" height="766" src="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?w=649" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png 649w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=254,300 254w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=339,400 339w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=508,600 508w" sizes="(max-width: 649px) 100vw, 649px" /></figure> </div>
  1052. </a>
  1053. </div>
  1054. </div>
  1055. </div>]]></content:encoded>
  1056. </item>
  1057. <item>
  1058. <title>The Great Observatory for Long Wavelengths (GO-LoW)</title>
  1059. <link>https://www.nasa.gov/directorates/stmd/niac/niac-studies/the-great-observatory-for-long-wavelengths-go-low/</link>
  1060. <dc:creator><![CDATA[Loura Hall]]></dc:creator>
  1061. <pubDate>Wed, 01 May 2024 18:39:29 +0000</pubDate>
  1062. <category><![CDATA[NIAC Studies]]></category>
  1063. <guid isPermaLink="false">https://www.nasa.gov/?p=652219</guid>
  1064.  
  1065. <description><![CDATA[Mary KnappMIT Humankind has never before seen the low frequency radio sky. It is hidden from ground-based telescopes by the Earth&#8217;s ionosphere and challenging to access from space with traditional missions because the long wavelengths involved (meter- to kilometer-scale) require infeasibly massive telescopes to see clearly. Electromagnetic radiation at these low frequencies carries crucial information [&#8230;]]]></description>
  1066. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">3 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  1067.  
  1068. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/great-observatory-for-long-wavelengths.jpg"><img loading="lazy" decoding="async" width="433" height="329" src="https://www.nasa.gov/wp-content/uploads/2024/04/great-observatory-for-long-wavelengths.jpg?w=433" class="attachment-2048x2048 size-2048x2048" alt="Artist’s depiction of The Great Observatory for Long Wavelengths (GO-LoW)" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/great-observatory-for-long-wavelengths.jpg 433w, https://www.nasa.gov/wp-content/uploads/2024/04/great-observatory-for-long-wavelengths.jpg?resize=300,228 300w, https://www.nasa.gov/wp-content/uploads/2024/04/great-observatory-for-long-wavelengths.jpg?resize=400,304 400w" sizes="(max-width: 433px) 100vw, 433px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Artist’s depiction of The Great Observatory for Long Wavelengths (GO-LoW)</div><div class="hds-credits">Mary Knapp</div></figcaption></div></div></div>
  1069.  
  1070.  
  1071. <p><strong>Mary Knapp</strong><br><em>MIT</em></p>
  1072.  
  1073.  
  1074.  
  1075. <p>Humankind has never before seen the low frequency radio sky. It is hidden from ground-based telescopes by the Earth&#8217;s ionosphere and challenging to access from space with traditional missions because the long wavelengths involved (meter- to kilometer-scale)</p>
  1076.  
  1077.  
  1078.  
  1079. <p>require infeasibly massive telescopes to see clearly. Electromagnetic radiation at these low frequencies carries crucial information about exoplanetary and stellar magnetic fields (a key ingredient to habitability), the interstellar/intergalactic medium, and the earliest</p>
  1080.  
  1081.  
  1082.  
  1083. <p>stars and galaxies.</p>
  1084.  
  1085.  
  1086.  
  1087. <p>The Great Observatory for Long Wavelengths (GO-LoW) proposes an interferometric array of thousands of identical SmallSats at an Earth-Sun Lagrange point (e.g. L5) to measure the magnetic fields of terrestrial exoplanets via detections of their radio emissions at </p>
  1088.  
  1089.  
  1090.  
  1091. <p>frequencies between 100 kHz and 15 MHz. Each spacecraft will carry an innovative Vector Sensor Antenna, which will enable the first survey of exoplanetary magnetic fields within 5 parsecs.</p>
  1092.  
  1093.  
  1094.  
  1095. <p>In a departure from the traditional approach of a single large and expensive spacecraft (i.e. HST, Chandra, JWST) with many single points of failure, we propose an interferometric Great Observatory comprised of thousands of small, cheap, and easily-replaceable</p>
  1096.  
  1097.  
  1098.  
  1099. <p>nodes. Interferometry, a technique that combines signals from many spatially separated receivers to form a large &#8216;virtual&#8217; telescope, is ideally suited to long wavelength astronomy. The individual antenna/receiver systems are simple, no large structures are required, and the very large spacing between nodes provides high spatial resolution.</p>
  1100.  
  1101.  
  1102.  
  1103. <p>In our Phase I study, we found that a hybrid constellation architecture was most efficient. Small and simple &#8220;listener&#8221; nodes (LNs) collect raw radio data using a deployable vector sensor antenna. A small number of larger, more capable &#8220;communication and computation&#8221; nodes (CCNs) collect data from LNs via a local radio network, perform beamforming processing to reduce the data volume, and then transmit the data to Earth via free space optics (lasercomm). Cross correlation of the beamformed data is performed on Earth, where computational resources are not tightly constrained. The CCNs are also responsible for constellation management, including timing distribution and ranging. The Phase I study also showed that the LN-CCN architecture optimizes packing efficiency, allowing a small number of super-heavy lift launch vehicles (e.g. Starship) to deploy the entire constellation to L4.</p>
  1104.  
  1105.  
  1106.  
  1107. <p>The Phase I study showed that the key innovation for GO-LoW is the &#8220;system of systems.&#8221; The technology needed for each individual piece of the observatory (e.g. lasercomm, CubeSats, ranging, timing, data transfer, data processing, orbit propagation) is not a big leap from current state of the art, but the coordination of all these physical elements, data products, and communications systems is novel and challenging, especially at scale.</p>
  1108.  
  1109.  
  1110.  
  1111. <p>In the proposed study, we will (1) develop a real-time, multi-agent simulation of the GO-LoW constellation that demonstrates the autonomous operations architecture required to achieve a </p>
  1112.  
  1113.  
  1114.  
  1115. <p>large (up to 100k) constellation outside of Earth&#8217;s orbit, (2) continue to refine the science case and requirements by simulating science output from the constellation and assessing major error sources informed by the real-time simulation, (3) develop appropriate orbital modeling to assess propulsion requirements for stationkeeping at a stable Lagrange point, and (4) further refine the technology roadmap required to make GO-LoW feasible in the next 10-20 years. GO-LoW represents a disruptive new paradigm for space missions. It achieves reliability through massive redundancy rather than extensive testing. It can evolve and grow with new technology rather than being bound to a fixed point in hardware/software development. Finally, it promises to open a new spectral window on the universe where unforeseen discoveries surely await.</p>
  1116.  
  1117.  
  1118.  
  1119. <p><strong><a href="https://www.nasa.gov/general/niac-2024-selections">2024 Phase I Selection</a></strong></p>
  1120.  
  1121.  
  1122.  
  1123. <p><a href="https://www.nasa.gov/space-technology-mission-directorate/"></a></p>
  1124.  
  1125.  
  1126. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards"> <div class="grid-container grid-container-block-lg padding-x-0">
  1127. <div class="grid-row flex-align-center margin-bottom-3">
  1128. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  1129. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  1130. <h2 class="heading-36 line-height-sm">Discover More NIAC Topics</h2>
  1131. </div>
  1132. </div>
  1133. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  1134. <a href="https://www.nasa.gov/space-technology-mission-directorate/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1135. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1136. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1137. <div>
  1138. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1139. <span>Space Technology Mission Directorate</span>
  1140. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1141. </p>
  1142. </div>
  1143. </div>
  1144. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="525" height="800" src="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?w=525" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg 525w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=197,300 197w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=263,400 263w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=394,600 394w" sizes="(max-width: 525px) 100vw, 525px" /></figure> </div>
  1145. </a>
  1146. <a href="https://www.nasa.gov/stmd-the-nasa-innovative-advanced-concepts-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1147. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1148. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1149. <div>
  1150. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1151. <span>NASA Innovative Advanced Concepts</span>
  1152. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1153. </p>
  1154. </div>
  1155. </div>
  1156. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1041" height="521" src="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?w=1041" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png 1041w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=300,150 300w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=768,384 768w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=1024,512 1024w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=400,200 400w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=600,300 600w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=900,450 900w" sizes="(max-width: 1041px) 100vw, 1041px" /></figure> </div>
  1157. </a>
  1158. <a href="https://www.nasa.gov/niac-funded-studies/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1159. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1160. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1161. <div>
  1162. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1163. <span>NIAC Funded Studies</span>
  1164. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1165. </p>
  1166. </div>
  1167. </div>
  1168. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="473" src="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png 4053w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=300,92 300w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=768,236 768w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1024,315 1024w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1536,473 1536w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2048,630 2048w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=400,123 400w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=600,185 600w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=900,277 900w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1200,369 1200w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2000,615 2000w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure> </div>
  1169. </a>
  1170. <a href="https://www.nasa.gov/about-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1171. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1172. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1173. <div>
  1174. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1175. <span>About NIAC</span>
  1176. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1177. </p>
  1178. </div>
  1179. </div>
  1180. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="649" height="766" src="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?w=649" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png 649w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=254,300 254w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=339,400 339w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=508,600 508w" sizes="(max-width: 649px) 100vw, 649px" /></figure> </div>
  1181. </a>
  1182. </div>
  1183. </div>
  1184. </div>]]></content:encoded>
  1185. </item>
  1186. <item>
  1187. <title>Pulsed Plasma Rocket (PPR): Shielded, Fast Transits for Humans to Mars</title>
  1188. <link>https://www.nasa.gov/directorates/stmd/niac/niac-studies/pulsed-plasma-rocket-ppr-shielded-fast-transits-for-humans-to-mars/</link>
  1189. <dc:creator><![CDATA[Loura Hall]]></dc:creator>
  1190. <pubDate>Wed, 01 May 2024 18:38:51 +0000</pubDate>
  1191. <category><![CDATA[NIAC Studies]]></category>
  1192. <guid isPermaLink="false">https://www.nasa.gov/?p=652204</guid>
  1193.  
  1194. <description><![CDATA[Brianna ClementsHowe Industries The future of a space-faring civilization will depend on the ability to move both cargo and humans efficiently and rapidly. Due to the extremely large distances that are involved in space travel, the spacecraft must reach high velocities for reasonable mission transit times. Thus, a propulsion system that produces a high thrust [&#8230;]]]></description>
  1195. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">2 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  1196.  
  1197. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/pulsed-plasma-rocket.jpg"><img loading="lazy" decoding="async" width="364" height="215" src="https://www.nasa.gov/wp-content/uploads/2024/04/pulsed-plasma-rocket.jpg?w=364" class="attachment-2048x2048 size-2048x2048" alt="Labeled simplified diagram of the PPR system." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/pulsed-plasma-rocket.jpg 364w, https://www.nasa.gov/wp-content/uploads/2024/04/pulsed-plasma-rocket.jpg?resize=300,177 300w" sizes="(max-width: 364px) 100vw, 364px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Simplified image of the PPR system. </div><div class="hds-credits">Brianna Clements</div></figcaption></div></div></div>
  1198.  
  1199.  
  1200. <p><strong>Brianna Clements</strong><br><em>Howe Industries</em></p>
  1201.  
  1202.  
  1203.  
  1204. <p>The future of a space-faring civilization will depend on the ability to move both cargo and humans efficiently and rapidly. Due to the extremely large distances that are involved in space travel, the spacecraft must reach high velocities for reasonable mission transit times. Thus, a propulsion system that produces a high thrust with a high specific impulse is essential. However, no such technologies are currently available.</p>
  1205.  
  1206.  
  1207.  
  1208. <p>Howe Industries is currently developing a propulsion system that may generate up to 100,000 N of thrust with a specific impulse (Isp) of 5,000 seconds. The Pulsed Plasma Rocket (PPR) is originally derived from the Pulsed Fission Fusion concept, but is smaller, simpler, and more affordable. The exceptional performance of the PPR, combining high Isp and high thrust, holds the potential to revolutionize space exploration. The system&#8217;s high efficiency allows for manned missions to Mars to be completed within a mere two months. Alternatively, the PPR enables the transport of much heavier spacecraft that are equipped with shielding against Galactic Cosmic Rays, thereby reducing crew exposure to negligible levels. The system can also be used for other far range missions, such as those to the Asteroid Belt or even to the 550 AU location, where the Sun&#8217;s gravitational lens focuses can be considered. The PPR enables a whole new era in space exploration.</p>
  1209.  
  1210.  
  1211.  
  1212. <p>The NIAC Phase I study focused on a large, heavily shielded ship to transport humans and cargo to Mars for the development of a Martian base. The main topics included: assessing the neutronics of the system, designing the spacecraft, power system, and necessary subsystems, analyzing the magnetic nozzle capabilities, and determining trajectories and benefits of the PPR. Phase II will build upon these assessments and further the PPR concept.</p>
  1213.  
  1214.  
  1215.  
  1216. <p>In Phase II, we plan to:</p>
  1217.  
  1218.  
  1219.  
  1220. <ol>
  1221. <li>Optimize the engine design for reduced mass and higher Isp</li>
  1222.  
  1223.  
  1224.  
  1225. <li>Perform proof-of-concept experiments of major components</li>
  1226.  
  1227.  
  1228.  
  1229. <li>Complete a ship design for shielded human missions to Mars</li>
  1230. </ol>
  1231.  
  1232.  
  1233.  
  1234. <p><strong><a href="https://www.nasa.gov/general/niac-2024-selections">2024 Phase I Selection</a></strong></p>
  1235.  
  1236.  
  1237.  
  1238. <p><a href="https://www.nasa.gov/space-technology-mission-directorate/"></a></p>
  1239.  
  1240.  
  1241. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards"> <div class="grid-container grid-container-block-lg padding-x-0">
  1242. <div class="grid-row flex-align-center margin-bottom-3">
  1243. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  1244. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  1245. <h2 class="heading-36 line-height-sm">Discover More NIAC Topics</h2>
  1246. </div>
  1247. </div>
  1248. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  1249. <a href="https://www.nasa.gov/space-technology-mission-directorate/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1250. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1251. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1252. <div>
  1253. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1254. <span>Space Technology Mission Directorate</span>
  1255. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1256. </p>
  1257. </div>
  1258. </div>
  1259. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="525" height="800" src="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?w=525" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg 525w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=197,300 197w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=263,400 263w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=394,600 394w" sizes="(max-width: 525px) 100vw, 525px" /></figure> </div>
  1260. </a>
  1261. <a href="https://www.nasa.gov/stmd-the-nasa-innovative-advanced-concepts-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1262. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1263. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1264. <div>
  1265. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1266. <span>NASA Innovative Advanced Concepts</span>
  1267. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1268. </p>
  1269. </div>
  1270. </div>
  1271. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1041" height="521" src="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?w=1041" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png 1041w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=300,150 300w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=768,384 768w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=1024,512 1024w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=400,200 400w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=600,300 600w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=900,450 900w" sizes="(max-width: 1041px) 100vw, 1041px" /></figure> </div>
  1272. </a>
  1273. <a href="https://www.nasa.gov/niac-funded-studies/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1274. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1275. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1276. <div>
  1277. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1278. <span>NIAC Funded Studies</span>
  1279. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1280. </p>
  1281. </div>
  1282. </div>
  1283. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="473" src="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png 4053w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=300,92 300w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=768,236 768w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1024,315 1024w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1536,473 1536w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2048,630 2048w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=400,123 400w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=600,185 600w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=900,277 900w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1200,369 1200w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2000,615 2000w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure> </div>
  1284. </a>
  1285. <a href="https://www.nasa.gov/about-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1286. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1287. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1288. <div>
  1289. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1290. <span>About NIAC</span>
  1291. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1292. </p>
  1293. </div>
  1294. </div>
  1295. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="649" height="766" src="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?w=649" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png 649w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=254,300 254w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=339,400 339w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=508,600 508w" sizes="(max-width: 649px) 100vw, 649px" /></figure> </div>
  1296. </a>
  1297. </div>
  1298. </div>
  1299. </div>]]></content:encoded>
  1300. </item>
  1301. <item>
  1302. <title>Fluidic Telescope (FLUTE): Enabling the Next Generation of Large Space Observatories</title>
  1303. <link>https://www.nasa.gov/directorates/stmd/niac/niac-studies/fluidic-telescope-flute-enabling-the-next-generation-of-large-space-observatories-2/</link>
  1304. <dc:creator><![CDATA[Loura Hall]]></dc:creator>
  1305. <pubDate>Wed, 01 May 2024 18:37:31 +0000</pubDate>
  1306. <category><![CDATA[NIAC Studies]]></category>
  1307. <guid isPermaLink="false">https://www.nasa.gov/?p=652155</guid>
  1308.  
  1309. <description><![CDATA[Edward BalabanNASA ARC The future of space-based UV/optical/IR astronomy requires ever larger telescopes. The highest priority astrophysics targets, including Earth-like exoplanets, first generation stars, and early galaxies, are all extremely faint, which presents an ongoing challenge for current missions and is the opportunity space for next generation telescopes: larger telescopes are the primary way to [&#8230;]]]></description>
  1310. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">3 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  1311.  
  1312. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/04/fluidic-telescope-flute.jpg"><img loading="lazy" decoding="async" width="431" height="288" src="https://www.nasa.gov/wp-content/uploads/2024/04/fluidic-telescope-flute.jpg?w=431" class="attachment-2048x2048 size-2048x2048" alt="Artist rendition of the Fluidic Telescope" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/fluidic-telescope-flute.jpg 431w, https://www.nasa.gov/wp-content/uploads/2024/04/fluidic-telescope-flute.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/04/fluidic-telescope-flute.jpg?resize=400,267 400w" sizes="(max-width: 431px) 100vw, 431px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Artist’s depiction of the Fluidic Telescope (FLUTE)</div><div class="hds-credits">Edward Balaban</div></figcaption></div></div></div>
  1313.  
  1314.  
  1315. <p><strong>Edward Balaban</strong><br><em>NASA ARC</em></p>
  1316.  
  1317.  
  1318.  
  1319. <p>The future of space-based UV/optical/IR astronomy requires ever larger telescopes. The highest priority astrophysics targets, including Earth-like exoplanets, first generation stars, and early galaxies, are all extremely faint, which presents an ongoing challenge for current missions and is the opportunity space for next generation telescopes: larger telescopes are the primary way to address this issue.</p>
  1320.  
  1321.  
  1322.  
  1323. <p>With mission costs depending strongly on aperture diameter, scaling current space telescope technologies to aperture sizes beyond 10 m does not appear economically viable. Without a breakthrough in scalable technologies for large telescopes, future advances in</p>
  1324.  
  1325.  
  1326.  
  1327. <p>astrophysics may slow down or even completely stall. Thus, there is a need for cost-effective solutions to scale space telescopes to larger sizes.</p>
  1328.  
  1329.  
  1330.  
  1331. <p>The FLUTE project aims to overcome the limitations of current approaches by paving a path towards space observatories with largeaperture, unsegmented liquid primary mirrors, suitable for a variety of astronomical applications. Such mirrors would be created in</p>
  1332.  
  1333.  
  1334.  
  1335. <p>space via a novel approach based on fluidic shaping in microgravity, which has already been successfully demonstrated in a laboratory neutral buoyancy environment, in parabolic microgravity flights, and aboard the International Space Station (ISS). Theoretically</p>
  1336.  
  1337.  
  1338.  
  1339. <p>scale-invariant, this technique has produced optical components with superb, sub-nanometer (RMS) surface quality. In order to make the concept feasible to implement in the next 15-20 years with near-term technologies and realistic cost, we limit the diameter of the primary mirror to 50 meters.</p>
  1340.  
  1341.  
  1342.  
  1343. <p>In the Phase I study, we: (1) explored choices of mirror liquids, deciding to focus on ionic liquids, (2) conducted an extensive study of ionic liquids with suitable properties, (3) worked on techniques for ionic liquid reflectivity enhancement, (4) analyzed several alternative architectures for the main mirror frame, (5) conducted modeling of the effects of slewing maneuvers and temperature variations on the mirror surface, (6) developed a detailed mission concept for a 50-m fluidic mirror observatory, and (7) created a set of initial concepts for a subscale small spacecraft demonstration in low Earth orbit.</p>
  1344.  
  1345.  
  1346.  
  1347. <p>In Phase II, we will continue maturing the key elements of our mission concept. First, we will continue our analysis of suitable mirror frame architectures and modeling of their dynamic properties. Second, we will take next steps in our machine learning-based modeling and experimental work to develop reflectivity enhancement techniques for ionic liquids. Third, we will further advance the work of modeling liquid mirror dynamics. In particular, we will focus on modeling the effects from other types of external disturbances (spacecraft control accelerations, tidal forces, and micrometeorite impacts), as well as analyzing and modeling the impact of the thermal Marangoni effect on nanoparticle-infused ionic liquids. Fourth, we will create a model of the optical chain from the liquid mirror surface to the science instruments. Fifth, we will further develop the mission concept for a larger-scale, 50-m aperture observatory, focusing on its highest-risk elements. Finally, we will mature the concept for a small spacecraft technology demonstration mission in low Earth orbit, incorporating the knowledge gained in other parts of this work.</p>
  1348.  
  1349.  
  1350.  
  1351. <p><strong><a href="https://www.nasa.gov/general/niac-2024-selections">2024 Phase I Selection</a></strong></p>
  1352.  
  1353.  
  1354.  
  1355. <p><a href="https://www.nasa.gov/space-technology-mission-directorate/"></a></p>
  1356.  
  1357.  
  1358. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards"> <div class="grid-container grid-container-block-lg padding-x-0">
  1359. <div class="grid-row flex-align-center margin-bottom-3">
  1360. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  1361. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  1362. <h2 class="heading-36 line-height-sm">Discover More NIAC Topics</h2>
  1363. </div>
  1364. </div>
  1365. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  1366. <a href="https://www.nasa.gov/space-technology-mission-directorate/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1367. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1368. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1369. <div>
  1370. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1371. <span>Space Technology Mission Directorate</span>
  1372. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1373. </p>
  1374. </div>
  1375. </div>
  1376. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="525" height="800" src="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?w=525" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg 525w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=197,300 197w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=263,400 263w, https://www.nasa.gov/wp-content/uploads/2022/12/stmd.jpg?resize=394,600 394w" sizes="(max-width: 525px) 100vw, 525px" /></figure> </div>
  1377. </a>
  1378. <a href="https://www.nasa.gov/stmd-the-nasa-innovative-advanced-concepts-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1379. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1380. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1381. <div>
  1382. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1383. <span>NASA Innovative Advanced Concepts</span>
  1384. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1385. </p>
  1386. </div>
  1387. </div>
  1388. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1041" height="521" src="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?w=1041" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png 1041w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=300,150 300w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=768,384 768w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=1024,512 1024w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=400,200 400w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=600,300 600w, https://www.nasa.gov/wp-content/uploads/2022/12/niac_magnetosphere.png?resize=900,450 900w" sizes="(max-width: 1041px) 100vw, 1041px" /></figure> </div>
  1389. </a>
  1390. <a href="https://www.nasa.gov/niac-funded-studies/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1391. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1392. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1393. <div>
  1394. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1395. <span>NIAC Funded Studies</span>
  1396. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1397. </p>
  1398. </div>
  1399. </div>
  1400. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="473" src="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png 4053w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=300,92 300w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=768,236 768w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1024,315 1024w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1536,473 1536w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2048,630 2048w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=400,123 400w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=600,185 600w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=900,277 900w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=1200,369 1200w, https://www.nasa.gov/wp-content/uploads/2022/02/2022_niac_ph_i_ii_selections_web_graphic_banner_final_v2.png?resize=2000,615 2000w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure> </div>
  1401. </a>
  1402. <a href="https://www.nasa.gov/about-niac/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1403. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1404. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1405. <div>
  1406. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1407. <span>About NIAC</span>
  1408. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1409. </p>
  1410. </div>
  1411. </div>
  1412. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="649" height="766" src="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?w=649" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png 649w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=254,300 254w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=339,400 339w, https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?resize=508,600 508w" sizes="(max-width: 649px) 100vw, 649px" /></figure> </div>
  1413. </a>
  1414. </div>
  1415. </div>
  1416. </div>
  1417.  
  1418. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://www.nasa.gov/wp-content/uploads/2019/09/niac_2019_howe_troy.png?w=649" ></figure></div></div></div>]]></content:encoded>
  1419. </item>
  1420. <item>
  1421. <title>Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases</title>
  1422. <link>https://science.nasa.gov/earth/two-small-nasa-satellites-will-measure-soil-moisture-volcanic-gases/</link>
  1423. <dc:creator><![CDATA[]]></dc:creator>
  1424. <pubDate>Wed, 01 May 2024 18:22:21 +0000</pubDate>
  1425. <category><![CDATA[Earth]]></category>
  1426. <category><![CDATA[Earth System Observatory (ESO)]]></category>
  1427. <category><![CDATA[Earth's Atmosphere]]></category>
  1428. <category><![CDATA[Goddard Space Flight Center]]></category>
  1429. <guid isPermaLink="false">https://science.nasa.gov/earth/two-small-nasa-satellites-will-measure-soil-moisture-volcanic-gases/</guid>
  1430.  
  1431. <description><![CDATA[Two NASA pathfinding missions were recently deployed into low-Earth orbit, where they are demonstrating novel technologies for observing atmospheric gases, measuring freshwater, and even detecting signs of potential volcanic eruptions. The Signals of Opportunity P-Band Investigation (SNoOPI), a low-noise radio receiver, tests a new technique for measuring root-zone soil moisture by harnessing radio signals produced […]]]></description>
  1432. <content:encoded><![CDATA[<div id="" class=" hds-module hds-module-full wp-block-nasa-blocks-secondary-navigation">
  1433. <div class="hds-secondary-navigation-wrapper z-top width-100 padding-0">
  1434. <div id="" class="hds-secondary-navigation width-full border-bottom-1px text-center hds-color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-hdsnav"><button type="button" class="hds-secondary-nav-mobile-button display-flex tablet:display-flex desktop:display-none width-full flex-align-center bg-carbon-90 border-color-carbon-80 color-spacesuit-white" aria-expanded="false" aria-controls="hds-secondary-nav-track"><span>Earth (ESD)</span><svg width="16" height="16" alt="" enable-background="new 0 0 400 400" viewBox="0 0 400 400" xmlns="http://www.w3.org/2000/svg"><path d="m4.2 122.2 195.1 195.1 196.5-196.6-37.9-38-157.8 157.8-156.8-156.8z" /></svg></button></p>
  1435. <div class="hds-secondary-nav-track grid-container grid-container-extrawide padding-0 tablet:padding-x-3 desktop:padding-x-2 ">
  1436. <div class="hds-secondary-navigation-menu-items">
  1437. <nav>
  1438. <ul class="usa-nav__primary usa-accordion flex-justify-center margin-0">
  1439. <li class="usa-nav__primary-item "><a class="usa-nav__link" href="https://science.nasa.gov/earth/" rel="noopener">Earth and Climate</a></li>
  1440. <li class="usa-nav__primary-item "><a class="usa-nav__link" href="https://science.nasa.gov/earth/explore/" rel="noopener">Explore</a></li>
  1441. <li class="usa-nav__primary-item "><a class="usa-nav__link" href="https://science.nasa.gov/climate-change/" rel="noopener">Climate Change</a></li>
  1442. <li class="usa-nav__primary-item "><a class="usa-nav__link" href="https://science.nasa.gov/earth/in-action" rel="noopener">Science in Action</a></li>
  1443. <li class="usa-nav__primary-item "><a class="usa-nav__link" href="https://science.nasa.gov/earth/multimedia" rel="noopener">Multimedia</a></li>
  1444. <li class="usa-nav__primary-item "><a class="usa-nav__link" href="https://science.nasa.gov/earth/data" rel="noopener">Data</a></li>
  1445. <li class="usa-nav__primary-item"><button type="button" class="usa-accordion__button usa-nav__link" aria-expanded="false" aria-controls="basic-nav-section-one"><span>More</span><svg class="hds-desktop-submenu-toggle-icon display-none tablet:display-none desktop:display-block" width="16" height="16" alt="" enable-background="new 0 0 400 400" viewBox="0 0 400 400" xmlns="http://www.w3.org/2000/svg"><path d="m4.2 122.2 195.1 195.1 196.5-196.6-37.9-38-157.8 157.8-156.8-156.8z" /></svg><svg class="hds-mobile-submenu-toggle-icon display-block tablet:display-block desktop:display-none" width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg"><circle cx="8" cy="8" r="7.5" fill="#0B3D91" stroke="white"/><rect x="4" y="7.6001" width="8" height="0.8" fill="white"/><rect class="hds-mobile-submenu-toggle-icon-line-vertical" x="7.59998" y="12" width="8" height="0.8" transform="rotate(-90 7.59998 12)" fill="white"/></svg></button>
  1446. <ul id="basic-nav-section-one" class="usa-nav__submenu" hidden>
  1447. <li class="usa-nav__submenu-item "><a class="usa-nav__link" target="_self" href="https://science.nasa.gov/earth-science" rel="noopener">For Researchers</a></li>
  1448. </ul>
  1449. </ul>
  1450. </nav>
  1451. </div>
  1452. </div>
  1453. </div>
  1454. </div>
  1455. </div>
  1456. <div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro">
  1457. <div class="width-full maxw-full article-header">
  1458. <div class="margin-bottom-2 width-full maxw-full">
  1459. <p class="label carbon-60 margin-0 margin-bottom-3 padding-0">4 min read</p>
  1460. <h1 class="display-48 margin-bottom-2">Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases</h1>
  1461. </div>
  1462. </div>
  1463. </div>
  1464. <div id="" class="hds-media hds-module wp-block-image">
  1465. <div class="margin-left-auto margin-right-auto nasa-block-align-inline">
  1466. <div class="hds-media-wrapper margin-left-auto margin-right-auto">
  1467. <figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://science.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg" rel="noopener"><img fetchpriority="high" decoding="async" width="1689" height="1391" src="https://science.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?w=1689" class="attachment-2048x2048 size-2048x2048" alt="Two people wearing white lab coats standing beside a small, box-shaped satellite in a laboratory" style="transform: scale(1); transform-origin: 49% 29%; object-position: 49% 29%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg 1689w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=300,247 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=768,632 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=1024,843 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=1536,1265 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=400,329 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=600,494 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=900,741 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/snoopi-cubsat-image3.jpg?resize=1200,988 1200w" sizes="(max-width: 1689px) 100vw, 1689px" loading="eager" /></a></figure><figcaption class="hds-caption padding-y-2">
  1468. <div class="hds-caption-text p-sm margin-0">NASA engineers Austin Tanner (left) and Manuel Vega stand beside SNoOPI, short for Signals of Opportunity P-Band Investigation, at the NanoRacks clean room facility in Houston.</div>
  1469. <div class="hds-credits">NASA / Denny Henry</div>
  1470. </figcaption></div>
  1471. </div>
  1472. </div>
  1473. <p>Two NASA pathfinding missions were recently deployed into low-Earth orbit, where they are demonstrating novel technologies for observing atmospheric gases, measuring freshwater, and even detecting signs of potential volcanic eruptions.</p>
  1474. <p>The <a href="https://esto.nasa.gov/invest/snoopi/" rel="noopener">Signals of Opportunity P-Band Investigation (SNoOPI)</a>, a low-noise radio receiver, tests a new technique for measuring root-zone soil moisture by harnessing radio signals produced by commercial satellites — a big job for a 6U CubeSat the size of a shoebox.</p>
  1475. <p>Separately, the <a href="https://esto.nasa.gov/invest/hyti/" rel="noopener">Hyperspectral Thermal Imager (HyTI)</a> is measuring trace gases linked to volcanic eruptions. HyTI, also a 6U CubeSat, could pave the way for future missions dedicated to detecting volcanic eruptions weeks or months in advance.</p>
  1476. <p>Both instruments were launched on March 21 from NASA’S Cape Canaveral Space Force Station to the International Space Station aboard SpaceX’s Dragon cargo spacecraft as part of <a href="https://www.nasa.gov/mission/nasas-spacex-crs-30/">the company’s 30<sup>th</sup> commercial resupply mission</a>. On April 21, the instruments were released into orbit from the station.</p>
  1477. <h2 class="wp-block-heading" id="h-flying-ace-for-finding-freshwater-in-soil-and-snow"><strong>“Flying Ace” for Finding Freshwater in Soil and Snow</strong></h2>
  1478. <p>As a measurement technique, “signals of opportunity try to reutilize what already exists,” said James Garrison, professor of aeronautics and astronautics at Purdue University and principal investigator for SNoOPI.</p>
  1479. <p>Garrison and his team will try to collect the P-band radio signals produced by many commercial telecommunications satellites and repurpose them for science applications. The instrument maximizes the value of space-based assets already in orbit, transforming existing radio signals into research tools.</p>
  1480. <figure class="wp-block-embed is-type-video is-provider-youtube wp-block-embed-youtube">
  1481. <div class="wp-block-embed__wrapper">
  1482. <iframe loading="lazy" title="SNOOPI: SigNals Of Opportunity P-band Investigation" width="640" height="360" src="https://www.youtube.com/embed/mI3xo5gbcKg?feature=oembed" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
  1483. </div><figcaption class="wp-element-caption">SNOOPI will prototype a new technique for measuring soil moisture.</figcaption></figure>
  1484. <p>“By looking at what happens when satellite signals reflect off the surface of the Earth and comparing that to the signal that has not reflected, we can extract important properties about the surface where the signal reflects,” said Garrison.</p>
  1485. <p>P-band radio signals are powerful, penetrating Earth’s surface to a depth of about one foot (30 cm). This makes them ideal for studying root-zone soil moisture and snow water equivalent.</p>
  1486. <p>“By monitoring the amount of water in the soil, we get a good understanding of crop growth. We can also more intelligently monitor irrigation,” said Garrison. “Similarly, snow is very important because that’s also a place where water is stored. It has been hard to measure accurately on a global scale with remote sensing.”</p>
  1487. <h2 class="wp-block-heading" id="h-high-time-for-hyti-and-high-resolution-thermal-imaging"><strong>High-time for HyTI and High-Resolution Thermal Imaging</strong></h2>
  1488. <p>“I study volcanoes from space to try and work out when they’re going to start and stop erupting,” said Robert Wright, director of the Hawaii Institute of Geophysics and Planetology at the University of Hawaiʻi at Mānoa and the principal investigator for HyTI.</p>
  1489. <figure class="wp-block-embed is-type-video is-provider-youtube wp-block-embed-youtube">
  1490. <div class="wp-block-embed__wrapper">
  1491. <iframe loading="lazy" title="HyTI: Hyperspectral Thermal Imager" width="640" height="360" src="https://www.youtube.com/embed/Yq519Osx2_s?feature=oembed" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
  1492. </div><figcaption class="wp-element-caption">HyTI, short for Hyperspectral Thermal Imager, is testing a novel instrument for measuring thermal radiation.</figcaption></figure>
  1493. <p>Hyperspectral imagers like HyTI measure a broad spectrum of thermal radiation signatures, and they’re particularly useful for characterizing gases in low concentrations. Wright and his team hope HyTI will help them quantify concentrations of sulfur dioxide in the atmosphere around volcanoes.</p>
  1494. <p>Weeks or even months before they erupt, volcanoes often emit increased amounts of sulfur dioxide and other trace gases. Measuring those gases could indicate an impending eruption HyTI’s sensitivity to thermal radiation will also be useful for observing water vapor and convection.</p>
  1495. <p>“There are two science objectives for HyTI. We want to try and improve how we can predict when a volcano will erupt and when a volcanic eruption is going to end,” said Wright. “And we’re also going to be measuring soil moisture content as it pertains to drought.”</p>
  1496. <h2 class="wp-block-heading" id="h-setting-the-stage-for-future-science-missions"><strong>Setting the Stage for Future Science Missions</strong></h2>
  1497. <p>Through its Earth Science Technology Office (ESTO), NASA worked closely with both Garrison and Wright to help transform their research into fully-functioning, space-ready prototypes.</p>
  1498. <p>“The ESTO program allows for scientists to have interesting ideas and actually turn them into reality,” said Wright. Garrison agreed. “ESTO’s been a great partner.”</p>
  1499. <p>For more information about collaborating with NASA to create new technologies for Earth observation, visit ESTO’s homepage <a href="http://esto.nasa.gov/" rel="noopener">here</a>.</p>
  1500. <p><a href="https://www.nasa.gov/technology/snoopi-a-flying-ace-for-soil-moisture-and-snow-measurements/">Related Link: SNoOPI: A Flying Ace for Soil Moisture and Snow Measurements</a></p>
  1501. <p><strong>By </strong><a href="http://gage.taylor@nasa.gov" rel="noopener"><strong>Gage Taylor</strong></a></p>
  1502. <p><strong>NASA’s Goddard Space Flight Center, Greenbelt, Md.</strong></p>
  1503. <div id="" class="hds-about-the-author nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-6 hds-module hds-module-full wp-block-nasa-blocks-about-the-author">
  1504. <div class="grid-row grid-container maxw-widescreen padding-x-0 border-top-1px border-color-carbon-black padding-top-3">
  1505. <div class="margin-bottom-4">
  1506. <h3 class="heading-14">About the Author</h3>
  1507. </div>
  1508. </div>
  1509. <div class="grid-row grid-container padding-x-0 maxw-widescreen">
  1510. <div class="grid-col-12 desktop:grid-col-6 desktop:padding-right-9">
  1511. <div class="grid-row">
  1512. <div class="hds-author-thumbnail mobile:circle-6 mobile:maxw-6 circle-card maxw-card thumbnail margin-right-2 desktop:margin-right-5"></div>
  1513. <div class="grid-col">
  1514. <div class="margin-bottom-2">
  1515. <h2 class="heading-29 line-height-sm">Gage Taylor</h2>
  1516. </div>
  1517. <div class="padding-y-2"></div>
  1518. </div>
  1519. </div>
  1520. </div>
  1521. <div class="desktop:grid-col-6 desktop:padding-right-9">
  1522. <p class="margin-top-0">
  1523. </div>
  1524. </div>
  1525. </div>
  1526. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 nasa_template_article_b hds-module hds-module-full wp-block-nasa-blocks-credits-and-details">
  1527. <section class="padding-x-0 padding-top-5 padding-bottom-2 desktop:padding-top-7 desktop:padding-bottom-9">
  1528. <div class="grid-row grid-container maxw-widescreen padding-0">
  1529. <div class="grid-col-12 desktop:grid-col-2 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  1530. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  1531. <div class="margin-bottom-2">
  1532. <h2 class="heading-14">Share</h2>
  1533. </p></div>
  1534. <div class="padding-bottom-2">
  1535. <ul class="social-icons social-icons-round">
  1536. <li class="social-icon social-icon-x">
  1537. <a href="https://x.com/intent/tweet?via=NASA&#038;text=Two%20Small%20NASA%20Satellites%20Will%20Measure%20Soil%20Moisture%2C%20Volcanic%20Gases&#038;url=https%3A%2F%2Fscience.nasa.gov%2Fearth%2Ftwo-small-nasa-satellites-will-measure-soil-moisture-volcanic-gases%2F" aria-label="Share on X."><br />
  1538. <svg width="1200" height="1227" viewBox="0 0 1200 1227" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M714.163 519.284L1160.89 0H1055.03L667.137 450.887L357.328 0H0L468.492 681.821L0 1226.37H105.866L515.491 750.218L842.672 1226.37H1200L714.137 519.284H714.163ZM569.165 687.828L521.697 619.934L144.011 79.6944H306.615L611.412 515.685L658.88 583.579L1055.08 1150.3H892.476L569.165 687.854V687.828Z" fill="white"/></svg><br />
  1539. </a>
  1540. </li>
  1541. <li class="social-icon social-icon-facebook">
  1542. <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fscience.nasa.gov%2Fearth%2Ftwo-small-nasa-satellites-will-measure-soil-moisture-volcanic-gases%2F" aria-label="Share on Facebook." rel="noopener"><br />
  1543. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M9 8h-3v4h3v12h5v-12h3.642l.358-4h-4v-1.667c0-.955.192-1.333 1.115-1.333h2.885v-5h-3.808c-3.596 0-5.192 1.583-5.192 4.615v3.385z"/></svg><br />
  1544. </a>
  1545. </li>
  1546. <li class="social-icon social-icon-linkedin">
  1547. <a href="https://www.linkedin.com/shareArticle?mini=true&#038;url=https%3A%2F%2Fscience.nasa.gov%2Fearth%2Ftwo-small-nasa-satellites-will-measure-soil-moisture-volcanic-gases%2F" aria-label="Share on LinkedIn." rel="noopener"><br />
  1548. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M4.98 3.5c0 1.381-1.11 2.5-2.48 2.5s-2.48-1.119-2.48-2.5c0-1.38 1.11-2.5 2.48-2.5s2.48 1.12 2.48 2.5zm.02 4.5h-5v16h5v-16zm7.982 0h-4.968v16h4.969v-8.399c0-4.67 6.029-5.052 6.029 0v8.399h4.988v-10.131c0-7.88-8.922-7.593-11.018-3.714v-2.155z"/></svg><br />
  1549. </a>
  1550. </li>
  1551. <li class="social-icon social-icon-rss">
  1552. <a href="/feed/" aria-label="Subscribe to RSS feed."><br />
  1553. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" aria-hidden="true"><path d="M493 652H392c0-134-111-244-244-244V307c189 0 345 156 345 345zm71 0c0-228-188-416-416-416V132c285 0 520 235 520 520z"/><circle cx="219" cy="581" r="71"/></svg><br />
  1554. </a>
  1555. </li>
  1556. </ul></div>
  1557. </p></div>
  1558. </p></div>
  1559. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  1560. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  1561. <div class="margin-bottom-2">
  1562. <h2 class="heading-14">Details</h2>
  1563. </p></div>
  1564. <div class="grid-row margin-bottom-3">
  1565. <div class="grid-col-4">
  1566. <div class="subheading">Last Updated</div>
  1567. </p></div>
  1568. <div class="grid-col-8">May 01, 2024</div>
  1569. </p></div>
  1570. <div class="grid-row">
  1571. <div class="grid-col-4">
  1572. <div class="subheading">Location</div>
  1573. </div>
  1574. <div class="grid-col-8">Jet Propulsion Laboratory</div>
  1575. </div></div>
  1576. </p></div>
  1577. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  1578. <div class="padding-top-3 border-top-1px border-color-carbon-black ">
  1579. <div class="margin-bottom-2">
  1580. <h2 class="heading-14">Related Terms</h2>
  1581. </div>
  1582. <ul class="article-tags">
  1583. <li class="article-tag"><a href="https://science.nasa.gov/earth/" rel="noopener">Earth</a></li>
  1584. <li class="article-tag"><a href="https://science.nasa.gov/earth-science/missions/earth-system-observatory/" rel="noopener">Earth System Observatory (ESO)</a></li>
  1585. <li class="article-tag"><a href="https://science.nasa.gov/category/earth/earth-atmosphere/" rel="noopener">Earth&#8217;s Atmosphere</a></li>
  1586. <li class="article-tag"><a href="https://www.nasa.gov/goddard/">Goddard Space Flight Center</a></li>
  1587. </ul>
  1588. </div>
  1589. </div></div>
  1590. </section></div>
  1591. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 hds-module hds-module-full wp-block-nasa-blocks-related-articles">
  1592. <section class="hds-related-articles padding-x-0 padding-y-3 desktop:padding-top-7 desktop:padding-bottom-9">
  1593. <div class="w-100 grid-row grid-container maxw-widescreen padding-0 text-align-left">
  1594. <div class="margin-bottom-4">
  1595. <h2 style="max-width: 100%;" class="width-full w-full maxw-full">Explore More</h2>
  1596. </div></div>
  1597. <div class="grid-row grid-container maxw-widescreen padding-0">
  1598. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1599. <a href="https://science.nasa.gov/missions/hubble/nasas-hubble-pauses-science-due-to-gyro-issue/" class="color-carbon-black" rel="noopener"></p>
  1600. <div class="margin-bottom-2">
  1601. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1602. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="198" src="https://science.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp 1351w, https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?resize=300,198 300w, https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?resize=768,508 768w, https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?resize=1024,677 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?resize=400,264 400w, https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?resize=600,397 600w, https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?resize=900,595 900w, https://smd-cms.nasa.gov/wp-content/uploads/2023/04/hubble-telescope-jpg.webp?resize=1200,793 1200w" sizes="(max-width: 300px) 100vw, 300px" /></figure>
  1603. </p></div>
  1604. </p></div>
  1605. <div class="padding-right-0 desktop:padding-right-10">
  1606. <div class="subheading margin-bottom-1">2 min read</div>
  1607. <div class="margin-bottom-1">
  1608. <h3 class="related-article-title">NASA’s Hubble Pauses Science Due to Gyro Issue</h3>
  1609. </div>
  1610. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1611. <span class="display-flex flex-align-center margin-right-2"><br />
  1612. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg><br />
  1613. <span>Article</span><br />
  1614. </span><br />
  1615. <span class=""><br />
  1616. 1 day ago </span>
  1617. </div>
  1618. </p></div>
  1619. <p> </a>
  1620. </div>
  1621. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1622. <a href="https://science.nasa.gov/missions/xrism/nasa-jaxas-xrism-mission-captures-unmatched-data-with-just-36-pixels/" class="color-carbon-black" rel="noopener"></p>
  1623. <div class="margin-bottom-2">
  1624. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1625. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="241" src="https://science.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg 1920w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=300,241 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=768,618 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=1024,823 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=1536,1235 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=400,322 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=600,483 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=900,724 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/resolve-detector.jpg?resize=1200,965 1200w" sizes="(max-width: 300px) 100vw, 300px" /></figure>
  1626. </p></div>
  1627. </p></div>
  1628. <div class="padding-right-0 desktop:padding-right-10">
  1629. <div class="subheading margin-bottom-1">3 min read</div>
  1630. <div class="margin-bottom-1">
  1631. <h3 class="related-article-title">NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels</h3>
  1632. </div>
  1633. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1634. <span class="display-flex flex-align-center margin-right-2"><br />
  1635. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg><br />
  1636. <span>Article</span><br />
  1637. </span><br />
  1638. <span class=""><br />
  1639. 1 day ago </span>
  1640. </div>
  1641. </p></div>
  1642. <p> </a>
  1643. </div>
  1644. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1645. <a href="https://science.nasa.gov/missions/hubble/hubble-spots-a-magnificent-barred-galaxy/" class="color-carbon-black" rel="noopener"></p>
  1646. <div class="margin-bottom-2">
  1647. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1648. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="298" height="300" src="https://science.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?w=298" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg 3977w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=150,150 150w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=298,300 298w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=768,774 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=1016,1024 1016w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=1525,1536 1525w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=2033,2048 2033w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=50,50 50w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=100,100 100w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=200,200 200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=397,400 397w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=596,600 596w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=893,900 893w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=1191,1200 1191w, https://smd-cms.nasa.gov/wp-content/uploads/2024/04/hubble-ngc2217-potw2052a.jpg?resize=1985,2000 1985w" sizes="(max-width: 298px) 100vw, 298px" /></figure>
  1649. </p></div>
  1650. </p></div>
  1651. <div class="padding-right-0 desktop:padding-right-10">
  1652. <div class="subheading margin-bottom-1">1 min read</div>
  1653. <div class="margin-bottom-1">
  1654. <h3 class="related-article-title">Hubble Spots a Magnificent Barred Galaxy</h3>
  1655. </div>
  1656. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1657. <span class="display-flex flex-align-center margin-right-2"><br />
  1658. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg><br />
  1659. <span>Article</span><br />
  1660. </span><br />
  1661. <span class=""><br />
  1662. 5 days ago </span>
  1663. </div>
  1664. </p></div>
  1665. <p> </a>
  1666. </div>
  1667. </p></div>
  1668. </section></div>
  1669. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards">
  1670. <div class="grid-container grid-container-block-lg padding-x-0">
  1671. <div class="grid-row flex-align-center margin-bottom-3">
  1672. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  1673. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  1674. <h2 class="heading-36 line-height-sm">Discover More Topics From NASA</h2>
  1675. </p></div>
  1676. </p></div>
  1677. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  1678. <a href="https://science.nasa.gov/earth/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0" rel="noopener"></p>
  1679. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1680. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1681. <div>
  1682. <h3 class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1683. <span>Earth</span><br />
  1684. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg><br />
  1685. </h3>
  1686. <p class="margin-bottom-0 margin-top-2 color-carbon-20-important">Your home. Our Mission. And the one planet that NASA studies more than any other.</p>
  1687. </p></div>
  1688. </p></div>
  1689. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1920" height="1080" src="https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=1920&#038;h=1080&#038;fit=clip&#038;crop=faces%2Cfocalpoint" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=1920&#038;h=1080&#038;fit=crop&#038;crop=faces%2Cfocalpoint 1920w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=300&#038;h=169&#038;fit=crop&#038;crop=faces%2Cfocalpoint 300w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=768&#038;h=432&#038;fit=crop&#038;crop=faces%2Cfocalpoint 768w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=1024&#038;h=576&#038;fit=crop&#038;crop=faces%2Cfocalpoint 1024w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=1536&#038;h=864&#038;fit=crop&#038;crop=faces%2Cfocalpoint 1536w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=400&#038;h=225&#038;fit=crop&#038;crop=faces%2Cfocalpoint 400w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=600&#038;h=338&#038;fit=crop&#038;crop=faces%2Cfocalpoint 600w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=900&#038;h=506&#038;fit=crop&#038;crop=faces%2Cfocalpoint 900w, https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001016/GSFC_20171208_Archive_e001016~large.jpg?w=1200&#038;h=675&#038;fit=crop&#038;crop=faces%2Cfocalpoint 1200w" sizes="(max-width: 1920px) 100vw, 1920px" /></figure>
  1690. </p></div>
  1691. <p> </a><br />
  1692. <a href="https://science.nasa.gov/earth/explore/air-quality/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0" rel="noopener"></p>
  1693. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1694. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1695. <div>
  1696. <h3 class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1697. <span>Air Quality</span><br />
  1698. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg><br />
  1699. </h3>
  1700. <p class="margin-bottom-0 margin-top-2 color-carbon-20-important">Air pollution is a significant threat to human health and our environment. Instruments on NASA satellites, along with airborne and…</p>
  1701. </p></div>
  1702. </p></div>
  1703. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="765" src="https://science.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg 1892w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=300,149 300w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=768,382 768w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=1024,510 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=1536,765 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=400,199 400w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=600,299 600w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=900,448 900w, https://smd-cms.nasa.gov/wp-content/uploads/2023/11/geos.channels.demo-102323-v04.jpg?resize=1200,597 1200w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure>
  1704. </p></div>
  1705. <p> </a><br />
  1706. <a href="https://science.nasa.gov/climate-change/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0" rel="noopener"></p>
  1707. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1708. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1709. <div>
  1710. <h3 class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1711. <span>Climate Change</span><br />
  1712. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg><br />
  1713. </h3>
  1714. <p class="margin-bottom-0 margin-top-2 color-carbon-20-important">NASA is a global leader in studying Earth’s changing climate.</p>
  1715. </p></div>
  1716. </p></div>
  1717. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="1024" src="https://science.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp 4272w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=300,200 300w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=768,512 768w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=1024,683 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=1536,1024 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=2048,1365 2048w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=400,267 400w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=600,400 600w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=900,600 900w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=1200,800 1200w, https://smd-cms.nasa.gov/wp-content/uploads/2023/06/icescapepondsample-lrg-jpg.webp?resize=2000,1333 2000w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure>
  1718. </p></div>
  1719. <p> </a><br />
  1720. <a href="https://science.nasa.gov/climate-change/adaptation-mitigation/earth-science-in-action/" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0" rel="noopener"></p>
  1721. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1722. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1723. <div>
  1724. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1725. <span>Earth Science in Action</span><br />
  1726. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1727. </p>
  1728. </p></div>
  1729. </p></div>
  1730. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="1536" height="576" src="https://science.nasa.gov/wp-content/uploads/2023/12/banner.webp?w=1536" class="attachment-1536x1536 size-1536x1536" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp 1600w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=300,113 300w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=768,288 768w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=1024,384 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=1536,576 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=400,150 400w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=600,225 600w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=900,338 900w, https://smd-cms.nasa.gov/wp-content/uploads/2023/12/banner.webp?resize=1200,450 1200w" sizes="(max-width: 1536px) 100vw, 1536px" /></figure>
  1731. </p></div>
  1732. <p> </a>
  1733. </div>
  1734. </p></div>
  1735. </p></div>
  1736. ]]></content:encoded>
  1737. </item>
  1738. <item>
  1739. <title>By Their Powers Combined</title>
  1740. <link>https://www.nasa.gov/image-article/by-their-powers-combined/</link>
  1741. <dc:creator><![CDATA[Monika Luabeya]]></dc:creator>
  1742. <pubDate>Wed, 01 May 2024 17:42:38 +0000</pubDate>
  1743. <category><![CDATA[Deep Space Network]]></category>
  1744. <guid isPermaLink="false">https://www.nasa.gov/?post_type=image-article&#038;p=656224</guid>
  1745.  
  1746. <description><![CDATA[This April 20, 2024, image shows a first: all six radio frequency antennas at the Madrid Deep Space Communication Complex, part of NASA&#8217;s Deep Space Network (DSN), carried out a test to receive data from the agency&#8217;s Voyager 1 spacecraft at the same time. Combining the antennas’ receiving power, or arraying, lets the DSN collect [&#8230;]]]></description>
  1747. <content:encoded><![CDATA[<div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg"><img loading="lazy" decoding="async" width="2000" height="1500" src="https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?w=2000" class="attachment-2048x2048 size-2048x2048" alt="In a nighttime landscape of rolling grasses and trees, 6 large off-white satellites face to the right. Each satellite has bright spotlights near it, but the surrounding area remains mostly dark." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg 2000w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=300,225 300w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=768,576 768w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=1024,768 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=1536,1152 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=400,300 400w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=600,450 600w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=900,675 900w, https://www.nasa.gov/wp-content/uploads/2024/05/pia26147orig.jpg?resize=1200,900 1200w" sizes="(max-width: 2000px) 100vw, 2000px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-credits">MDSCC/INTA, Francisco &#8220;Paco&#8221; Moreno</div></figcaption></div></div></div>
  1748.  
  1749.  
  1750. <p>This April 20, 2024, image shows a first: all six radio frequency antennas at the Madrid Deep Space Communication Complex, part of NASA&#8217;s Deep Space Network (DSN), carried out a test to receive data from the agency&#8217;s Voyager 1 spacecraft at the same time.</p>
  1751.  
  1752.  
  1753.  
  1754. <p>Combining the antennas’ receiving power, or arraying, lets the DSN collect the very faint signals from faraway spacecraft. Voyager 1 is over 15 billion miles (24 billion kilometers) away, so its signal on Earth is far fainter than any other spacecraft with which the DSN communicates. It currently takes Voyager 1&#8217;s signal over 22 ½ hours to travel from the spacecraft to Earth. To better receive Voyager 1&#8217;s radio communications, a large antenna – or an array of multiple smaller antennas – can be used. A five-antenna array is currently needed to downlink science data from the spacecraft&#8217;s Plasma Wave System (PWS) instrument. As Voyager gets further way, six antennas will be needed.</p>
  1755.  
  1756.  
  1757.  
  1758. <p><em>Image Credit: MDSCC/INTA, Francisco &#8220;Paco&#8221; Moreno</em></p>
  1759. ]]></content:encoded>
  1760. </item>
  1761. </channel>
  1762. </rss>
  1763.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=https%3A//www.nasa.gov/feed/

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda