Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: https://skepticalscience.com/feed.xml

  1. <?xml version="1.0" encoding="UTF-8" ?>
  2. <rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
  3.  <channel>
  4.   <title>Skeptical Science</title>
  5.   <description>Examining the science of global warming skepticism, clearing up the misconceptions and misleading arguments that populate the climate change debate.</description>
  6.   <link>https://skepticalscience.com/</link>
  7. <atom:link href="https://skepticalscience.com/feed.xml" rel="self" type="application/rss+xml" />
  8. <item>
  9. <title>Why India is key to heading off climate catastrophe</title>
  10. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2024/05/why-india-is-key-to-heading-off-climate-catastrophe/"&gt;re-post from Yale Climate Connections&lt;/a&gt;&lt;/p&gt;
  11. &lt;p&gt;&lt;img class="attachment-newspack-featured-image size-newspack-featured-image wp-post-image" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2024/05/524-india-role-in-climate-change.jpg?fit=1200%2C675&amp;amp;ssl=1" alt="a man washing a solar array" width="550" height="309" data-hero-candidate="1" /&gt;&lt;/p&gt;
  12. &lt;p&gt;&lt;em&gt;A farmworker cleans the solar panels of a solar water pump in the village of Jagadhri, Haryana Country, India. (Photo credit: Prashanth Vishwanathan/ IWMI)&lt;/em&gt;&lt;/p&gt;
  13. &lt;div class="main-content"&gt;
  14. &lt;div class="entry-content" style="text-align: right;"&gt;
  15. &lt;p class="has-drop-cap"&gt;Decisions made in India over the next few years will play a key role in global efforts to head off the most catastrophic effects of climate change.&lt;/p&gt;
  16. &lt;p&gt;The country has one of the world&amp;rsquo;s&amp;nbsp;&lt;a href="https://www.visualcapitalist.com/ranked-the-fastest-growing-economies-in-2024/#google_vignette"&gt;fastest-growing economies&lt;/a&gt;, and its energy consumption is growing rapidly as a result &amp;mdash; but it still relies largely on fossil fuels. India has a general election that will wrap up in June 2024, and both major parties say they support moving the country away from fossil fuels as quickly as possible, a position backed by a sizable majority of citizens.&lt;/p&gt;
  17. &lt;p&gt;Global institutions like the International Monetary Fund and World Bank have pledged to help finance efforts to cut climate pollution. But many experts say more help is needed if India and other developing countries are to meet their energy goals.&lt;/p&gt;
  18. &lt;p&gt;As Indian Environment Secretary Rameshwar Prasad Gupta&amp;nbsp;&lt;a href="https://economictimes.indiatimes.com/industry/renewables/india-wants-rich-countries-to-pay-more-for-green-energy-shift/articleshow/84335402.cms?from=mdr"&gt;said&lt;/a&gt;&amp;nbsp;in an interview with the Economic Times, &amp;ldquo;Without adequate climate finance being definitively available, we can&amp;rsquo;t commit&amp;rdquo; to curbing India&amp;rsquo;s carbon emissions fast enough to meet the country&amp;rsquo;s targets under the global&amp;nbsp;&lt;a href="https://unfccc.int/process-and-meetings/the-paris-agreement"&gt;Paris climate agreement&lt;/a&gt;&amp;nbsp;of 2015.&lt;/p&gt;
  19. &lt;h4 class="wp-block-heading" style="text-align: left;"&gt;&lt;span&gt;How much does India contribute to climate change?&lt;/span&gt;&lt;/h4&gt;
  20. &lt;p&gt;India has only generated about 3% of&amp;nbsp;&lt;a href="https://ourworldindata.org/contributed-most-global-co2"&gt;total historical climate pollution&lt;/a&gt;&amp;nbsp;compared to 25% for the United States. But it is the third-highest carbon-polluting country today. To have a chance of meeting the Paris targets, the world cannot afford for India and other developing countries to follow the same path that made rich countries wealthy: burning &amp;ldquo;cheap&amp;rdquo; fossil fuels, because we now know the tremendous indirect costs of fossil fuel via environmental and health damages.&lt;/p&gt;
  21. &lt;p&gt;&lt;a href="https://www.nytimes.com/2024/04/01/business/india-economy-election.html"&gt;The size of India&amp;rsquo;s economy has almost doubled&lt;/a&gt;&amp;nbsp;since Narendra Modi became prime minister a decade ago. The country surpassed China last year to become the most-populated country in the world with over 1.4 billion people. The&amp;nbsp;&lt;a href="https://worldpoverty.io/"&gt;number of Indians living in poverty&lt;/a&gt;&amp;nbsp;has declined from 317 million in 2016 to 140 million today, although 90% of the population still lives on&amp;nbsp;&lt;a href="https://www.nytimes.com/2024/04/01/business/india-economy-election.html"&gt;less than $10 per day&lt;/a&gt;.&lt;/p&gt;
  22. &lt;p&gt;With improved living conditions comes greater energy use and more pollution. India&amp;rsquo;s coal consumption has nearly tripled since 2005. India accounts for&amp;nbsp;&lt;a href="https://www.iea.org/reports/coal-2023/demand"&gt;14% of global coal demand&lt;/a&gt;, behind only China and is&amp;nbsp;&lt;a href="https://iea.blob.core.windows.net/assets/a72a7ffa-c5f2-4ed8-a2bf-eb035931d95c/Coal_2023.pdf"&gt;expected to account for most of the increase&lt;/a&gt;&amp;nbsp;in global coal consumption in the coming years. India&amp;rsquo;s overall climate pollution is about 75% higher than in 2005, largely due to coal-fired power.&lt;/p&gt;
  23. &lt;p&gt;Still, although per-person carbon emissions in India have doubled since 2005, the average Indian&amp;rsquo;s carbon footprint remains&amp;nbsp;&lt;a href="https://ourworldindata.org/grapher/per-capita-ghg-emissions?tab=chart&amp;amp;country=CHN~BRA~IND~OWID_WRL~USA"&gt;less than half the world average&lt;/a&gt;&amp;nbsp;and seven times lower than the average American&amp;rsquo;s.&lt;/p&gt;
  24. &lt;p&gt;&lt;img src="https://skepticalscience.com/pics/IndiaPowerGen.png" alt="" width="550" height="399" /&gt;&lt;em&gt;Sources of electricity generation in India. Created by Dana Nuccitelli with&amp;nbsp;&lt;a href="http://www.indiaenvironmentportal.org.in/files/file/Growth%20of%20Electricity%20Sector%20in%20India.pdf"&gt;data from the government of India&lt;/a&gt;.&lt;/em&gt;&lt;/p&gt;
  25. &lt;/div&gt;
  26. &lt;div class="entry-content"&gt;&lt;!--more--&gt;
  27. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Troubling details of India&amp;rsquo;s climate vulnerability&lt;/span&gt;&lt;/h4&gt;
  28. &lt;p&gt;Like other industrializing countries, India is among&amp;nbsp;&lt;a href="https://www.ipcc.ch/report/ar6/wg2/figures/chapter-8/figure-8-006"&gt;the most vulnerable to climate change impacts&lt;/a&gt;. A 2018 paper in Nature Climate Change estimated that&lt;span&gt;&amp;nbsp;&lt;a href="https://www.theguardian.com/environment/climate-consensus-97-per-cent/2018/oct/01/new-study-finds-incredibly-high-carbon-pollution-costs-especially-for-the-us-and-india"&gt;&lt;/a&gt;&lt;/span&gt;&lt;a href="https://www.theguardian.com/environment/climate-consensus-97-per-cent/2018/oct/01/new-study-finds-incredibly-high-carbon-pollution-costs-especially-for-the-us-and-india"&gt;climate change will impose the highest social costs on India&lt;/a&gt;&lt;span&gt;&amp;nbsp;&lt;/span&gt;of any country, primarily due to its already-hot climate combined with its large and rapidly developing economy, whose growth will be curbed by climate damages such as extreme heat waves, droughts, and floods.&lt;/p&gt;
  29. &lt;p&gt;Extreme heat could prove especially dangerous. A 2023 study in Nature Sustainability found that on the current track of about 2.7 degrees Celsius (4.9 degrees Fahrenheit) of global warming by 2100, about 600 million people&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2023/06/global-warming-is-disrupting-humanitys-goldilocks-zone-on-earth/"&gt;in India&lt;/a&gt;&amp;nbsp;would be exposed to unprecedentedly dangerous heat. An analysis by the World Weather Attribution group also found that a dangerous 2022 record heat wave in India and Pakistan was&amp;nbsp;&lt;a href="https://www.worldweatherattribution.org/climate-change-made-devastating-early-heat-in-india-and-pakistan-30-times-more-likely/"&gt;made 30 times more likely by global warming&lt;/a&gt;.&lt;/p&gt;
  30. &lt;p&gt;And a&amp;nbsp;&lt;a href="https://www.science.org/doi/10.1126/sciadv.adi1401"&gt;2023 study in Science Advances&lt;/a&gt;&amp;nbsp;found that warming temperatures are drying out the soil. Indian farmers have pumped more groundwater to irrigate their crops, exacerbating droughts and aquifer depletion that &amp;ldquo;will likely further threaten India&amp;rsquo;s food and water security over the coming decades.&amp;rdquo; It&amp;rsquo;s an impact with global implications since India is the world&amp;rsquo;s second-largest producer of common cereal grains like rice and wheat.&lt;/p&gt;
  31. &lt;p&gt;India&amp;rsquo;s citizens also are aware that their country is highly vulnerable to these damages. International surveys conducted in&amp;nbsp;&lt;a href="https://www.nber.org/papers/w30265"&gt;2022&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://climatecommunication.yale.edu/publications/international-public-opinion-on-climate-change-2023/"&gt;2023&lt;/a&gt;* showed that 85% of Indians expressed worries about human-caused climate change, compared to just 63% of Americans. And 87% of Indian respondents said climate change is an important issue their country should take measures to fight, compared to just 71% of Americans.&lt;/p&gt;
  32. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;What has India promised to do about climate change?&lt;/span&gt;&lt;/h4&gt;
  33. &lt;p&gt;In&amp;nbsp;&lt;a href="https://unfccc.int/sites/default/files/NDC/2022-08/India%20Updated%20First%20Nationally%20Determined%20Contrib.pdf"&gt;its 2022 updated international climate commitment&lt;/a&gt;, India made two key pledges: to reduce the emissions intensity of its economy by 45% below 2005 levels by 2030, and to &amp;ldquo;achieve about 50% cumulative electric power installed capacity from non-fossil fuel-based energy resources by 2030, with the help of transfer of technology and low-cost international finance including from Green Climate Fund.&amp;rdquo;&lt;/p&gt;
  34. &lt;p&gt;The first commitment reflects the challenge of reducing climate pollution outright as the Indian economy and energy demand grow rapidly. Instead, the country will reduce a specific quantity: tons of carbon pollution per dollar of economic activity. That&amp;rsquo;s not a well-defined metric and is complicated by factors like inflation rates and national purchasing power adjustments. But the&amp;nbsp;&lt;a href="https://www.iea.org/data-and-statistics/charts/co2-emissions-intensity-of-gdp-1990-2021"&gt;International Energy Agency&lt;/a&gt;,&amp;nbsp;&lt;a href="https://data.worldbank.org/indicator/EN.ATM.CO2E.PP.GD?locations=IN"&gt;World Bank&lt;/a&gt;, and&amp;nbsp;&lt;a href="https://unfccc.int/documents/636235"&gt;Indian government&lt;/a&gt;&amp;nbsp;estimate that so far it has declined by between 20% and 33% since 2005, and the country is on track to surpass its pledge of a 45% reduction by 2030.&lt;/p&gt;
  35. &lt;p&gt;The key caveat in India&amp;rsquo;s second commitment is that it aims for half its power capacity to come from clean resources by 2030. India is a sunny country with great solar power potential, and it has been solar farms at a rapid clip. As a result, clean sources account for 41% of India&amp;rsquo;s power-generating capacity today, up from about 30% in 2005.&lt;/p&gt;
  36. &lt;p&gt;But power capacity refers to the maximum amount of electricity that can be produced at any one time. Solar panels can only generate that maximum power when it&amp;rsquo;s sunny. As a result, they generate significantly less electricity relative to their capacity than a less variable source like a hydroelectric dam or coal power plant. That&amp;rsquo;s why coal still accounts for over 70% of Indian electricity generation, compared to one-quarter from clean sources.&lt;/p&gt;
  37. &lt;p&gt;India is on track to meet its pledge to reach 50% clean power capacity by 2030, but for the foreseeable future, most of its total electricity will come from burning coal. A more rapid transition away from coal would help India meet its climate goals and also vastly improve public health. A&amp;nbsp;&lt;a href="https://www.pnas.org/doi/full/10.1073/pnas.2017936118"&gt;2021 study&lt;/a&gt;&amp;nbsp;estimated that the air pollution from India&amp;rsquo;s installed and planned coal power plants would be responsible for over 100,000 premature deaths per year if they&amp;rsquo;re all built as anticipated.&lt;/p&gt;
  38. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;India has a long-term low-carbon plan&lt;/span&gt;&lt;/h4&gt;
  39. &lt;p&gt;In late 2022, the Indian government published&amp;nbsp;&lt;a href="https://unfccc.int/sites/default/files/resource/India_LTLEDS.pdf"&gt;its long-term low-carbon development strategy&lt;/a&gt;. The document notes, &amp;ldquo;India is committed to combating climate change, by making development choices that ensure growth and development of the economy along low carbon pathways towards net-zero by 2070.&amp;rdquo; It lists strategies like expanding renewable energy, strengthening the power grid, improving energy and resource efficiency, and restoring forests. It notes, &amp;ldquo;the need for climate finance for India&amp;rsquo;s low-carbon transition is considerable.&amp;rdquo; To that end, the World Bank and International Monetary Fund have identified that&amp;nbsp;&lt;a href="https://time.com/6271719/world-bank-imf-climate-change-finance/"&gt;they need to do more&lt;/a&gt;&amp;nbsp;to finance clean energy infrastructure in developing nations like India.&lt;/p&gt;
  40. &lt;p&gt;&amp;ldquo;The Council on Energy, Environment and Water&amp;rsquo;s Centre for Energy Finance says&amp;nbsp;&lt;a href="https://www.ceew.in/cef/solutions-factory/publications/CEEW-CEF-Investment-Sizing-India%E2%80%99s-2070-Net-Zero-Target.pdf"&gt;India needs $10 trillion&lt;/a&gt;&amp;nbsp;to reach net-zero by 2070,&amp;rdquo; Sustainable Futures Collaborative climate policy coordinator Aman Srivastava wrote via email, adding that international climate financing &amp;ldquo;should ideally be much higher&amp;rdquo; than it is today.&lt;/p&gt;
  41. &lt;p&gt;India is in the midst of a general election that will end at the beginning of June. Prime Minister Modi and his Bharatiya Janata Party are&amp;nbsp;&lt;a href="https://www.nytimes.com/2024/03/16/world/asia/india-2024-election.html#link-7bf3e11e"&gt;expected to retain power&lt;/a&gt;. Their party&amp;nbsp;&lt;a href="https://www.carbonbrief.org/india-election-2024-what-the-manifestos-say-on-energy-and-climate-change/"&gt;promises&lt;/a&gt;&amp;nbsp;to &amp;ldquo;harness [India&amp;rsquo;s] renewable energy potential, targeting 500GW of renewable energy through the establishment of mega solar parks, wind parks, and the Green Energy Corridor project, among others.&amp;rdquo;&lt;/p&gt;
  42. &lt;p&gt;The main opposition, the Indian National Congress, is similarly supportive of clean energy policies, stating, &amp;ldquo;The future of our energy is green energy. We will mobilize the massive capital required for our green energy transition.&amp;rdquo;&lt;/p&gt;
  43. &lt;/div&gt;
  44. &lt;/div&gt;</description>
  45. <link>https://skepticalscience.com/india-key-climate.html</link>
  46. <guid>https://skepticalscience.com/india-key-climate.html</guid>
  47. <pubDate>Mon, 6 May 2024 09:38:38 EST</pubDate>
  48. </item>  <item>
  49. <title>2024 SkS Weekly Climate Change &amp; Global Warming News Roundup #18</title>
  50. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 26 news and opinion articles we found interesting and shared on social media during the past week: Sun, April 28, 2024 thru Sat, May 4, 2024.&lt;/div&gt;
  51. &lt;hr /&gt;
  52. &lt;h3&gt;Story of the week&lt;/h3&gt;
  53. &lt;blockquote&gt;
  54. &lt;p&gt;&lt;em&gt;"It&amp;rsquo;s straight out of Big Tobacco&amp;rsquo;s playbook. In fact, research by John Cook&amp;nbsp;and his colleagues has shown that&amp;nbsp;&lt;a rel="" href="https://www.tandfonline.com/doi/abs/10.1080/14693062.2023.2245792"&gt;character assassination has been one of the most common ways&lt;/a&gt;&amp;nbsp;in which fossil fuel interests have attempted to deny accountability for the climate crisis."&lt;/em&gt;&lt;/p&gt;
  55. &lt;p&gt;&lt;span&gt;&amp;mdash; Geoffrey Supan&lt;/span&gt;&lt;/p&gt;
  56. &lt;/blockquote&gt;
  57. &lt;p&gt;&lt;span&gt;&lt;img class="figureright" src="https://skepticalscience.com/pics/2024-05-04-215804_1366x768_scrot.png" alt="" width="350" height="149" /&gt;Why go low? Because when one can't fly, one creeps and crawls. Widely remarked:&amp;nbsp;to fall back on ad hominem remarks is to declare intellectual surrender, at best a Hail Mary attempt to change topics&amp;mdash; and easily spotted even by children arguing on a playground. "Going ad hom" is a common failure mode when talk turns to human-caused climate change. US Senator&amp;nbsp;(from hydrocarbon-rich Louisiana) John Kennedy's&amp;nbsp; waving the white flag and ceding a vast territory of evidence and facts to Geoffrey Supan by diving into the gutter is the subject of our story of the week. Kennedy humiliated himself in the most public of places: in a televised US Senate Budget Committee hearing.&lt;br /&gt; &lt;/span&gt;&lt;/p&gt;
  58. &lt;p&gt;&lt;span&gt;In a nutshell, Senator Kennedy attempted to discredit Prof. Supan and divert attention from the content of Supan's testimony by highlighting a single social media item Supan had reposted, an innocuous description of tactical choices made by a youth-led climate action organization.This was thin fabric, comically so, and made worse by Kennedy's needing to read various expletives from &lt;em&gt;other&lt;/em&gt; posts&amp;mdash; unrelated to Supan's repost&amp;mdash; into the congressional record.&amp;nbsp;&lt;/span&gt;&lt;/p&gt;
  59. &lt;p&gt;&lt;span&gt;Senator Kennedy's weird diversion encourages us to speculate&amp;mdash; and legitimates scrutiny of Kennedy himself.&amp;nbsp;&lt;/span&gt;&lt;span&gt;With Kennedy's having created his own first mover disadvantage by changing the topic of the hearing from science to personalities, we are free in turn to wonder over his puzzling public messaging.&amp;nbsp;Are we are seeing &lt;em&gt;genuine&lt;/em&gt; inability to track a topic, or instead something more resembling a retail transaction?&amp;nbsp;&lt;/span&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/gop-senator-accidentally-creates" target="_blank"&gt;Emily Atkin's coverage in &lt;em&gt;Heated &lt;/em&gt;&lt;/a&gt;&lt;/strong&gt;tells the whole story and offers hints of where a parsimonious interpretation may lie.&lt;/p&gt;
  60. &lt;p&gt;Given Prof. Supan's testimony about the connection between fossil fuel industry contributions and politician support for industry agendas, a reasonable person reading this story must form their own conclusions over the root cause of Kennedy's rhetorical flop. One would think Senator Kennedy would understand how he was walking into a self-made trap of creating suspicions and doubts, issuing an unfavorable invitation to comparisons. After all, Kennedy was among the top four congressional recipients of fossil fuel industry campaign contributions for the&amp;nbsp;&lt;a href="https://www.opensecrets.org/industries/summary?cycle=2022&amp;amp;ind=E01&amp;amp;mem=Y&amp;amp;recipdetail=S" target="_blank"&gt;2022 election cycle.&lt;/a&gt;&amp;nbsp;With money generally not being handed out in large quantities for zero consideration, one might see this as explanation for an otherwise curious choice to look foolish in front of the world.&amp;nbsp;&lt;/p&gt;
  61. &lt;p&gt;As we can't read Senator Kennedy's mind, we are stuck with speculation. Is he only feigning incompetence? We can't truly know. It is of course for Senator Kennedy to choose how he leads our imaginations and is perceived&amp;mdash; we can only respect his wishes, for bad or worse. If Kennedy wants to be remembered by history as&amp;nbsp;&lt;em&gt;"fond of loudly losing, but why?" &lt;/em&gt;who are we to question that?&lt;/p&gt;
  62. &lt;h3&gt;Stories we promoted this week, by publication date:&lt;/h3&gt;
  63. &lt;p&gt;&lt;strong&gt;Before April 28&lt;/strong&gt;&lt;/p&gt;
  64. &lt;ul&gt;
  65. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://cleantechnica.com/2024/04/27/in-1971-the-nixon-administration-punted-on-a-revolutionary-climate-study/" target="_blank"&gt;In 1971, The Nixon Administration Punted On A Revolutionary Climate Study&lt;/a&gt;&lt;/strong&gt;, CleanTechnica, Steve Hanley. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  66. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.csmonitor.com/Environment/2024/0422/ecological-sustainability-future-earth-day" target="_blank"&gt;How global innovators design a sustainable future&lt;/a&gt;&lt;/strong&gt;, Environment, The Christian Science Monitor, Stephanie Hanes &amp;amp; Sara Miller Llana. &lt;em&gt;Lede: "Projects are sprouting up around the globe to build environmentally focused communities. These efforts aim to be practical and inviting, not idealistic."&lt;/em&gt;&lt;/li&gt;
  67. &lt;/ul&gt;
  68. &lt;p&gt;&lt;strong&gt;April 28&lt;/strong&gt;&lt;/p&gt;
  69. &lt;ul&gt;
  70. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_17.html" target="_blank"&gt;2024 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #17&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, B&amp;auml;rbel Winkler, Doug Bostrom &amp;amp; John Hartz. &lt;em&gt;List of 31 shared articles and opinion pieces&lt;/em&gt;&lt;/li&gt;
  71. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/28042024/todays-climate-video-games-heat-kids/" target="_blank"&gt;Climate Change Has Infiltrated Game Night-and That`s a Good Thing, Experts Say&lt;/a&gt;&lt;/strong&gt;, Inside Climate News, Kiley Price. &lt;em&gt;A growing number of developers and designers are introducing climate change elements into games to teach users about climate solutions.&lt;/em&gt;&lt;/li&gt;
  72. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/29/taxing-big-fossil-fuel-firms-raise-billions-climate-finance" target="_blank"&gt;Taxing big fossil fuel firms `could raise $900bn in climate finance by 2030`&lt;/a&gt;&lt;/strong&gt;, The Guardian, Matthew Taylor. &lt;em&gt;Levy on oil and gas majors in richest countries would help worst-affected nations tackle climate crisis, says report&lt;/em&gt;&lt;/li&gt;
  73. &lt;/ul&gt;
  74. &lt;!--more--&gt;
  75. &lt;p&gt;&lt;strong&gt;April 29&lt;/strong&gt;&lt;/p&gt;
  76. &lt;ul&gt;
  77. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/science/coral-reefs-bleaching-climate-tipping-point/" target="_blank"&gt;Have the world`s coral reefs already crossed a tipping point?&lt;/a&gt;&lt;/strong&gt;, Grist, Kate Yoder. &lt;em&gt;A quarter of marine life depends on coral reefs. So do 1 billion people.&lt;/em&gt;&lt;/li&gt;
  78. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.cnn.com/2024/04/29/weather/la-nina-summer-forecast-us-el-nino-climate/index.html" target="_blank"&gt;An El Ni&amp;ntilde;o-less summer is coming. Here&amp;rsquo;s what that could mean for the US&lt;/a&gt;&lt;/strong&gt;, Weather, CNN, Mary Gilbert. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  79. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.washingtonpost.com/climate-environment/interactive/2024/southern-us-sea-level-rise-risk-cities/" target="_blank"&gt;WHERE SEAS ARE RISING AT ALARMING SPEED&lt;/a&gt;&lt;/strong&gt;, Climate, Washington Post, Chris Mooney, Brady Dennis, Kevin Crowe &amp;amp; John Muyskens. &lt;em&gt;"THE DROWNING SOUTH"&lt;/em&gt;&lt;/li&gt;
  80. &lt;/ul&gt;
  81. &lt;p&gt;&lt;strong&gt;April 30&lt;/strong&gt;&lt;/p&gt;
  82. &lt;ul&gt;
  83. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/at-a-glance-decline.html" target="_blank"&gt;At a glance - Clearing up misconceptions regarding 'hide the decline'&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, John Mason. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  84. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.commondreams.org/newswire/new-evidence-of-big-oils-climate-deception-demands-justice-dept-inquiry" target="_blank"&gt;New Evidence of Big Oil`s Climate Deception Demands Justice Dept. Inquiry&lt;/a&gt;&lt;/strong&gt;, Common Dreams, Newswire Editor. &lt;em&gt;House and Senate Committees Issue Joint Findings from a Years-long Investigation into the Fossil Fuel Industry&amp;rsquo;s Long-Running Campaigns to Lie to the American People About Climate Change&lt;/em&gt;&lt;/li&gt;
  85. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://blogs.law.columbia.edu/climatechange/2024/04/30/separation-of-powers-and-klimaseniorinnen/" target="_blank"&gt;Separation of Powers and KlimaSeniorinnen&lt;/a&gt;&lt;/strong&gt;, Climate Law Blog, Charlotte E. Blattner. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  86. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/us-news/2024/apr/30/big-oil-climate-crisis-us-senate-report" target="_blank"&gt;Big oil privately acknowledged efforts to downplay climate crisis, joint committee investigation finds&lt;/a&gt;&lt;/strong&gt;, The Guardian, Dharna Noor. &lt;em&gt;Internal documents revealed by committee show companies lobbied against climate laws they publicly claimed to support&lt;/em&gt;&lt;/li&gt;
  87. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/world/2024/apr/30/how-climate-policies-are-becoming-focus-for-far-right-attacks-in-germany" target="_blank"&gt;How climate policies are becoming focus for far-right attacks in Germany&lt;/a&gt;&lt;/strong&gt;, The Guardian, Ajit Niranjan. &lt;em&gt;Politicians fear perceived costs of green transition are driving poor and rural voters to parties such as AfD&lt;/em&gt;&lt;/li&gt;
  88. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.desmog.com/2024/04/30/inter-american-court-human-rights-corporate-climate-crimes/" target="_blank"&gt;Top Human Rights Court Urged to Tackle Corporate Climate Crimes&lt;/a&gt;&lt;/strong&gt;, DeSmog, Isabella Kaminski. &lt;em&gt; Historic hearing of the Inter-American Court of Human Rights asked judges to clarify the role of business in preventing human rights harms from climate change.&lt;/em&gt;&lt;/li&gt;
  89. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/kD_cEZbaptI" target="_blank"&gt;How to visualise Climate Change (ft. Katharine Hayhoe)&lt;/a&gt;&lt;/strong&gt;, ClimateAdam on Youtube, Adam Levy. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  90. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.reuters.com/business/energy/g7-ministers-agree-coal-plants-shutdown-by-2030-2035-uk-says-2024-04-29/" target="_blank"&gt;G7 to sign exit from coal by 2035, but may offer leeway, sources say&lt;/a&gt;&lt;/strong&gt;, Reuters, Francesca Landini. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  91. &lt;/ul&gt;
  92. &lt;p&gt;&lt;strong&gt;May 1&lt;/strong&gt;&lt;/p&gt;
  93. &lt;ul&gt;
  94. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theclimatebrink.com/p/warmest-april-on-record-but-a-possible" target="_blank"&gt;Warmest April on record - but a possible return to predictability?&lt;/a&gt;&lt;/strong&gt;, The Climate Brink, Zeke Hausfather. &lt;em&gt;While temperatures in 2023 were "gobsmacking", 2024 is shaping up to be a more normal El Nino year&lt;/em&gt;&lt;/li&gt;
  95. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/charge-big-oil-with-conspiracy-former" target="_blank"&gt;Charge Big Oil with conspiracy, former tobacco prosecutor says&lt;/a&gt;&lt;/strong&gt;, HEATED, Arielle Samuelson. &lt;em&gt;Following the release of new internal documents, Sharon Eubanks told the Senate Budget Committee that there is evidence for a DOJ climate case against Big Oil. &lt;/em&gt;&lt;/li&gt;
  96. &lt;/ul&gt;
  97. &lt;p&gt;&lt;strong&gt;May 2&lt;/strong&gt;&lt;/p&gt;
  98. &lt;ul&gt;
  99. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/vacancy-three-week-summer-journalism-internship-at-carbon-brief/" target="_blank"&gt;Vacancy: Three-week summer journalism internship at Carbon Brief&lt;/a&gt;&lt;/strong&gt;, Carbon Brief, Carbon Brief Staff. &lt;em&gt;Carbon Brief is offering an exciting opportunity for students, or recent graduates, to work with the team for three weeks this summer. This journalism internship will be paid the London Living Wage, with an additional travel bursary.&lt;/em&gt;&lt;/li&gt;
  100. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/02052024/exxon-pivot-from-denial-to-deception/" target="_blank"&gt;Exxon Criticized ICN Stories Publicly, But Privately, Didn`t Dispute The Findings&lt;/a&gt;&lt;/strong&gt;, Inside Climate News, Marianne Lavelle, Nicholas Kusnetz. &lt;em&gt;Congressional Democrats say newly released documents trace oil industry's pivot from denial to deception.&lt;/em&gt;&lt;/li&gt;
  101. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/gop-senator-accidentally-creates" target="_blank"&gt;GOP Senator accidentally creates amazing ad for climate activists&lt;/a&gt;&lt;/strong&gt;, HEATED, Emily Atkin. &lt;em&gt;Senator John Kennedy&amp;rsquo;s profanity-laden rant at Wednesday&amp;rsquo;s Senate hearing is now being used against him.&lt;/em&gt;&lt;/li&gt;
  102. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2024_18.html" target="_blank"&gt;Skeptical Science New Research for Week #18 2024&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack. &lt;em&gt;Skeptical Science's weekly distillation of research on anthropogenic climate change. &lt;/em&gt;&lt;/li&gt;
  103. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://crooksandliars.com/2024/05/raskin-warns-industry-deceit-delayed" target="_blank"&gt;Raskin Warns 'Industry Deceit' Delayed Climate Progress&lt;/a&gt;&lt;/strong&gt;, Latest articles from Crooks and Liars, Susie Madrak. &lt;em&gt;Congressional representative Jamie Raskin offers a pithy description of fossil fuel industry behavior.&lt;/em&gt;&lt;/li&gt;
  104. &lt;/ul&gt;
  105. &lt;p&gt;&lt;strong&gt;May 3&lt;/strong&gt;&lt;/p&gt;
  106. &lt;ul&gt;
  107. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.seattletimes.com/business/the-uk-government-acted-unlawfully-in-approving-a-climate-plan-a-high-court-judge-has-ruled/?utm_source=RSS" target="_blank"&gt;The UK government acted unlawfully in approving a climate plan, a High Court judge has ruled&lt;/a&gt;&lt;/strong&gt;, The Seattle Times The Seattle Times, SYLVIA HUI. &lt;em&gt;Courts of law become climate skeptics&amp;mdash; the right way. &lt;/em&gt;&lt;/li&gt;
  108. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.desmog.com/2024/05/03/bp-was-warned-gas-driven-climate-change-could-cause-unprecedented-famine-us-congressional-investigation/" target="_blank"&gt;BP Was Warned Gas-Driven Climate Change Could Cause `Unprecedented Famine`&lt;/a&gt;&lt;/strong&gt;, DeSmog, Geoff Dembicki. &lt;em&gt; Yet the oil and gas major led a campaign to present gas as a climate solution, new &amp;lsquo;confidential&amp;rsquo; documents released by a U.S. Congressional investigation reveal.&lt;/em&gt;&lt;/li&gt;
  109. &lt;/ul&gt;
  110. &lt;p&gt;&lt;strong&gt;May 4&lt;/strong&gt;&lt;/p&gt;
  111. &lt;ul&gt;
  112. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/04052024/united-nations-loss-and-damage-fund-meeting/" target="_blank"&gt;Loss and Damage Meeting Shows Signs of Giving Developing Countries a Bigger Voice and Easier Access to Aid&lt;/a&gt;&lt;/strong&gt;, Inside Climate News, Bob Berwyn. &lt;em&gt;The first meeting of the board of the new climate finance fund sought to finalize operations and its partnership with the World Bank. But who will pay?&lt;/em&gt;&lt;/li&gt;
  113. &lt;/ul&gt;
  114. &lt;p class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/p&gt;</description>
  115. <link>https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_18.html</link>
  116. <guid>https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_18.html</guid>
  117. <pubDate>Sun, 5 May 2024 10:03:25 EST</pubDate>
  118. </item>  <item>
  119. <title>Skeptical Science New Research for Week #18 2024</title>
  120. <description>&lt;h3&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/h3&gt;
  121. &lt;p&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01392-w" target="_blank"&gt;Generative AI tools can enhance&amp;nbsp;&lt;span id="skstip156" class="skstip beginner disabled"&gt;climate&lt;/span&gt;&amp;nbsp;literacy but must be checked for biases and inaccuracies&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Atkins et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Communications Earth &amp;amp; Environment:&lt;/em&gt;&lt;/p&gt;
  122. &lt;blockquote&gt;
  123. &lt;p&gt;&lt;em&gt;In the face of climate change, climate literacy is becoming increasingly important. With wide access to generative AI tools, such as OpenAI&amp;rsquo;s ChatGPT, we explore the potential of AI platforms for ordinary citizens asking climate literacy questions. Here, we focus on a global scale and collect responses from ChatGPT (GPT-3.5 and GPT-4) on climate change-related hazard prompts over multiple iterations by utilizing the OpenAI&amp;rsquo;s API and comparing the results with credible hazard risk indices. We find a general sense of agreement in comparisons and consistency in ChatGPT over the iterations. GPT-4 displayed fewer errors than GPT-3.5. Generative AI tools may be used in climate literacy, a timely topic of importance, but must be scrutinized for potential biases and inaccuracies moving forward and considered in a social context. Future work should identify and disseminate best practices for optimal use across various generative AI tools&lt;/em&gt;.&lt;/p&gt;
  124. &lt;/blockquote&gt;
  125. &lt;p&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1093/pnasnexus/pgae143" target="_blank"&gt;Astronomy&amp;rsquo;s&amp;nbsp;&lt;span id="skstip113" class="skstip beginner disabled"&gt;climate&lt;/span&gt;&amp;nbsp;emissions: Global travel to scientific meetings in 2019&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Gokus et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;&lt;span id="skstip114" class="skstip intermediate disabled"&gt;PNAS&lt;/span&gt;&amp;nbsp;Nexus:&lt;/em&gt;&lt;/p&gt;
  126. &lt;blockquote&gt;
  127. &lt;p&gt;&lt;em&gt;Travel to academic conferences&amp;mdash;where international flights are the norm&amp;mdash;is responsible for a sizeable fraction of the greenhouse gas (GHG) emissions associated with academic work. In order to provide a benchmark for comparison with other fields, as well as for future reduction strategies and assessments, we estimate the CO2-equivalent emissions for conference travel in the field of astronomy for the prepandemic year 2019. The GHG emission of the international astronomical community&amp;rsquo;s 362 conferences and schools in 2019 amounted to 42,500 tCO2e, assuming a radiative-forcing index factor of 1.95 for air travel. This equates to an average of 1.0 &amp;plusmn; 0.6 tCO2e per participant per meeting. The total travel distance adds up to roughly 1.5 Astronomical Units, that is, 1.5 times the distance between the Earth and the Sun. We present scenarios for the reduction of this value, for instance with virtual conferencing or hub models, while still prioritizing the benefits conferences bring to the scientific community.&lt;br /&gt;&lt;/em&gt;&lt;/p&gt;
  128. &lt;/blockquote&gt;
  129. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01371-1" target="_blank"&gt;The&amp;nbsp;&lt;span id="skstip239" class="skstip beginner disabled"&gt;IPCC&lt;/span&gt;&amp;rsquo;s reductive Common Era temperature history&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;&lt;strong&gt;,&lt;/strong&gt; Esper et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Communications Earth &amp;amp; Environment:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  130. &lt;blockquote&gt;
  131. &lt;p&gt;&lt;em&gt;Common Era temperature variability has been a prominent component in Intergovernmental Panel on Climate Change reports over the last several decades and was twice featured in their Summary for Policymakers. A single reconstruction of mean Northern Hemisphere temperature variability was first highlighted in the 2001 Summary for Policymakers, despite other estimates that existed at the time. Subsequent reports assessed many large-scale temperature reconstructions, but the entirety of Common Era temperature history in the most recent Sixth Assessment Report of the Intergovernmental Panel on Climate Change was restricted to a single estimate of mean annual global temperatures. We argue that this focus on a single reconstruction is an insufficient summary of our understanding of temperature variability over the Common Era. We provide a complementary perspective by offering an alternative assessment of the state of our understanding in high-resolution paleoclimatology for the Common Era and call for future reports to present a more accurate and comprehensive assessment of our knowledge about this important period of human and climate history.&lt;/em&gt;&lt;/p&gt;
  132. &lt;/blockquote&gt;
  133. &lt;p&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1016/j.esd.2024.101451" target="_blank"&gt;Phasing out coal power in two major Southeast Asian thermal coal economies: Indonesia and Vietnam&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Do &amp;amp; Burke,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Energy for Sustainable Development:&lt;/em&gt;&lt;/p&gt;
  134. &lt;div id="abstracts" class="Abstracts u-font-serif text-s"&gt;
  135. &lt;div id="ab0005" class="abstract author" lang="en"&gt;
  136. &lt;div id="as0005"&gt;
  137. &lt;blockquote&gt;
  138. &lt;p id="sp0050"&gt;&lt;em&gt;The phase-out of unabated coal power is crucial for meeting climate agreements in coal-dependent economies such as Indonesia and Vietnam. Despite both countries committing to the 2021 Global Coal to Clean Power Transition Statement, translating phase-out pledges into action poses considerable challenges. Drawing insights from interviews with government, civil society, and industry experts, this study identifies the key barriers hindering coal phase-out in each country. Concerns about potentially escalating electricity prices and power shortages loom large, with the former being more prominent in Indonesia and the latter more prominent in Vietnam. The obstacles appear particularly significant in Indonesia for reasons including its higher coal dependence. We conclude that prioritizing renewable energy growth, as well as halting the construction of new coal plants, would be the most practical and viable way forward for both countries rather than an oversized early focus on coal plant closures. The analysis is of high relevance to informing plans under the two countries' Just Energy Transition Partnerships.&lt;/em&gt;&lt;/p&gt;
  139. &lt;/blockquote&gt;
  140. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1007/s13280-024-01986-w" target="_blank"&gt;The decision maker&amp;rsquo;s lament: If I only had some science!&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Bisbal,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Ambio (perspective):&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  141. &lt;blockquote&gt;
  142. &lt;p&gt;&lt;em&gt;Environmental decision makers lament instances in which the lack of actionable science limits confident decision-making. Their reaction when the needed scientific information is of poor quality, uninformative, unintelligible, or altogether absent is often to criticize scientists, their work, or science in general. The considerations offered here encourage decision makers to explore alternative approaches to alleviate their disappointment. Ironically, many researchers lament the lack of support for the science they wish to deliver and accuse decision makers of failing to realize the value of the scientific studies they propose. Both communities would benefit by remembering that producing actionable science for a pending decision requires knowing the context for that decision beforehand. They may also look inward. Only then will they find answers to the question: What can I do within my own capacity to ensure that the necessary actionable science becomes available and facilitate its use to inform decisions?&lt;/em&gt;&lt;/p&gt;
  143. &lt;/blockquote&gt;
  144. &lt;/div&gt;
  145. &lt;/div&gt;
  146. &lt;/div&gt;
  147. &lt;p&gt;&lt;strong&gt;&lt;strong&gt;From this week's government/NGO&amp;nbsp;&lt;a href="#gov-ngo"&gt;section&lt;/a&gt;&lt;/strong&gt;&lt;/strong&gt;&lt;/p&gt;
  148. &lt;p&gt;&lt;strong&gt;&lt;a href="https://spiral.imperial.ac.uk/bitstream/10044/1/110910/8/scientific%20report%20Dubai%20floods_.pdf" target="_blank"&gt;Heavy precipitation hitting vulnerable communities in the UAE and Oman becoming an increasing threat as the climate warms&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Zachariah et al.,&amp;nbsp;&lt;strong&gt;World Weather Attribution:&lt;/strong&gt;&lt;/p&gt;
  149. &lt;blockquote&gt;&lt;em&gt;From April 14 to 15 2024, the United Arab Emirates (UAE) and the northern parts of Oman were hit by exceptionally heavy rainfall causing massive disruption in infrastructure and public life in the area and leading to at least 20 fatalities in Oman and four in the United Arab Emirates UAE. The disagreement between model results and observations prevents the authors from concluding with certainty that human-induced climate change is the main driver making this event more likely. However, while multiple reasons could explain the absence of a trend in the model results, the authors have no alternative explanation for a trend in observations other than the expectation of heavy rainfall increasing in a warmer climate.&lt;/em&gt;&lt;/blockquote&gt;
  150. &lt;p&gt;&lt;strong&gt;&lt;a href="https://web.colby.edu/bucklab/files/2024/04/Schneider-Mayerson-et-al-_Climate-Reality-On-screen_.pdf" target="_blank"&gt;Climate Reality on-Screen: The Climate Crisis in Popular Films, 2013-22&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Schneider-Mayerson, et al.,&amp;nbsp;&lt;strong&gt;Buck Lab for Climate and Environment, Colby College:&lt;/strong&gt;&lt;/p&gt;
  151. &lt;blockquote&gt;&lt;em&gt;The authors provide audience members, screenwriters, filmmakers, studios, and researchers with a straightforward way to evaluate whether climate change is represented&amp;mdash;or omitted&amp;mdash;in any narrative through a two-part, binary evaluation tool that is simple, illuminating, and powerful.&lt;/em&gt;&lt;/blockquote&gt;
  152. &lt;h3 style="text-align: left;"&gt;140 articles in 64 journals by 910 contributing authors&lt;/h3&gt;
  153. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  154. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41561-024-01423-3" target="_blank"&gt;Asymmetric impacts of forest gain and loss on tropical land surface temperature&lt;/a&gt;, Zhang et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-024-01423-3&lt;/p&gt;
  155. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/esd-15-387-2024" target="_blank"&gt;Carbon budget concept and its deviation through the pulse response lens&lt;/a&gt;, Avakumovi?, &lt;em&gt;Earth System Dynamics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/esd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/esd-15-387-2024&lt;/p&gt;
  156. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  157. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.wace.2024.100675" target="_blank"&gt;Anthropogenic influence on seasonal extreme temperatures in eastern China at century scale&lt;/a&gt;, Hu et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2024.100675" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2024.100675&lt;/p&gt;
  158. &lt;!--more--&gt;
  159. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.wace.2024.100674" target="_blank"&gt;Anthropogenic Influence on the Extremely Low September Sea Ice and Hot Summer of 2020 over the Arctic and Its Future Risk of Occurrence&lt;/a&gt;, Kaixi et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2024.100674" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2024.100674&lt;/p&gt;
  160. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1377286" target="_blank"&gt;Climate change impacts on precipitation and water resources in Northwestern China&lt;/a&gt;, Zheng et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1377286/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1377286/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1377286&lt;/p&gt;
  161. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004333" target="_blank"&gt;Increasing Risk of a &amp;ldquo;Hot Eastern-Pluvial Western&amp;rdquo; Asia&lt;/a&gt;, Ding et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2023ef004333" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2023ef004333&lt;/p&gt;
  162. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00704-024-04833-w" target="_blank"&gt;Spatiotemporal variations of meteorological drought and its dominant factors in different climate regions for the first two decades of the twenty-first century&lt;/a&gt;, Xing et al., &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; 10.1007/s00704-024-04833-w&lt;/p&gt;
  163. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  164. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1371/journal.pclm.0000379" target="_blank"&gt;Advances in monitoring glaciological processes in Kalallit Nunaat (Greenland) over the past decades&lt;/a&gt;, Fahrner et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000379&amp;amp;type=printable" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000379&amp;amp;type=printable" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1371/journal.pclm.0000379&lt;/p&gt;
  165. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004119" target="_blank"&gt;Conflicting Changes of Vegetation Greenness Interannual Variability on Half of the Global Vegetated Surface&lt;/a&gt;, Tian &amp;amp; Luo, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2023ef004119" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2023ef004119&lt;/p&gt;
  166. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-02001-6" target="_blank"&gt;Russian collaboration loss risks permafrost carbon emissions network&lt;/a&gt;, Schuur et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-024-02001-6&lt;/p&gt;
  167. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41561-024-01424-2" target="_blank"&gt;Tropical forest loss alters land surface temperature more than tropical forest gain&lt;/a&gt;, , &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-024-01424-2&lt;/p&gt;
  168. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  169. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07247-6" target="_blank"&gt;Double intensification centers of summer marine heatwaves in the South China Sea associated with global warming&lt;/a&gt;, Dong et al., &lt;em&gt;Climate Dynamics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.21203/rs.3.rs" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s00382-024-07247-6&lt;/p&gt;
  170. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl108728" target="_blank"&gt;Emergent Constraints on Future Projections of Tibetan Plateau Warming in Winter&lt;/a&gt;, Hu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108728" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108728" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2024gl108728&lt;/p&gt;
  171. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.atmosres.2024.107448" target="_blank"&gt;Future projections of temperature extremes over East Asia based on a deep learning downscaled CMIP6 high-resolution (0.1&amp;deg;) dataset&lt;/a&gt;, Pan et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2024.107448&lt;/p&gt;
  172. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/bg-21-2143-2024" target="_blank"&gt;Multi-model comparison of trends and controls of near-bed oxygen concentration on the northwest European continental shelf under climate change&lt;/a&gt;, Galli et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-21-2143-2024&lt;/p&gt;
  173. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004188" target="_blank"&gt;Projecting Changes in the Drivers of Compound Flooding in Europe Using CMIP6 Models&lt;/a&gt;, Hermans et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004188" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004188" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef004188&lt;/p&gt;
  174. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07218-x" target="_blank"&gt;Regional scaling of sea surface temperature with global warming levels in the CMIP6 ensemble&lt;/a&gt;, Milovac et al., &lt;em&gt;Climate Dynamics&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s00382" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s00382-024-07218-x.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00382-024-07218-x&lt;/p&gt;
  175. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  176. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.atmosres.2024.107447" target="_blank"&gt;Benefits of the coupling in the downscaling the South American climate&lt;/a&gt;, Ordo&amp;ntilde;ez et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.atmosres.2024.107447" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.atmosres.2024.107447&lt;/p&gt;
  177. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/gmd-17-3321-2024" target="_blank"&gt;Bergen metrics: composite error metrics for assessing performance of climate models using EURO-CORDEX simulations&lt;/a&gt;, Samantaray et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-3321-2024&lt;/p&gt;
  178. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1126/sciadv.adn2839" target="_blank"&gt;Efficient spin-up of Earth System Models using sequence acceleration&lt;/a&gt;, Khatiwala, &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adn2839&lt;/p&gt;
  179. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/essd-16-2007-2024" target="_blank"&gt;Global 1 km land surface parameters for kilometer-scale Earth system modeling&lt;/a&gt;, Li et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-16-2007-2024&lt;/p&gt;
  180. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101936" target="_blank"&gt;How virtuous are the bias corrected CMIP6 models in the simulation of heatwave over different meteorological subdivisions of India?&lt;/a&gt;, Singh et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2024.101936&lt;/p&gt;
  181. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/tc-18-1959-2024" target="_blank"&gt;Snow depth in high-resolution regional climate model simulations over southern Germany &amp;ndash; suitable for extremes and impact-related research?&lt;/a&gt;, Poschlod &amp;amp; Daloz Daloz Daloz, &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://tc.copernicus.org/articles/18/1959/2024/tc" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://tc.copernicus.org/articles/18/1959/2024/tc-18-1959-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/tc-18-1959-2024&lt;/p&gt;
  182. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1175/jcli-d-23-0237.1" target="_blank"&gt;Uncertainty in the Past and Future Changes of Tropical Pacific SST Zonal Gradient: Internal Variability versus Model Spread&lt;/a&gt;, Wang et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-23-0237.1&lt;/p&gt;
  183. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  184. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.wace.2024.100674" target="_blank"&gt;Anthropogenic Influence on the Extremely Low September Sea Ice and Hot Summer of 2020 over the Arctic and Its Future Risk of Occurrence&lt;/a&gt;, Kaixi et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2024.100674" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2024.100674&lt;/p&gt;
  185. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43017-024-00540-2" target="_blank"&gt;Climate change impacts on snow avalanche activity and related risks&lt;/a&gt;, Eckert et al., &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; 10.1038/s43017-024-00540-2&lt;/p&gt;
  186. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1368413" target="_blank"&gt;Climate projections of the Adriatic Sea: role of river release&lt;/a&gt;, Verri et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2024.1368413" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2024.1368413&lt;/p&gt;
  187. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/tc-18-1983-2024" target="_blank"&gt;Firn air content changes on Antarctic ice shelves under three future warming scenarios&lt;/a&gt;, Veldhuijsen et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-18-1983-2024&lt;/p&gt;
  188. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/essd-2023-431" target="_blank"&gt;The First Hillslope Thermokarst Invertory for the Permafrost Region of the Qilian Mountains&lt;/a&gt;, Peng et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://essd.copernicus.org/articles/16/2033/2024/essd" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://essd.copernicus.org/articles/16/2033/2024/essd-16-2033-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/essd-2023-431&lt;/p&gt;
  189. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  190. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11069-024-06624-y" target="_blank"&gt;Assessing coastal flood risk under extreme events and sea level rise in the Casablanca-Mohammedia coastline (Morocco)&lt;/a&gt;, Chtioui et al., &lt;em&gt;Natural Hazards&lt;/em&gt; 10.1007/s11069-024-06624-y&lt;/p&gt;
  191. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.envsci.2024.103762" target="_blank"&gt;Assessment and spatialization of vulnerability of Benin coast to sea level rise using composite/blended approach&lt;/a&gt;, D&amp;eacute;gu&amp;eacute;non et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; 10.1016/j.envsci.2024.103762&lt;/p&gt;
  192. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  193. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004017" target="_blank"&gt;Historical Soil Moisture Variability in High-Latitude Humid Regions: Insights From a Paleoclimate Data-Model Comparison&lt;/a&gt;, Wang et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004017" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004017" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef004017&lt;/p&gt;
  194. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/cp-20-1039-2024" target="_blank"&gt;Stable isotope evidence for long-term stability of large-scale hydroclimate in the Neogene North American Great Plains&lt;/a&gt;, Manser et al., &lt;em&gt;Climate of the Past&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/cp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/cp-20-1039-2024&lt;/p&gt;
  195. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  196. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/ecy.4288" target="_blank"&gt;A marine heatwave changes the stabilizing effects of biodiversity in kelp forests&lt;/a&gt;, Liang et al., &lt;em&gt;Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecy.4288" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecy.4288&lt;/p&gt;
  197. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-02000-7" target="_blank"&gt;A risk assessment framework for the future of forest microbiomes in a changing climate&lt;/a&gt;, Willing et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-024-02000-7&lt;/p&gt;
  198. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/ddi.13841" target="_blank"&gt;Climate and anthropogenic activities threaten two langur species irrespective of their range size&lt;/a&gt;, Ye et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; 10.1111/ddi.13841&lt;/p&gt;
  199. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.marenvres.2024.106526" target="_blank"&gt;Climate-driven shifts in decapod larvae assemblages in a temperate estuary&lt;/a&gt;, Monteiro et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2024.106526&lt;/p&gt;
  200. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1371/journal.pclm.0000357" target="_blank"&gt;Climate-induced reduction in metabolically suitable habitat for U.S. northeast shelf marine species&lt;/a&gt;, Slesinger et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000357&amp;amp;type=printable" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000357&amp;amp;type=printable" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1371/journal.pclm.0000357&lt;/p&gt;
  201. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.marenvres.2024.106536" target="_blank"&gt;Compensatory shell thickening in corrosive environments varies between related rocky-shore and estuarine gastropods&lt;/a&gt;, Marshall &amp;amp; Tsikouras, &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2024.106536&lt;/p&gt;
  202. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17283" target="_blank"&gt;Extended ozone depletion and reduced snow and ice cover&amp;mdash;Consequences for Antarctic biota&lt;/a&gt;, Robinson et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.17283" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.17283&lt;/p&gt;
  203. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.marenvres.2024.106520" target="_blank"&gt;Functional diversity and metabolic response in benthic communities along an ocean acidification gradient&lt;/a&gt;, Berlino et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2024.106520&lt;/p&gt;
  204. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.18520/cs/v114/i05/963-963" target="_blank"&gt;Habitat alteration or climate: What drives the densities of an invading ungulate?&lt;/a&gt;, Mohan et al., &lt;em&gt;Current Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.18520/cs/v114/i05/963" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://doi.org/10.18520/cs/v114/i05/963-963" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.18520/cs/v114/i05/963-963&lt;/p&gt;
  205. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/ece3.11316" target="_blank"&gt;High-resolution climate data reveal an increasing risk of warming-driven activity restriction for diurnal and nocturnal lizards&lt;/a&gt;, Dufour et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.11316" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.11316&lt;/p&gt;
  206. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.agrformet.2024.110025" target="_blank"&gt;Increasing susceptibility and shortening response time of vegetation productivity to drought from 2001 to 2021&lt;/a&gt;, Tang et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2024.110025&lt;/p&gt;
  207. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01996-2" target="_blank"&gt;Interactions between climate change and urbanization will shape the future of biodiversity&lt;/a&gt;, Urban et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-024-01996-2&lt;/p&gt;
  208. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17288" target="_blank"&gt;Introducing the concepts of range-pinning and Allee effects to explain reduced temperature sensitivity of global treeline dynamics&lt;/a&gt;, B&amp;uuml;ntgen et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.17288&lt;/p&gt;
  209. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17285" target="_blank"&gt;Local reflects global: Life stage-dependent changes in the phenology of coastal habitat use by North Sea herring&lt;/a&gt;, Rademaker et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1101/2023.11.23.568404" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.17285&lt;/p&gt;
  210. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/ffgc.2024.1324405" target="_blank"&gt;Morphological responses of root hairs to changes in soil and climate depend on plant life form&lt;/a&gt;, Zhou et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1324405/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1324405/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/ffgc.2024.1324405&lt;/p&gt;
  211. &lt;p&gt;&lt;a href="http://dx.doi.org/10.7717/peerj.17148" target="_blank"&gt;Pollen thermotolerance of a widespread plant, Lotus corniculatus, in response to climate warming: possible local adaptation of populations from different elevations&lt;/a&gt;, Jackwerth et al., &lt;em&gt;PeerJ&lt;/em&gt; &lt;a href="https://doi.org/10.7717/peerj.17148" target="_blank"&gt; Open Access&lt;/a&gt; 10.7717/peerj.17148&lt;/p&gt;
  212. &lt;p&gt;&amp;nbsp;&lt;a href="http://dx.doi.org/10.1016/j.marenvres.2024.106531" target="_blank"&gt;Shark critical life stage vulnerability to monthly temperature variations under climate change&lt;/a&gt;, Coulon et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.marenvres.2024.106531" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.marenvres.2024.106531&lt;/p&gt;
  213. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00442-024-05549-4" target="_blank"&gt;Short-versus long-term effects of nitrogen addition and warming on soil nitrogen mineralization and leaching in a grass-dominated old field&lt;/a&gt;, Souriol &amp;amp; Henry, &lt;em&gt;Oecologia&lt;/em&gt; 10.1007/s00442-024-05549-4&lt;/p&gt;
  214. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1098/rspb.2024.0040" target="_blank"&gt;Synergistic negative effects between a fungicide and high temperatures on homing behaviours in honeybees&lt;/a&gt;, DesJardins et al., &lt;em&gt;Proceedings of the Royal Society B: Biological Sciences&lt;/em&gt; 10.1098/rspb.2024.0040&lt;/p&gt;
  215. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1098/rsbl.2023.0457" target="_blank"&gt;The tolerance of a keystone ecosystem engineer to extreme heat stress is hampered by microplastic leachates&lt;/a&gt;, Uguen et al., &lt;em&gt;Biology Letters&lt;/em&gt; 10.1098/rsbl.2023.0457&lt;/p&gt;
  216. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47828-x" target="_blank"&gt;Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise&lt;/a&gt;, Elsey-Quirk et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47828-x.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47828-x&lt;/p&gt;
  217. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1098/rspb.2024.0220" target="_blank"&gt;Warming effects on lizard gut microbiome depend on habitat connectivity&lt;/a&gt;, Fromm et al., &lt;em&gt;Proceedings of the Royal Society B: Biological Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://hal.science/hal" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://hal.science/hal-04558931/document" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1098/rspb.2024.0220&lt;/p&gt;
  218. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  219. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jg007392" target="_blank"&gt;A Novel Method for Characterizing the Inter- and Intra-Lake Variability of CH4 Emissions: Validation and Application Across a Latitudinal Transect in the Alpine Region&lt;/a&gt;, Tomelleri et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023JG007392" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023JG007392" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023jg007392&lt;/p&gt;
  220. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jd040578" target="_blank"&gt;An Approach for Assessing Human Respiration CO2 Emissions Using Radiocarbon Measurements and Bottom-Up Data Sets&lt;/a&gt;, Wang et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2023jd040578&lt;/p&gt;
  221. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107250" target="_blank"&gt;An Outsized Contribution of Rivers to Carbon Emissions From Interconnected Urban River-Lake Networks Within Plains&lt;/a&gt;, Liu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107250" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107250" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl107250&lt;/p&gt;
  222. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1093/pnasnexus/pgae143" target="_blank"&gt;Astronomy&amp;rsquo;s climate emissions: Global travel to scientific meetings in 2019&lt;/a&gt;, Gokus et al., &lt;em&gt;PNAS Nexus&lt;/em&gt; &lt;a style="color: green;" href="https://academic.oup.com/pnasnexus/article" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://academic.oup.com/pnasnexus/article-pdf/3/5/pgae143/57357133/pgae143.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1093/pnasnexus/pgae143&lt;/p&gt;
  223. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1382621" target="_blank"&gt;Atmospheric constraints on changing Arctic CH4 emissions&lt;/a&gt;, Lan &amp;amp; Dlugokencky, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1382621/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1382621/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1382621&lt;/p&gt;
  224. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/ffgc.2024.1373187" target="_blank"&gt;Carbon density and sequestration in the temperate forests of northern Patagonia, Argentina&lt;/a&gt;, Loguercio et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2024.1373187" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2024.1373187&lt;/p&gt;
  225. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41561-024-01440-2" target="_blank"&gt;Enhanced response of soil respiration to experimental warming upon thermokarst formation&lt;/a&gt;, Wang et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41561" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41561-024-01440-2.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41561-024-01440-2&lt;/p&gt;
  226. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/bg-21-2005-2024" target="_blank"&gt;Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets&lt;/a&gt;, Krebs et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-21-2005-2024&lt;/p&gt;
  227. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/acp-24-5069-2024" target="_blank"&gt;High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills&lt;/a&gt;, Nesser et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://acp.copernicus.org/articles/24/5069/2024/acp" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://acp.copernicus.org/articles/24/5069/2024/acp-24-5069-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/acp-24-5069-2024&lt;/p&gt;
  228. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1101/2023.11.22.568264" target="_blank"&gt;Hurricanes pose a substantial risk to New England forest carbon stocks&lt;/a&gt;, Tumber-D&amp;aacute;vila et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://www.biorxiv.org/content/biorxiv/early/2023/11/24/2023.11.22.568264.full.pdf" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.biorxiv.org/content/biorxiv/early/2023/11/24/2023.11.22.568264.full.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1101/2023.11.22.568264&lt;/p&gt;
  229. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01387-7" target="_blank"&gt;Large variation in carbon dioxide emissions from tropical peat swamp forests due to disturbances&lt;/a&gt;, Hirano et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01387-7.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01387-7&lt;/p&gt;
  230. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jg007873" target="_blank"&gt;Long-Term Response of Peatland Carbon Exchange to Climatic Changes in the Hudson Bay Lowlands&lt;/a&gt;, Balogun et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2023jg007873" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2023jg007873&lt;/p&gt;
  231. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.earscirev.2024.104791" target="_blank"&gt;Modeling carbon burial along the land to ocean aquatic continuum: Current status, challenges and perspectives&lt;/a&gt;, Henry et al., &lt;em&gt;Earth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.earscirev.2024.104791" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.earscirev.2024.104791&lt;/p&gt;
  232. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/essd-2024-101" target="_blank"&gt;Modeling fuel-, vehicle type-, and age-specific CO2 emissions from global on-road vehicles, 1970&amp;ndash;2020&lt;/a&gt;, Yan et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2024-101&lt;/p&gt;
  233. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/bg-2023-185" target="_blank"&gt;Picoplanktonic methane production in eutrophic surface waters&lt;/a&gt;, Tenorio &amp;amp; Far&amp;iacute;as Far&amp;iacute;as Far&amp;iacute;as, &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://bg.copernicus.org/articles/21/2029/2024/bg" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://bg.copernicus.org/articles/21/2029/2024/bg-21-2029-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/bg-2023-185&lt;/p&gt;
  234. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/acp-24-4875-2024" target="_blank"&gt;Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method&lt;/a&gt;, Tu et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/acp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/acp-24-4875-2024&lt;/p&gt;
  235. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/amt-17-2257-2024" target="_blank"&gt;Quantitative imaging of carbon dioxide plumes using a ground-based shortwave infrared spectral camera&lt;/a&gt;, Knapp et al., &lt;em&gt;Atmospheric Measurement Techniques&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/amt" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/amt-17-2257-2024&lt;/p&gt;
  236. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  237. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/bg-2023-60" target="_blank"&gt;Spatiotemporal heterogeneity in the increase of ocean acidity extremes in the Northeast Pacific&lt;/a&gt;, Desmet et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://bg.copernicus.org/articles/20/5151/2023/bg" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://bg.copernicus.org/articles/20/5151/2023/bg-20-5151-2023.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/bg-2023-60&lt;/p&gt;
  238. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107804" target="_blank"&gt;Storm-Driven pCO2 Feedback Weakens the Response of Air-Sea CO2 Fluxes in the Sub-Antarctic Southern Ocean&lt;/a&gt;, Toolsee et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2023gl107804" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2023gl107804&lt;/p&gt;
  239. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jg007597" target="_blank"&gt;Temperature, Water Depth, and Flow Velocity Are Important Drivers of Methane Ebullition in a Temperate Lowland Stream&lt;/a&gt;, Bedna?&amp;iacute;k et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; 10.1029/2023jg007597&lt;/p&gt;
  240. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17276" target="_blank"&gt;The biological controls of soil carbon accumulation following wildfire and harvest in boreal forests: A review&lt;/a&gt;, Gundale et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.17276&lt;/p&gt;
  241. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  242. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103563" target="_blank"&gt;A stakeholder-centred narrative exploration on carbon capture, utilisation and storage: A systems thinking and participatory approach&lt;/a&gt;, Mota-Nieto &amp;amp; Garc&amp;iacute;a-Meneses, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2024.103563" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2024.103563&lt;/p&gt;
  243. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/ffgc.2024.1381078" target="_blank"&gt;Reforestation done right is a multi-tasking climate solution&lt;/a&gt;, Daley, &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1381078/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1381078/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/ffgc.2024.1381078&lt;/p&gt;
  244. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1394728" target="_blank"&gt;The performance of solvent-based direct air capture across geospatial and temporal climate regimes&lt;/a&gt;, Brooks et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1394728/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1394728/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1394728&lt;/p&gt;
  245. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  246. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114134" target="_blank"&gt;Battery electricity storage as both a complement and substitute for cross-border interconnection&lt;/a&gt;, Biancardi et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2024.114134" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2024.114134&lt;/p&gt;
  247. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1073/pnas.2317599121" target="_blank"&gt;Impact of electric vehicle charging demand on power distribution grid congestion&lt;/a&gt;, Li &amp;amp; Jenn, &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://www.pnas.org/doi/pdf/10.1073/pnas.2317599121" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.pnas.org/doi/pdf/10.1073/pnas.2317599121" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1073/pnas.2317599121&lt;/p&gt;
  248. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103538" target="_blank"&gt;The clock is ticking: Understanding the &amp;lsquo;mixed feelings&amp;rsquo; about fusion energy in Europe&lt;/a&gt;, Jones et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2024.103538" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2024.103538&lt;/p&gt;
  249. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt; &lt;strong&gt;Black carbon&lt;/strong&gt; &lt;strong&gt;Aerosols&lt;/strong&gt;&lt;/p&gt;
  250. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-46635-8" target="_blank"&gt;Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau&lt;/a&gt;, Wang et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-024-46635-8&lt;/p&gt;
  251. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  252. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10584-024-03729-y" target="_blank"&gt;Beyond climate change? Environmental discourse on the planetary boundaries in Twitter networks&lt;/a&gt;, Dubey et al., &lt;em&gt;Climatic Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10584" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10584-024-03729-y.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10584-024-03729-y&lt;/p&gt;
  253. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01392-w" target="_blank"&gt;Generative AI tools can enhance climate literacy but must be checked for biases and inaccuracies&lt;/a&gt;, Atkins et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01392-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01392-w&lt;/p&gt;
  254. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13412-024-00911-7" target="_blank"&gt;Who are climate activists and what do they do? A study of diversity in the U.S. climate movement&lt;/a&gt;, Fang, &lt;em&gt;Journal of Environmental Studies and Sciences&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s13412-024-00911-7&lt;/p&gt;
  255. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  256. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13280-024-01983-z" target="_blank"&gt;Aligning agri-environmental-climate public good supply and desire in a sustainable Dutch agricultural sector&lt;/a&gt;, Farokhi et al., &lt;em&gt;Ambio&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s13280" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s13280-024-01983-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s13280-024-01983-z&lt;/p&gt;
  257. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.21203/rs.3.rs-3047406/v1" target="_blank"&gt;Analysis of drought and heat stress response genes in rice using co-expression network and differentially expressed gene analyses&lt;/a&gt;, Cao et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://www.researchsquare.com/article/rs" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.researchsquare.com/article/rs-3047406/latest.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.21203/rs.3.rs-3047406/v1&lt;/p&gt;
  258. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11027-024-10139-z" target="_blank"&gt;Climate-smart agriculture: adoption, impacts, and implications for sustainable development&lt;/a&gt;, Ma &amp;amp; Rahut, &lt;em&gt;Mitigation and Adaptation Strategies for Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11027" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11027-024-10139-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11027-024-10139-z&lt;/p&gt;
  259. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s44183-024-00063-9" target="_blank"&gt;Do fishers follow fish displaced by climate warming?&lt;/a&gt;, Abe et al., &lt;em&gt;npj Ocean Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s44183" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s44183-024-00063-9&lt;/p&gt;
  260. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11027-024-10137-1" target="_blank"&gt;Groundwater and climate smart agriculture: a reflection from West Bengal, India&lt;/a&gt;, Roy et al., &lt;em&gt;Mitigation and Adaptation Strategies for Global Change&lt;/em&gt; 10.1007/s11027-024-10137-1&lt;/p&gt;
  261. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.agrformet.2024.109937" target="_blank"&gt;Long-term straw return to a wheat-maize system results in topsoil organic C saturation and increased yields while no stimulating or reducing yield-scaled N&lt;sub&gt;2&lt;/sub&gt;O and NO emissions&lt;/a&gt;, Yao et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2024.109937&lt;/p&gt;
  262. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11027-024-10132-6" target="_blank"&gt;Social responsibility awareness and adoption of climate-smart agricultural practices: evidence from food-based family farms in China&lt;/a&gt;, Li et al., &lt;em&gt;Mitigation and Adaptation Strategies for Global Change&lt;/em&gt; 10.1007/s11027-024-10132-6&lt;/p&gt;
  263. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  264. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00704-024-04864-3" target="_blank"&gt;Changes in drought occurrence and intensity in the context of climate change in Slovakia&lt;/a&gt;, Labudov&amp;aacute; et al., &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; 10.1007/s00704-024-04864-3&lt;/p&gt;
  265. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1377286" target="_blank"&gt;Climate change impacts on precipitation and water resources in Northwestern China&lt;/a&gt;, Zheng et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1377286/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1377286/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1377286&lt;/p&gt;
  266. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101919" target="_blank"&gt;Design rainfalls under climate change scenarios in South East Queensland, Australia: A Brisbane River case study&lt;/a&gt;, Saboia &amp;amp; Helfer Helfer, &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2024.101919" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2024.101919&lt;/p&gt;
  267. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100612" target="_blank"&gt;Effectiveness and resilience of BMPs to watershed climate adaptation considering the uncertainty of hydrological model and GCMs&lt;/a&gt;, Zhang et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100612" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100612&lt;/p&gt;
  268. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004073" target="_blank"&gt;Impact of Soil Moisture Dynamics and Precipitation Pattern on UK Urban Pluvial Flood Hazards Under Climate Change&lt;/a&gt;, Rong et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004073" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004073" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef004073&lt;/p&gt;
  269. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  270. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1325598" target="_blank"&gt;Higher education&amp;rsquo;s impact on CO2 mitigation: MENA insights with consideration for unemployment, economic growth, and globalization&lt;/a&gt;, Zouine et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1325598/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1325598/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1325598&lt;/p&gt;
  271. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114135" target="_blank"&gt;&amp;ldquo;Hidden price&amp;rdquo;: Energy conservation and emission reduction targets and employment growth&lt;/a&gt;, Wang et al., &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2024.114135&lt;/p&gt;
  272. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  273. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-023-04148-2" target="_blank"&gt;Bourdieu&amp;rsquo;s sociological lens: unveiling the dynamics of household carbon footprint in the Kalyani sub-division of Nadia district, West Bengal, India&lt;/a&gt;, Dey et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-023-04148-2&lt;/p&gt;
  274. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114146" target="_blank"&gt;Can operational efficiency in the Portuguese electricity sector be improved? Yes, but...&lt;/a&gt;, Hou et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2024.114146" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2024.114146&lt;/p&gt;
  275. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-023-04081-4" target="_blank"&gt;Catalysts for sustainable energy transitions: the interplay between financial development, green technological innovations, and environmental taxes in European nations&lt;/a&gt;, Fatima et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-023-04081-4&lt;/p&gt;
  276. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103561" target="_blank"&gt;Decarbonization, critical minerals, and tribal sovereignty: Pathways towards conflict transformation&lt;/a&gt;, Zarsky et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2024.103561" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2024.103561&lt;/p&gt;
  277. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101941" target="_blank"&gt;Decoupling government spending from carbon emissions: A spatio-temporal analysis of 283 Chinese cities&lt;/a&gt;, Feng et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2024.101941&lt;/p&gt;
  278. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101918" target="_blank"&gt;Driving toward sustainable cities: The interplay between Chinese emerging corporate ESG performance and climate finance in achieving low-carbon development&lt;/a&gt;, Liu et al., &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2024.101918" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2024.101918&lt;/p&gt;
  279. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41560-024-01525-7" target="_blank"&gt;Equitable rooftop photovoltaics deployment&lt;/a&gt;, Castellanos, &lt;em&gt;Nature Energy&lt;/em&gt; 10.1038/s41560-024-01525-7&lt;/p&gt;
  280. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103567" target="_blank"&gt;Forerunner city or net-zero opportunist? Carbon dioxide removal in Stockholm, residual emissions and risks of mitigation deterrence&lt;/a&gt;, Olsson et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2024.103567" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2024.103567&lt;/p&gt;
  281. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1392267" target="_blank"&gt;Impact of population mobility on regional carbon emissions: empirical evidence from Australia&lt;/a&gt;, Guo, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2024.1392267" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2024.1392267&lt;/p&gt;
  282. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloenvcha.2024.102848" target="_blank"&gt;Increasing single households challenges household decarbonization in japan&lt;/a&gt;, Huang et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2024.102848" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2024.102848&lt;/p&gt;
  283. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-02004-3" target="_blank"&gt;Large methane mitigation potential through prioritized closure of gas-rich coal mines&lt;/a&gt;, Liu et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-024-02004-3&lt;/p&gt;
  284. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114139" target="_blank"&gt;Market instrument for the first fuel and its role in decarbonizing Indian industrial production&lt;/a&gt;, Giri &amp;amp; Sharma, &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2024.114139&lt;/p&gt;
  285. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17565529.2024.2342683" target="_blank"&gt;Multinational companies and climate change and sustainable development debate: evidence from cement production in Nigeria&lt;/a&gt;, Nkwor et al., &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2024.2342683&lt;/p&gt;
  286. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.esd.2024.101451" target="_blank"&gt;Phasing out coal power in two major Southeast Asian thermal coal economies: Indonesia and Vietnam&lt;/a&gt;, Do &amp;amp; Burke, &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.esd.2024.101451" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.esd.2024.101451&lt;/p&gt;
  287. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/09644016.2024.2347164" target="_blank"&gt;Reading the room: developing a practical justice politics of regional energy transition&lt;/a&gt;, Marshall &amp;amp; Pearse, &lt;em&gt;Environmental Politics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/09644016.2024.2347164" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/09644016.2024.2347164&lt;/p&gt;
  288. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103553" target="_blank"&gt;Stepping into the just transition journey: The energy transition in petrostates&lt;/a&gt;, Hasan et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2024.103553" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2024.103553&lt;/p&gt;
  289. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/09644016.2024.2347159" target="_blank"&gt;The politics of deforestation and REDD+ in Indonesia: global climate change mitigation&lt;/a&gt;, Sulistiani &amp;amp; Rambe, &lt;em&gt;Environmental Politics&lt;/em&gt; 10.1080/09644016.2024.2347159&lt;/p&gt;
  290. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114141" target="_blank"&gt;Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China&lt;/a&gt;, Wang &amp;amp; Wei, &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2024.114141&lt;/p&gt;
  291. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17524032.2024.2341931" target="_blank"&gt;Whose Expertise and Whose Knowledge Matter? Influencing Wind Power Decisions in Norway&lt;/a&gt;, Bonvik-Stone &amp;amp; Lykke, &lt;em&gt;Environmental Communication&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/17524032.2024.2341931" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17524032.2024.2341931&lt;/p&gt;
  292. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  293. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114143" target="_blank"&gt;Addressing extreme urban heat and energy vulnerability of renters in Portland, OR with resilient household energy policies&lt;/a&gt;, Ashbaugh &amp;amp; Kittner, &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2024.114143&lt;/p&gt;
  294. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11027-024-10140-6" target="_blank"&gt;Assessing climate change vulnerability of coastal roads&lt;/a&gt;, Rocchi et al., &lt;em&gt;Mitigation and Adaptation Strategies for Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s11027" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s11027-024-10140-6&lt;/p&gt;
  295. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100613" target="_blank"&gt;Capturing cascading consequences is required to reflect risk from climate change and natural hazards&lt;/a&gt;, Thompson et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100613" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100613&lt;/p&gt;
  296. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1378253" target="_blank"&gt;Climate impacts and adaptation strategies for coastal erosion, aquaculture, and tourism along the Adriatic side of Apulia region&lt;/a&gt;, Parete et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1378253/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1378253/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1378253&lt;/p&gt;
  297. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100611" target="_blank"&gt;Delayed, abrupt and unjust: An institutionalist perspective on limits to climate change adaptation&lt;/a&gt;, Berkhout et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100611" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100611&lt;/p&gt;
  298. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17565529.2024.2339249" target="_blank"&gt;Exploring co-production in redirecting climate urbanism&lt;/a&gt;, Karol Mohan &amp;amp; Muraleedharan, &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2024.2339249&lt;/p&gt;
  299. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1352344" target="_blank"&gt;Governance, institutions, and climate change resilience in Sub-Saharan Africa: assessing the threshold effects&lt;/a&gt;, Bambi et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2024.1352344" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2024.1352344&lt;/p&gt;
  300. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101944" target="_blank"&gt;The governance of climate adaptation in metropolitan regions: A systematic review of emerging themes and issues&lt;/a&gt;, Gori Nocentini, &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2024.101944" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2024.101944&lt;/p&gt;
  301. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  302. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01994-4" target="_blank"&gt;Analysing health system capacity and preparedness for climate change&lt;/a&gt;, Braithwaite et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-024-01994-4&lt;/p&gt;
  303. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.2307/j.ctt1vjqqtb.19" target="_blank"&gt;Beach day or deadly heatwave? Content analysis of media images from the 2021 Heat Dome in Canada&lt;/a&gt;, , &lt;em&gt;Hitchhiker&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.2307/j.ctt1vjqqtb.19&lt;/p&gt;
  304. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00484-024-02688-4" target="_blank"&gt;Increasing tree cover and high-albedo surfaces reduces heat-related ER visits in Los Angeles, CA&lt;/a&gt;, Sheridan et al., &lt;em&gt;International Journal of Biometeorology&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s00484" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s00484-024-02688-4.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00484-024-02688-4&lt;/p&gt;
  305. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change &amp;amp; geopolitics&lt;/strong&gt;&lt;/p&gt;
  306. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1371/journal.pclm.0000402" target="_blank"&gt;The challenges of the increasing institutionalization of climate security&lt;/a&gt;, Hardt et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000402&amp;amp;type=printable" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000402&amp;amp;type=printable" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1371/journal.pclm.0000402&lt;/p&gt;
  307. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  308. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01407-6" target="_blank"&gt;Extreme hydrometeorological events induce abrupt and widespread freshwater temperature changes across the Pacific Northwest of North America&lt;/a&gt;, D&amp;eacute;ry et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01407-6.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01407-6&lt;/p&gt;
  309. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  310. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004157" target="_blank"&gt;A Convergence Science Approach to Understanding the Changing Arctic&lt;/a&gt;, Ivanov et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2023ef004157" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2023ef004157&lt;/p&gt;
  311. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl108502" target="_blank"&gt;Accuracy of Ocean CO2 Uptake Estimates at a Risk by a Reduction in the Data Collection&lt;/a&gt;, Dong et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl108502" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl108502&lt;/p&gt;
  312. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11625-024-01482-w" target="_blank"&gt;Achieving transformational change through the consilience of behavioral science and radical alternatives&lt;/a&gt;, Read &amp;amp; Selinske, &lt;em&gt;Sustainability Science&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11625" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11625-024-01482-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11625-024-01482-w&lt;/p&gt;
  313. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/essd-16-2113-2024" target="_blank"&gt;Earth Virtualization Engines (EVE)&lt;/a&gt;, Stevens et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-16-2113-2024&lt;/p&gt;
  314. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1416427" target="_blank"&gt;Editorial: Climate science, solutions and services for net zero, climate-resilient food systems&lt;/a&gt;, Falloon et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1416427/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1416427/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1416427&lt;/p&gt;
  315. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13280-024-01986-w" target="_blank"&gt;The decision maker&amp;rsquo;s lament: If I only had some science!&lt;/a&gt;, Bisbal, &lt;em&gt;Ambio&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s13280" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s13280-024-01986-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s13280-024-01986-w&lt;/p&gt;
  316. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01371-1" target="_blank"&gt;The IPCC&amp;rsquo;s reductive Common Era temperature history&lt;/a&gt;, Esper et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01371-1.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01371-1&lt;/p&gt;
  317. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1073/pnas.2407160121" target="_blank"&gt;&amp;ldquo;Net zero&amp;rdquo; may need a rethink to keep climate targets within reach&lt;/a&gt;, Battersby, &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2407160121" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2407160121&lt;/p&gt;
  318. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Book reviews&lt;/strong&gt;&lt;/p&gt;
  319. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13412-024-00925-1" target="_blank"&gt;David Sedlak. Water for all: global solutions for a changing climate&lt;/a&gt;, Smardon, &lt;em&gt;Journal of Environmental Studies and Sciences&lt;/em&gt; 10.1007/s13412-024-00925-1&lt;/p&gt;
  320. &lt;hr /&gt;
  321. &lt;h3 style="text-align: left;"&gt;&lt;a id="gov-ngo"&gt;&lt;/a&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  322. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.lung.org/getmedia/dabac59e-963b-4e9b-bf0f-73615b07bfd8/State-of-the-Air-2024.pdf" target="_blank"&gt;State of the Air 2024 Report&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;American Lung Assoication&lt;/strong&gt;&lt;/p&gt;
  323. &lt;blockquote&gt;&amp;ldquo;State of the Air&amp;rdquo; 2024 is the 25th edition of this annual report, which was first published in 2000. From the beginning, the findings have reflected the successes of the Clean Air Act, as emissions from transportation, power plants and manufacturing have been reduced. In recent years, however, the findings of the report continue adding to the evidence that a changing climate is making it harder to protect human health. High ozone days and spikes in particle pollution related to extreme heat, drought and wildfires are putting millions of people at risk and adding challenges to the work that states and cities are doing across the nation to clean up air pollution.&lt;/blockquote&gt;
  324. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://tnsr.org/2024/03/climate-change-and-military-power-hunting-for-submarines-in-the-warming-ocean/" target="_blank"&gt;Climate Change and Military Power: Hunting for Submarines in the Warming Ocean&lt;/a&gt;, &lt;/strong&gt;Gilli et al., &lt;strong&gt;Texas National Security Review&lt;/strong&gt;&lt;/p&gt;
  325. &lt;blockquote&gt;Climate change will have significant effects on military power, capabilities, effectiveness, and employment. Yet, scholars have paid little attention to this topic. We address this gap by investigating the effects of changing ocean conditions on anti-submarine warfare. Anti-submarine warfare capabilities exploit various physical phenomena to detect enemy submarines, principally underwater sound propagation. Underwater sound propagation depends on factors influenced by climate change, such as water temperature and salinity. Through ocean-acoustic simulations, we estimate the effect of climate change on the detection range of enemy submarines in the North Atlantic and in the Western Pacific.&lt;/blockquote&gt;
  326. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://spiral.imperial.ac.uk/bitstream/10044/1/110910/8/scientific%20report%20Dubai%20floods_.pdf" target="_blank"&gt;Heavy precipitation hitting vulnerable communities in the UAE and Oman becoming an increasing threat as the climate warms&lt;/a&gt;, &lt;/strong&gt;Zachariah et al., &lt;strong&gt;World Weather Attribution&lt;/strong&gt;&lt;/p&gt;
  327. &lt;blockquote&gt;From April 14 to 15 2024, the United Arab Emirates (UAE) and the northern parts of Oman were hit by exceptionally heavy rainfall causing massive disruption in infrastructure and public life in the area and leading to at least 20 fatalities in Oman and four in the United Arab Emirates UAE. The disagreement between model results and observations prevents the authors from concluding with certainty that human-induced climate change is the main driver making this event more likely. However, while multiple reasons could explain the absence of a trend in the model results, the authors have no alternative explanation for a trend in observations other than the expectation of heavy rainfall increasing in a warmer climate.&lt;/blockquote&gt;
  328. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.rand.org/content/dam/rand/pubs/research_reports/RRA1600/RRA1645-9/RAND_RRA1645-9.pdf" target="_blank"&gt;Mitigating Risk That Climate Change Poses to the National Critical Functions&lt;/a&gt;, &lt;/strong&gt;Resetar,, &lt;strong&gt;RAND&lt;/strong&gt;&lt;/p&gt;
  329. &lt;blockquote&gt;The National Critical Functions (NCFs) are those functions vital to the United States' economic and national security, public health, and safety. Climate change effects have the potential to disrupt routine operations of these functions. Climate risk mitigation strategies are intended to reduce an NCF's vulnerability to, or the consequences from, direct and indirect effects of climate change. This report is intended to inform risk mitigation planning and decision-making by contextualizing climate risk mitigation through a review of mitigation strategies for four NCFs: Maintain Supply Chains, Provide Insurance Services, Prepare for and Manage Emergencies, and Provide Public Safety.&lt;/blockquote&gt;
  330. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.energy.gov/sites/default/files/2024-04/i2X%20Transmission%20Interconnection%20Roadmap_1.pdf" target="_blank"&gt;Transmission Interconnection Roadmap&lt;/a&gt;, &lt;/strong&gt;Gorman et al., &lt;strong&gt;Lawrence Berkeley National Laboratory&lt;/strong&gt;&lt;/p&gt;
  331. &lt;blockquote&gt;The authors identify solutions to enable interconnection processes to meet the growing demand for renewable energy resources from the rapid, widespread clean energy transition. The authors provide the diverse group of interconnection stakeholders with near- to long-term solutions to address current challenges in transmission system interconnection.&lt;/blockquote&gt;
  332. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://bpb-us-e1.wpmucdn.com/blogs.gwu.edu/dist/7/1053/files/2024/04/NewNuclearRisk_Report_2024_v4-1-0b59385f1c7d4153.pdf" target="_blank"&gt;New Nuclear Energy: Assessing the National Security Risks&lt;/a&gt;, &lt;/strong&gt;Sharon Squassoni, &lt;strong&gt;The George Washington University&lt;/strong&gt;&lt;/p&gt;
  333. &lt;blockquote&gt;The climate crisis has renewed interest in nuclear energy as a way of reducing greenhouse gas emissions. In 2023, the United States and 21 other countries pledged to triple nuclear energy by 2050. Lost in the noise about meeting net zero goals are the national security implications of attempting such an enormous expansion of nuclear energy.&lt;/blockquote&gt;
  334. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.xodusgroup.com/media/0jwicpyr/louisiana-osw-supply-chain-assessment-report.pdf" target="_blank"&gt;Louisiana Offshore Wind Supply Chain Assessment&lt;/a&gt;, &lt;/strong&gt;Xodus et al., &lt;strong&gt;Xodus Group, The Pew Charitable Trusts, Greater New Orleans Inc, the Southeastern Wind Coalition, Center for Planning Excellence&lt;/strong&gt;&lt;/p&gt;
  335. &lt;blockquote&gt;Louisiana&amp;rsquo;s experience and expertise in offshore energy grants it a unique position to support the burgeoning U.S. offshore wind industry, while attracting new opportunities for existing Louisiana businesses, expanding employment opportunities for Louisiana residents, and capturing significant economic benefits for the State. The authors assess the industry landscape, supply chain, and workforce opportunities available to Louisiana in the offshore wind industry. As a nationally recognized leader in port infrastructure, maritime construction, and energy production, Louisiana can further diversify and develop new employment and economic opportunities through renewable energy production.&lt;/blockquote&gt;
  336. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://climateassessment.nyc/assessments/" target="_blank"&gt;New York City Panel on Climate Change Assessments&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;New York City Panel on Climate Change&lt;/strong&gt;&lt;/p&gt;
  337. &lt;blockquote&gt;The authors provide insights into the state of the science on climate change and the implications for adaptation and mitigation policy in New York City. Building on the longitudinal data afforded by this ongoing research, this assessment centers on equity as a shared focus across all working groups. This is achieved through inclusive internal processes for working group activities and explicit attention to uneven impacts and vulnerabilities associated with climate change policy responses.&lt;/blockquote&gt;
  338. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.naseo.org/data/sites/1/documents/publications/Coal%20to%20Nuclear%20Repowering_interactive.pdf" target="_blank"&gt;Coal to Nuclear Repowering: Considerations for State Energy Offices and Public Utility Commissions&lt;/a&gt;, &lt;/strong&gt;Kelsey Jones, &lt;strong&gt;National Association of Regulatory Utility Commissioners and National Association State Energy Officials&lt;/strong&gt;&lt;/p&gt;
  339. &lt;blockquote&gt;The author highlights some of the benefits and challenges associated with the coal to nuclear repowering process, with a particular focus on the policy, programmatic, and regulatory considerations of relevance to State Energy Offices and Public Utility Commissions. Some of the benefits of coal to nuclear repowering include reduced emissions, workforce and economic development potential, improved electric reliability, and opportunities to save time and money relative to greenfield deployment by repurposing existing infrastructure.&lt;/blockquote&gt;
  340. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.cleanenergyeconomymn.org/wp-content/uploads/2024/04/2024-Minnesota-Energy-Factsheet.pdf" target="_blank"&gt;2024 Energy Fact Sheet. Tracking MN&amp;rsquo;s clean energy trends&lt;/a&gt;, C&lt;/strong&gt;&lt;strong&gt;lean Energy Economy MN and the Business Council of Sustainable Energy&lt;/strong&gt;&lt;/p&gt;
  341. &lt;blockquote&gt;The Factsheet outlines key trends in the energy sector. As America continues its transformation to cleaner, cheaper sustainable energy, Minnesota continues to be a leader both regionally and nationally. For example, for the fourth consecutive year, zero-carbon power remained the majority of Minnesota&amp;rsquo;s electricity with 54% of the state&amp;rsquo;s power provided, including wind, solar, hydro and biomass &amp;mdash; outpacing the national share of 42%.&lt;/blockquote&gt;
  342. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://web.colby.edu/bucklab/files/2024/04/Schneider-Mayerson-et-al-_Climate-Reality-On-screen_.pdf" target="_blank"&gt;Climate Reality on-Screen: The Climate Crisis in Popular Films, 2013-22&lt;/a&gt;, &lt;/strong&gt;Schneider-Mayerson, et al., &lt;strong&gt;Buck Lab for Climate and Environment, Colby College&lt;/strong&gt;&lt;/p&gt;
  343. &lt;blockquote&gt;The authors provide audience members, screenwriters, filmmakers, studios, and researchers with a straightforward way to evaluate whether climate change is represented&amp;mdash;or omitted&amp;mdash;in any narrative through a two-part, binary evaluation tool that is simple, illuminating, and powerful.&lt;/blockquote&gt;
  344. &lt;hr /&gt;
  345. &lt;h3 style="text-align: left;"&gt;Obtaining articles without journal subscriptions&lt;/h3&gt;
  346. &lt;p style="text-align: left;"&gt;We know it's frustrating that many articles we cite here are not free to read. One-off paid access fees are generally astronomically priced, suitable for such as &lt;em&gt;"&lt;a href="https://einsteinpapers.press.princeton.edu/vol2-trans/100" target="_blank"&gt;On a Heuristic Point of View Concerning the Production and Transformation of Light&lt;/a&gt;"&amp;nbsp;&lt;/em&gt;&amp;nbsp;but not as a gamble on unknowns. With a median world income of US$ 9,373, for most of us US$ 42 is significant money to wager on an article's relevance and importance.&amp;nbsp;&lt;/p&gt;
  347. &lt;ul style="text-align: left;"&gt;
  348. &lt;li&gt;&lt;a href="https://www.sciencebuddies.org/science-fair-projects/competitions/finding-and-accessing-scientific-papers"&gt;Here's an excellent collection&lt;/a&gt; of tips and techniques for obtaining articles, legally.&lt;/li&gt;
  349. &lt;/ul&gt;
  350. &lt;ul style="text-align: left;"&gt;
  351. &lt;li&gt;&lt;a href="https://unpaywall.org/" target="_blank"&gt;Unpaywall&lt;/a&gt;&amp;nbsp;offers a browser extension for Chrome and Firefox that automatically indicates when an article is freely accessible and provides immediate access without further trouble. Unpaywall is also unscammy, works well, is itself offered free to use. The organizers (a legitimate nonprofit) report about a 50% success rate&lt;/li&gt;
  352. &lt;/ul&gt;
  353. &lt;ul style="text-align: left;"&gt;
  354. &lt;li&gt;The weekly &lt;em&gt;New Research&lt;/em&gt; catch is checked against the Unpaywall database with accessible items being flagged. Especially for just-published articles this mechansim may fail. If you're interested in an article title and it is not listed here as "open access," be sure to check the link anyway.&amp;nbsp;&lt;/li&gt;
  355. &lt;/ul&gt;
  356. &lt;h3 style="text-align: left;"&gt;How is &lt;em&gt;New Research&lt;/em&gt; assembled?&lt;/h3&gt;
  357. &lt;p style="text-align: left;"&gt;Most articles appearing here are found via&amp;nbsp; RSS feeds from journal publishers, filtered by search terms to produce raw output&amp;nbsp;for assessment of relevance.&amp;nbsp;&lt;/p&gt;
  358. &lt;p style="text-align: left;"&gt;Relevant articles are then queried against the Unpaywall database, to identify open access articles and expose useful metadata for articles appearing in the database.&amp;nbsp;&lt;/p&gt;
  359. &lt;p style="text-align: left;"&gt;The objective of New Research isn't to cast a tinge on scientific results, to color readers' impressions. Hence candidate articles are assessed via two metrics only:&lt;/p&gt;
  360. &lt;ul style="text-align: left;"&gt;
  361. &lt;li&gt;Was an article deemed of sufficient merit by a team of journal editors and peer reviewers? The fact of journal RSS output assigns a "yes" to this automatically.&amp;nbsp;&lt;/li&gt;
  362. &lt;li&gt;Is an article relevant to the topic of anthropogenic climate change? Due to filter overlap with other publication topics of inquiry, of a typical week's 550 or so input articles about 1/4 of RSS output makes the cut.&lt;/li&gt;
  363. &lt;/ul&gt;
  364. &lt;p style="text-align: left;"&gt;A few journals offer public access to "preprint" versions of articles for which the review process is not yet complete. For some key journals this all the mention we'll see in RSS feeds, so we include such items in &lt;em&gt;New Research&lt;/em&gt;. These are flagged as "preprint."&lt;/p&gt;
  365. &lt;p style="text-align: left;"&gt;The section "Informed opinion, nudges &amp;amp; major initiatives" includes some items that are not scientific research per se but fall instead into the category of "perspectives," observations of implications of research findings, areas needing attention, etc.&lt;/p&gt;
  366. &lt;h3 style="text-align: left;"&gt;Suggestions&lt;/h3&gt;
  367. &lt;p style="text-align: left;"&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  368. &lt;h3 style="text-align: left;"&gt;Journals covered&lt;/h3&gt;
  369. &lt;p style="text-align: left;"&gt;A list of journals we cover may be found &lt;a href="https://skepticalscience.com/Skeptical-Science-New-Research-Source-Journals.shtml"&gt;here&lt;/a&gt;. We welcome pointers to omissions, new journals etc.&lt;/p&gt;
  370. &lt;h3 style="text-align: left;"&gt;Previous edition&lt;/h3&gt;
  371. &lt;p style="text-align: left;"&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2024_17.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  372. <link>https://skepticalscience.com/new_research_2024_18.html</link>
  373. <guid>https://skepticalscience.com/new_research_2024_18.html</guid>
  374. <pubDate>Thu, 2 May 2024 15:32:14 EST</pubDate>
  375. </item>  <item>
  376. <title>Pinning down climate change's role in extreme weather</title>
  377. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://www.theclimatebrink.com/p/pinning-down-climate-changes-role?utm_source=post-email-title&amp;amp;publication_id=1593097&amp;amp;post_id=143265032&amp;amp;utm_campaign=email-post-title&amp;amp;isFreemail=true&amp;amp;token=eyJ1c2VyX2lkIjozNjY5MjgyLCJwb3N0X2lkIjoxNDMyNjUwMzIsImlhdCI6MTcxNDA2NDU0NSwiZXhwIjoxNzE2NjU2NTQ1LCJpc3MiOiJwdWItMTU5MzA5NyIsInN1YiI6InBvc3QtcmVhY3Rpb24ifQ.t1t1uCfY6L5F1bUbgivQzrBcTB97HrDR2Ebv-s2DLt0&amp;amp;r=26n8i&amp;amp;triedRedirect=true&amp;amp;utm_medium=email"&gt;re-post from The Climate Brink by Andrew Dessler&lt;/a&gt;&lt;/p&gt;
  378. &lt;p&gt;In the wake of any unusual weather event, someone inevitably asks, &amp;ldquo;Did climate change cause this?&amp;rdquo; In the most literal sense, that answer is almost always no. Climate change is never the sole cause of hurricanes, heat waves, droughts, or any other disaster, because weather variability always plays a primary role in the genesis of the events.&lt;/p&gt;
  379. &lt;p&gt;&lt;span&gt;However, climate change can make these events more intense and, given the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.theclimatebrink.com/p/why-are-climate-impacts-escalating"&gt;non-linearities in the damages&lt;/a&gt;&lt;span&gt;, this can vastly increase the damage and misery from extreme weather. So quantifying the role of climate change is therefore of great interest.&lt;/span&gt;&lt;/p&gt;
  380. &lt;div class="captioned-image-container"&gt;
  381. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" title="A graph showing 24 hour rainfall on 15 April in MSWEP observational data product. A red box indicates the study region. " src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0773a3e6-ceb6-44dd-ae9d-7852c8cf3a4a_252x300.png" alt="A graph showing 24 hour rainfall on 15 April in MSWEP observational data product. A red box indicates the study region. " width="252" height="300" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/0773a3e6-ceb6-44dd-ae9d-7852c8cf3a4a_252x300.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:300,&amp;quot;width&amp;quot;:252,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:&amp;quot;A graph showing 24 hour rainfall on 15 April in MSWEP observational data product. A red box indicates the study region. &amp;quot;,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:false,&amp;quot;topImage&amp;quot;:true,&amp;quot;internalRedirect&amp;quot;:null}" /&gt;&lt;/div&gt;
  382. &lt;a rel="" href="https://www.worldweatherattribution.org/heavy-precipitation-hitting-vulnerable-communities-in-the-uae-and-oman-becoming-an-increasing-threat-as-the-climate-warms/"&gt;intense rainfall over Dubai&lt;/a&gt;&lt;/div&gt;
  383. &lt;p&gt;&lt;span&gt;To do this, scientists turn to&amp;nbsp;&lt;/span&gt;&lt;em&gt;&lt;a rel="" href="https://www.cell.com/one-earth/fulltext/S2590-3322(20)30247-5"&gt;extreme event attribution&lt;/a&gt;&lt;/em&gt;&lt;span&gt;&amp;nbsp;studies. These rely on three separate lines of evidence. The first is the observational record: If you have good observations of the climate over a long enough period, the data set can be statistically analyzed to determine whether the event in question is becoming more frequent as the climate warms.&lt;/span&gt;&lt;/p&gt;
  384. &lt;!--more--&gt;
  385. &lt;p&gt;But correlation does not prove causality, so you need the second line of evidence: a physical understanding of why a particular extreme is getting worse as the climate warms. It should be obvious to readers of this substack why, in a warmer world, we expect to get more frequent heat waves. This physical understanding adds to our con?dence that climate change is a factor in the occurrence of heat waves.&lt;/p&gt;
  386. &lt;p&gt;Finally, we look to computer simulations of the climate. The most common approach is to produce two different simulations of the climate: One simulation is of the real world, so it includes increasing greenhouse gases and a warming climate. The other simulation is what&amp;rsquo;s known as a counterfactual world &amp;mdash; an imaginary world in which humans are not adding greenhouse gases to the atmosphere, so the climate is not warming. We compare the simulations to see if the extreme we&amp;rsquo;re investigating occurs more frequently in the warmer world.&lt;/p&gt;
  387. &lt;p&gt;If we have all three lines of evidence, we can be confident that the event in question is connected to climate change. Essentially all heat waves fall into this category. On the other hand, we have zero lines of evidence for tornado outbreaks, so we don&amp;rsquo;t really have anything to say about how climate change is affecting those.&lt;/p&gt;
  388. &lt;div class="captioned-image-container"&gt;
  389. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" title="" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F15521825-7be4-40dc-a3f7-9317a1a20b2a_1146x486.png" alt="" width="550" height="233" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/15521825-7be4-40dc-a3f7-9317a1a20b2a_1146x486.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:486,&amp;quot;width&amp;quot;:1146,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:221213,&amp;quot;alt&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:false,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null}" /&gt;&lt;/div&gt;
  390. &lt;em&gt;the NYT is wrong, although they did&amp;nbsp;&lt;a rel="" href="https://x.com/jswatz/status/1421123005690875911?s=20"&gt;issue a correction&lt;/a&gt;&amp;nbsp;after I complained&lt;/em&gt;&lt;/div&gt;
  391. &lt;p&gt;&lt;span&gt;Given this, was the rainfall in Dubai in mid-April turbocharged by climate change? Luckily, the World Weather Attribution project has already&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.worldweatherattribution.org/heavy-precipitation-hitting-vulnerable-communities-in-the-uae-and-oman-becoming-an-increasing-threat-as-the-climate-warms/"&gt;weighed in&lt;/a&gt;&lt;span&gt;. When we look for the three pillars, we find:&lt;/span&gt;&lt;/p&gt;
  392. &lt;ul&gt;
  393. &lt;li&gt;
  394. &lt;p&gt;There is indeed a trend in intense precipitation in the region.&lt;/p&gt;
  395. &lt;/li&gt;
  396. &lt;li&gt;
  397. &lt;p&gt;&lt;span&gt;We have a&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.pnas.org/doi/full/10.1073/pnas.0907610106"&gt;physical understanding&lt;/a&gt;&lt;span&gt;&amp;nbsp;of why extreme precipitation gets more intense as the climate warms.&lt;/span&gt;&lt;/p&gt;
  398. &lt;/li&gt;
  399. &lt;li&gt;
  400. &lt;p&gt;However, the climate models currently do not reproduce the observed trend in intense precipitation.&lt;/p&gt;
  401. &lt;/li&gt;
  402. &lt;/ul&gt;
  403. &lt;p&gt;&lt;span&gt;So we have two of three planks for confident attribution &amp;mdash; and we all know that two out of three ain&amp;rsquo;t bad&lt;/span&gt;&lt;span class="footnote-hovercard-target"&gt;&lt;a id="footnote-anchor-1-143265032" class="footnote-anchor" rel="" href="https://www.theclimatebrink.com/p/pinning-down-climate-changes-role?utm_source=post-email-title&amp;amp;publication_id=1593097&amp;amp;post_id=143265032&amp;amp;utm_campaign=email-post-title&amp;amp;isFreemail=true&amp;amp;r=26n8i&amp;amp;triedRedirect=true&amp;amp;utm_medium=email#footnote-1-143265032" target="_self" data-component-name="FootnoteAnchorToDOM"&gt;1&lt;/a&gt;&lt;/span&gt;&lt;span&gt;. But it&amp;rsquo;s also not as strong as we&amp;rsquo;d like, so I conclude that we have weak-to-moderate confidence that global warming contributed to the Dubai flooding.&lt;/span&gt;&lt;/p&gt;
  404. &lt;p&gt;&lt;span&gt;Attributions that come out a few days after the event are necessarily preliminary and I expect more analyses will show up in the peer-reviewed literature in the next year or two. Such analysis may increase our confidence in a climate connection, or it may not. One thing we can be confident about, though, is that&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.theclimatebrink.com/p/a-primer-on-cloud-seeding"&gt;it wasn&amp;rsquo;t cloud seeding&lt;/a&gt;&lt;span&gt;.&lt;/span&gt;&lt;/p&gt;
  405. &lt;p&gt;Regardless of the outcome of this event&amp;rsquo;s attribution, rest assured that climate change is making all sorts of extreme weather events more severe.&lt;/p&gt;</description>
  406. <link>https://skepticalscience.com/pinning-down-climate-extreme-weather.html</link>
  407. <guid>https://skepticalscience.com/pinning-down-climate-extreme-weather.html</guid>
  408. <pubDate>Mon, 29 Apr 2024 14:32:28 EST</pubDate>
  409. </item>  <item>
  410. <title>2024 SkS Weekly Climate Change &amp; Global Warming News Roundup #17</title>
  411. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 31 news and opinion articles we found interesting and shared on social media during the past week: Sun, April 21, 2024 thru Sat, April 27, 2024.&lt;/div&gt;
  412. &lt;hr /&gt;
  413. &lt;h3&gt;Story of the week&lt;img class="figureright" src="https://skepticalscience.com/pics/2024-04-27-192801_1366x768_scrot.png" alt="Screen capture of CarbonBrief news item." width="320" height="158" /&gt;&lt;/h3&gt;
  414. &lt;p&gt;Anthropogenic climate change may be the ultimate &lt;a href="https://en.wikipedia.org/wiki/Shaggy_dog_story" target="_blank"&gt;shaggy dog story&lt;/a&gt;&amp;mdash; but with a twist, because here endless subplots definitely depend upon one central element in the unfolding drama of our grand physics accident: the dominant story mechanic is that we're changing Earth's climate.&amp;nbsp;This leads to outcomes. One way of seeing this is via the abstraction of statistics, while another perspective is that of individual experiences each of which is only an anecdote but together lead us back to statistics. Our story of the week is&amp;nbsp;&lt;a href="https://www.carbonbrief.org/about-us/" target="_blank"&gt;Carbon Brief's&lt;/a&gt; annual summary&amp;nbsp;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/state-of-the-climate-2024-off-to-a-record-warm-start/" target="_blank"&gt;State of the&amp;nbsp;&lt;span id="skstip16" class="skstip beginner disabled"&gt;climate&lt;/span&gt;: 2024 off to a record-warm start&lt;/a&gt;:&lt;/strong&gt;&lt;/p&gt;
  415. &lt;blockquote&gt;
  416. &lt;p&gt;&lt;em&gt;This year is shaping up to either match or surpass 2023 as the hottest year on record.&lt;/em&gt;&lt;/p&gt;
  417. &lt;p&gt;&lt;em&gt;Global temperatures have been exceptionally high over the past three months &amp;ndash;&amp;nbsp;at around 1.6C above&amp;nbsp;&lt;a rel="noreferrer noopener" href="https://www.carbonbrief.org/challenge-defining-pre-industrial-era/" target="_blank"&gt;pre-industrial levels&lt;/a&gt;&amp;nbsp;&amp;ndash;&amp;nbsp;following the peak of current&amp;nbsp;&lt;a rel="noreferrer noopener" href="https://www.carbonbrief.org/interactive-much-el-nino-affect-global-temperature/" target="_blank"&gt;El Ni&amp;ntilde;o&lt;/a&gt;&amp;nbsp;event at the start of 2024.&lt;/em&gt;&lt;/p&gt;
  418. &lt;p&gt;&lt;em&gt;The past 10 months have all set new all-time monthly temperature records, though the margin by which new records have been set has fallen from around 0.3C last year to 0.1C over the first three months of 2024.&amp;nbsp;&lt;/em&gt;&lt;/p&gt;
  419. &lt;p&gt;&lt;em&gt;April 2024 is on track to extend this streak to 11 record months in a row.&lt;/em&gt;&lt;/p&gt;
  420. &lt;/blockquote&gt;
  421. &lt;p&gt;Author Zeke Hausfather continues this informative summary by delivering a complete numerical rundown of where we stand with regard to global surface temperature. In sum we're we're living a spike.&amp;nbsp;Our shock is belated.&amp;nbsp;&lt;a href="https://www.theclimatebrink.com/p/how-extreme-was-the-earths-temperature" target="_blank"&gt;Expert opinion&lt;/a&gt; suggests&amp;nbsp;we're&amp;nbsp; experiencing another wiggle in a upward-trending graph. We've seen this before in historical records, only less remarked given we're only now having our first brush with &lt;span&gt;1.5&lt;/span&gt;&lt;span&gt;&amp;nbsp;&amp;deg;&lt;/span&gt;&lt;span&gt;C of overall warming.&amp;nbsp; In any case, the directed herky jerky plot of global warming inevitably unfolds a bevy of subplots exemplified by other stories from this week's roundup, "anecdotes" in the grand scheme of global temperature records:&lt;/span&gt;&lt;/p&gt;
  422. &lt;ul style="list-style-type: disc;"&gt;
  423. &lt;li&gt;&lt;a href="https://theconversation.com/the-big-dry-forests-and-shrublands-are-dying-in-parched-western-australia-227053" target="_blank"&gt;The big dry: forests and shrublands are dying in parched Western Australia&lt;/a&gt;&lt;/li&gt;
  424. &lt;li&gt;&lt;a href="https://www.independent.co.uk/news/europe-ap-naples-italy-alps-b2532372.html" target="_blank"&gt;Europe is the fastest-warming continent, at nearly twice the average global rate, report says&lt;/a&gt;&lt;/li&gt;
  425. &lt;li&gt;&lt;a href="https://www.livescience.com/planet-earth/antarctica/we-were-in-disbelief-antarctica-is-behaving-in-a-way-weve-never-seen-before-can-it-recover" target="_blank"&gt;'We were in disbelief': Antarctica is behaving in a way we've never seen before. Can it recover?&lt;/a&gt;&lt;/li&gt;
  426. &lt;li&gt;&lt;a href="https://skepticalscience.com/Warming climate is putting more metals into Colorado's mountain streams" target="_blank"&gt;Warming climate is putting more metals into Colorado's mountain streams&lt;/a&gt;&lt;/li&gt;
  427. &lt;/ul&gt;
  428. &lt;p&gt;This shaggy dog story will continue to proliferate and evolve while we wait to reach our next record year.&amp;nbsp;&lt;/p&gt;
  429. &lt;h3&gt;Stories we promoted this week, by publication date:&lt;/h3&gt;
  430. &lt;p&gt;&lt;strong&gt;Before April 21&lt;/strong&gt;&lt;/p&gt;
  431. &lt;ul&gt;
  432. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/opinion/energy-environment/4603740-climate-change-is-also-a-chance-to-transform-education-in-america-again/" target="_blank"&gt;Climate change is also a chance to transform education in America - again&lt;/a&gt;&lt;/strong&gt;, TheHill, Andr&amp;eacute;s Henr&amp;iacute;quez. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  433. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/the-big-dry-forests-and-shrublands-are-dying-in-parched-western-australia-227053" target="_blank"&gt;The big dry: forests and shrublands are dying in parched Western Australia&lt;/a&gt;&lt;/strong&gt;, Environment &amp;amp; Energy, The Conversation AU, by Joe Fontaine, George Matusick, Jatin Kala, Kerryn Hawke &amp;amp; Nate Anderson. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  434. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2024/04/20/opinion/trump-biden-climate-election.html" target="_blank"&gt;A Planetary Crisis Awaits the Next President&lt;/a&gt;&lt;/strong&gt;, New York Times, Guest Essay by Stephen Markley. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  435. &lt;/ul&gt;
  436. &lt;p&gt;&lt;strong&gt;April 21&lt;/strong&gt;&lt;/p&gt;
  437. &lt;!--more--&gt;
  438. &lt;ul&gt;
  439. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_16.html?utm-source=facebook&amp;amp;utm-campaign=socialnetworks&amp;amp;utm-term=sks" target="_blank"&gt;2024 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #16&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, B&amp;auml;rbel Winkler, Doug Bostrom &amp;amp; John Hartz. &lt;em&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, April 14, 2024 thru Sat, April 20, 2024.&lt;/em&gt;&lt;/li&gt;
  440. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/yfzmwjWBVPU" target="_blank"&gt;100% wind and solar is coming!&lt;/a&gt;&lt;/strong&gt;, "Just have a think" on Youtube, Dave Borlace. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  441. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2024/04/21/arts/television/climate-change-apocalypse-optimism.html?unlocked_article_code=1.mE0.uSJo.FyuqyV_nRjz2&amp;amp;smid=url-share" target="_blank"&gt;Climate Doom Is Out. `Apocalyptic Optimism` Is In.&lt;/a&gt;&lt;/strong&gt;, NYT, Alexis Soloski. &lt;em&gt;Focusing on disaster hasn&amp;rsquo;t changed the planet&amp;rsquo;s trajectory. Will a more upbeat approach show a way forward?&lt;/em&gt;&lt;/li&gt;
  442. &lt;/ul&gt;
  443. &lt;p&gt;&lt;strong&gt;April 22&lt;/strong&gt;&lt;/p&gt;
  444. &lt;ul&gt;
  445. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.independent.co.uk/news/europe-ap-naples-italy-alps-b2532372.html" target="_blank"&gt;Europe is the fastest-warming continent, at nearly twice the average global rate, report says&lt;/a&gt;&lt;/strong&gt;, The Independent News, Jamey Keaten. &lt;em&gt;Two top climate monitoring organizations are reporting that Europe is the fastest-warming continent and its temperatures are rising at roughly twice the global average&lt;/em&gt;&lt;/li&gt;
  446. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.livescience.com/planet-earth/antarctica/we-were-in-disbelief-antarctica-is-behaving-in-a-way-weve-never-seen-before-can-it-recover" target="_blank"&gt;We were in disbelief': Antarctica is behaving in a way we've never seen before. Can it recover?&lt;/a&gt;&lt;/strong&gt;, Livescience, Ben Turner. &lt;em&gt;Antarctic sea ice has been disappearing over the last several summers. Now, climate scientists are wondering whether it will ever come back.&lt;/em&gt;&lt;/li&gt;
  447. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theverge.com/2024/4/22/24137368/europe-climate-change-warming-un-copernicus-report" target="_blank"&gt;Europe`s warming up at nearly twice the global average, says new report&lt;/a&gt;&lt;/strong&gt;, The Verge - Science Posts, Amrita Khalid. &lt;em&gt;In 2023, the continent experienced extreme heatwaves, severe flooding, and its largest ever recorded wildfire. &lt;/em&gt;&lt;/li&gt;
  448. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://billmckibben.substack.com/p/good-news-and-nothing-but" target="_blank"&gt;Good News and Nothing But&lt;/a&gt;&lt;/strong&gt;, The Crucial Years, Bill McKibben. &lt;em&gt;One Day Only--Happy Earth Day&lt;/em&gt;&lt;/li&gt;
  449. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.yahoo.com/lifestyle/individuals-impact-climate-change-where-230841352.html" target="_blank"&gt;Can individuals make an impact on climate change? Here`s where local experts say to start&lt;/a&gt;&lt;/strong&gt;, Yahoo News - Latest News , Michelle Alfini.&lt;/li&gt;
  450. &lt;/ul&gt;
  451. &lt;ul&gt;
  452. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/interactive/2024/04/20/upshot/carbon-dioxide-growth.html" target="_blank"&gt;Carbon Dioxide Levels Have Passed a New Milestone&lt;/a&gt;&lt;/strong&gt;, The Upshot, New York Times, Aatish Bhatia. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  453. &lt;/ul&gt;
  454. &lt;p&gt;&lt;strong&gt;April 23&lt;/strong&gt;&lt;/p&gt;
  455. &lt;ul&gt;
  456. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2024/04/how-to-talk-to-a-climate-doomer-even-if-that-doomer-is-you/" target="_blank"&gt;How to talk to a climate doomer (even if that doomer is you)&lt;/a&gt;&lt;/strong&gt;, Yale Climate Connections, Daisy Simmons. &lt;em&gt; It&amp;rsquo;s not too late to tackle climate change, but sometimes it sure feels that way. &lt;/em&gt;&lt;/li&gt;
  457. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/state-of-the-climate-2024-off-to-a-record-warm-start/" target="_blank"&gt;State of the climate: 2024 off to a record-warm start&lt;/a&gt;&lt;/strong&gt;, Carbon Brief, Zeke Hausfather. &lt;em&gt;This year is shaping up to either match or surpass 2023 as the hottest year on record.&lt;/em&gt;&lt;/li&gt;
  458. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.cnn.com/2024/04/23/climate/indonesia-volcano-eruption-weather-impact/index.html" target="_blank"&gt;A powerful volcano is erupting. Here&amp;rsquo;s what that could mean for weather and climate&lt;/a&gt;&lt;/strong&gt;, Climate, CNN, Mary Gilbert. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  459. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2024-04-climate-metals-colorado-mountain-streams.html" target="_blank"&gt;Warming climate is putting more metals into Colorado's mountain streams&lt;/a&gt;&lt;/strong&gt;, Phys.org, Liza Lester. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  460. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2024/04/23/climate/your-most-pressing-climate-questions.html?unlocked_article_code=1.m00.A6FX.Cc0ZYu7sL6-6&amp;amp;smid=url-share" target="_blank"&gt;Your most pressing climate questions&lt;/a&gt;&lt;/strong&gt;, NYT, Ryan McCarthy. &lt;em&gt;Introducing Ask NYT Climate, where we&amp;rsquo;ll explore how climate intersects with your everyday life&lt;/em&gt;&lt;/li&gt;
  461. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/africas-megacities-threatened-by-heat-floods-and-disease-urgent-action-is-needed-to-start-greening-and-adapt-to-climate-change-227100" target="_blank"&gt;Africa&amp;rsquo;s megacities threatened by heat, floods and disease &amp;ndash; urgent action is needed to start greening and adapt to climate change&lt;/a&gt;&lt;/strong&gt;, Climate, The Conversation AF, April 23, 2024, Meelan Thondoo. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  462. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.ehn.org/earth-day-2024-youth-climate-change-2667811517.html" target="_blank"&gt;Earth Day reflections from the next generation&lt;/a&gt;&lt;/strong&gt;, Environmental Health News (EHN, Editors. &lt;em&gt;"This week we're featuring essays from Houston-area eighth graders to hear what the youth think about the state of our planet."&lt;/em&gt;&lt;/li&gt;
  463. &lt;/ul&gt;
  464. &lt;p&gt;&lt;strong&gt;April 24&lt;/strong&gt;&lt;/p&gt;
  465. &lt;ul&gt;
  466. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.livescience.com/planet-earth/climate-change/yellowstone-lakes-weird-resistance-to-climate-change-could-be-about-to-crack" target="_blank"&gt;Yellowstone Lake's weird resistance to climate change could be about to crack&lt;/a&gt;&lt;/strong&gt;, Livescience, Ben Turner. &lt;em&gt;Yellowstone's lake's ice cover has remained unaffected by increasing temperatures due to increased snowfall. But this could make it vulnerable to a sudden shift.&lt;/em&gt;&lt;/li&gt;
  467. &lt;/ul&gt;
  468. &lt;p&gt;&lt;strong&gt;April 25&lt;/strong&gt;&lt;/p&gt;
  469. &lt;ul&gt;
  470. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/25/climate-crisis-activists" target="_blank"&gt;`Outrageous` climate activists get in the faces of politicians and oil bosses - will it work?&lt;/a&gt;&lt;/strong&gt;, The Guardian, Oliver Milman. &lt;em&gt;As the climate crisis has deepened, protesters have become more confrontational &amp;ndash; and their ambitions have grown&lt;/em&gt;&lt;/li&gt;
  471. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theclimatebrink.com/p/pinning-down-climate-changes-role" target="_blank"&gt;Pinning down climate change's role in extreme weather&lt;/a&gt;&lt;/strong&gt;, The Climate Brink, Andrew Dessler. &lt;em&gt;and did climate change contribute to the flooding in Dubai?&lt;/em&gt;&lt;/li&gt;
  472. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.vox.com/climate/24139383/climate-change-peak-greenhouse-gas-emissions-action" target="_blank"&gt;We might be closer to changing course on climate change than we realized&lt;/a&gt;&lt;/strong&gt;, Climate, Vox, Umair Irfan. &lt;em&gt;"Greenhouse gas emissions might have already peaked. Now they need to fall &amp;mdash; fast."&lt;/em&gt;&lt;/li&gt;
  473. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2024_17.html" target="_blank"&gt;Skeptical Science New Research for Week #17 2024&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack. &lt;em&gt;A weekly overview of research on matters of human-caused climate change.&lt;/em&gt;&lt;/li&gt;
  474. &lt;/ul&gt;
  475. &lt;p&gt;&lt;strong&gt;April 26&lt;/strong&gt;&lt;/p&gt;
  476. &lt;ul&gt;
  477. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.idiv.de/en/news/news_single_view/5306.html" target="_blank"&gt;Climate change could become the main driver of biodiversity decline by mid-century&lt;/a&gt;&lt;/strong&gt;, iDiv, iDiv. &lt;em&gt;Press release from the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig about the largest modelling study of its kind, published in Science&lt;/em&gt;&lt;/li&gt;
  478. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/26/scientists-comedians-join-forces-get-climate-crisis-message-across" target="_blank"&gt;Scientists and comedians join forces to get climate crisis message across&lt;/a&gt;&lt;/strong&gt;, The Guardian, Jeremy Plester. &lt;em&gt;Video series launched in which comics translate climate science into down-to-earth language&lt;/em&gt;&lt;/li&gt;
  479. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://blogs.law.columbia.edu/climatechange/2024/04/26/the-paris-effect-human-rights-in-light-of-international-climate-goals-and-commitments/" target="_blank"&gt;The Paris Effect: Human Rights in Light of International Climate Goals and Commitments&lt;/a&gt;&lt;/strong&gt;, Climate Law Blog, Jannika Jahn. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  480. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/26042024/nixon-administration-climate-research-plan/" target="_blank"&gt;Nixon Advisers` Climate Research Plan: Another Lost Chance on the Road to Crisis&lt;/a&gt;&lt;/strong&gt;, Inside Climate News, Marianne Lavelle. &lt;em&gt;A 1971 plan for a global carbon dioxide monitoring network never came to fruition. The proposal is detailed in a document newly unearthed by the National Security Archive.&lt;/em&gt;&lt;/li&gt;
  481. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://factcheck.afp.com/doc.afp.com.34PX9MM" target="_blank"&gt;Climate skeptic dismisses severity of Great Barrier Reef bleaching&lt;/a&gt;&lt;/strong&gt;, AFP Fact Check, Manon Jacob. &lt;em&gt;Scientists predict recent bleaching at Australia's Great Barrier Reef will be the worst on record, but skeptics online dismiss the damage by claiming coral populations are at a record high. &lt;/em&gt;&lt;/li&gt;
  482. &lt;/ul&gt;
  483. &lt;p&gt;&lt;strong&gt;April 27&lt;/strong&gt;&lt;/p&gt;
  484. &lt;ul&gt;
  485. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-antarctica.html" target="_blank"&gt;Fact Brief - Is Antarctica gaining land ice?&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, SkS Team. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  486. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theverge.com/24137380/forest-restoration-costa-rica-guanacaste-conservation-tree" target="_blank"&gt;They turned cattle ranches into tropical forest - then climate change hit&lt;/a&gt;&lt;/strong&gt;, The Verge, Justine Calma. &lt;em&gt;They brought forests back to life in Costa Rica. Their next challenge? Restoring ecosystems in a warming world.&lt;/em&gt;&lt;/li&gt;
  487. &lt;/ul&gt;
  488. &lt;p class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/p&gt;</description>
  489. <link>https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_17.html</link>
  490. <guid>https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_17.html</guid>
  491. <pubDate>Sun, 28 Apr 2024 10:55:44 EST</pubDate>
  492. </item>  <item>
  493. <title>Fact Brief - Is Antarctica gaining land ice?</title>
  494. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. This fact brief was written by Sue Bin Park in collaboration with members from our Skeptical Science team. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  495. &lt;h3&gt;Is Antarctica gaining land ice?&lt;/h3&gt;
  496. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-No-200px.jpg" alt="no" width="200" height="59" /&gt;While Antarctic sea ice varies seasonally, the continent's land ice has continued to melt at an increasing pace.&lt;/p&gt;
  497. &lt;p&gt;Sea ice forms during the Antarctic winter and retreats during the warmer months. Such freeze-thaw cycles have no impact on sea levels since they happen within the ocean. However, Antarctic land ice has seen a net decrease, resulting in a significant increase in fresh water flowing into the sea. That does affect global sea levels.&lt;/p&gt;
  498. &lt;p&gt;The behavior of Antarctic land ice varies from region to region. In particular, the West Antarctic Peninsula has seen drastic ice retreat. On the other hand, East Antarctica's land ice has remained relatively stable to date. But if global warming crosses a specific threshold, serious loss is expected to occur. The planet has already moved a third of the way towards that threshold and will pass it within a century, if fossil fuel burning continues unabated.&lt;/p&gt;
  499. &lt;p&gt;&lt;a href="https://sks.to/antarctica" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/is-antarctica-gaining-land-ice" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  500. &lt;hr /&gt;
  501. &lt;p&gt;This fact brief is responsive to conversations such as &lt;a href="https://archive.ph/RFOWWl" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  502. &lt;hr /&gt;
  503. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  504. &lt;!--more--&gt;
  505. &lt;p&gt;Nature &lt;a href="https://www.nature.com/articles/s41586-018-0179-y.epdf?author_access_token=G6bM-sEvNrsr_d3FPj8qjtRgN0jAjWel9jnR3ZoTv0PBEKqWHTwARrIrR4OxoHFdEh63arkDNi_bORoXuP_CQqP5K8MYc-mJnNFT_QmTd-WnNN5Mp3ZqXQU1Cq6c0OT0JzMpvEGDRBCqqg_mMZ20Fg%3D%3D" target="_blank"&gt;Mass balance of the Antarctic Ice Sheet from 1992 to 2017&lt;/a&gt;&lt;/p&gt;
  506. &lt;p&gt;My NASA Data &lt;a href="https://archive.ph/qyYyN" target="_blank"&gt;Sea and Land Ice Melt&lt;/a&gt;&lt;/p&gt;
  507. &lt;p&gt;NASA &lt;a href="https://climate.nasa.gov/vital-signs/ice-sheets/?intent=121" target="_blank"&gt;Ice Sheets&lt;/a&gt;&lt;/p&gt;
  508. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer &amp;ldquo;yes/no&amp;rdquo; answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://gigafact.org/skeptical-science" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  509. &lt;p&gt;&lt;a href="https://gigafact.org/tipline?org_id=1813&amp;amp;utm_medium=website&amp;amp;utm_source=skeptical-science" target="_blank"&gt;&lt;img style="display: block; margin-left: auto; margin-right: auto;" src="https://skepticalscience.com/pics/Gigafact-Tipline-Logo-250px.jpg" alt="Gigafact Tipline" width="250" height="319" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  510. <link>https://skepticalscience.com/fact-brief-antarctica.html</link>
  511. <guid>https://skepticalscience.com/fact-brief-antarctica.html</guid>
  512. <pubDate>Sat, 27 Apr 2024 10:24:00 EST</pubDate>
  513. </item>  <item>
  514. <title>Skeptical Science New Research for Week #17 2024</title>
  515. <description>&lt;h3&gt;&lt;span&gt;&lt;strong&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/strong&gt;&lt;/span&gt;&lt;/h3&gt;
  516. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01322-w" target="_blank"&gt;Ice acceleration and rotation in the&amp;nbsp;&lt;span id="skstip55" class="skstip beginner disabled"&gt;Greenland Ice Sheet&lt;/span&gt;&amp;nbsp;interior in recent decades&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, L&amp;oslash;kkegaard et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Communications Earth &amp;amp; Environment:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  517. &lt;blockquote&gt;
  518. &lt;p&gt;&lt;em&gt;In the past two decades, mass loss from the Greenland ice sheet has accelerated, partly due to the speedup of glaciers. However, uncertainty in speed derived from satellite products hampers the detection of inland changes. In-situ measurements using stake surveys or GPS have lower uncertainties. To detect inland changes, we repeated in-situ measurements of ice-sheet surface velocities at 11 historical locations first measured in 1959, located upstream of Jakobshavn Isbr&amp;aelig;, west Greenland. Here, we show ice velocities have increased by 5&amp;ndash;15% across all deep inland sites. Several sites show a northward deflection of 3&amp;ndash;4.5&amp;deg; in their flow azimuth. The recent appearance of a network of large transverse surface crevasses, bisecting historical overland traverse routes, may indicate a fundamental shift in local ice dynamics. We suggest that creep instability&amp;mdash;a coincident warming and softening of near-bed ice layers&amp;mdash;may explain recent acceleration and rotation, in the absence of an appreciable change in local driving stress&lt;strong&gt;.&lt;/strong&gt;&lt;/em&gt;&lt;/p&gt;
  519. &lt;/blockquote&gt;
  520. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01346-2" target="_blank"&gt;Record-breaking fire weather in North America in 2021 was initiated by the Pacific northwest&amp;nbsp;&lt;span id="skstip16" class="skstip beginner disabled"&gt;heat&lt;/span&gt;&amp;nbsp;dome&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Jain et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Communications Earth &amp;amp; Environment:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  521. &lt;blockquote&gt;
  522. &lt;p&gt;&lt;em&gt;The 2021 North American wildfire season was marked by record breaking fire-conducive weather and widespread synchronous burning, extreme fire behaviour, smoke and evacuations. Relative to 1979&amp;ndash;2021, the greatest number of temperature and vapor pressure deficit records were broken in 2021, and in July alone, 3.2 million hectares burned in Canada and the United States. These events were catalyzed by an intense heat dome that formed in late June over western North America that synchronized fire danger, challenging fire suppression efforts. Based on analysis of persistent positive anomalies of geopotential heights, the heat dome accounted for 21&amp;ndash;34% of the total area burned in 2021. The event was 59% longer, 34% larger and had 6% higher maximum amplitude than the same event would have been without a warming climate. Climate change will continue to magnify heat dome events, increase fire danger, and enable extreme synchronous wildfire in forested areas of North America.&lt;/em&gt;&lt;/p&gt;
  523. &lt;/blockquote&gt;
  524. &lt;p&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107772" target="_blank"&gt;Future Slower Reduction of&amp;nbsp;&lt;span id="skstip120" class="skstip beginner disabled"&gt;Anthropogenic&lt;/span&gt;&amp;nbsp;&lt;span id="skstip121" class="skstip intermediate disabled"&gt;Aerosols&lt;/span&gt;&amp;nbsp;Enhances Extratropical Ocean Surface Warming&amp;nbsp;&lt;span id="skstip122" class="skstip intermediate disabled"&gt;Trend&lt;/span&gt;s&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Gu et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Geophysical Research Letters:&lt;/em&gt;&lt;/p&gt;
  525. &lt;blockquote&gt;
  526. &lt;p&gt;&lt;em&gt;Global surface temperature short-term trends fluctuate between cooling and fast-warming under the combined action of external forcing and internal variability, significantly influencing the detectability of near-term climate change. A key driver of these variations is anthropogenic aerosols (AAs), which have undergone a non-monotonic evolution with rapid reduction in recent decades. However, their reduction is projected to decelerate under a high carbon emission scenario, yet the impact on surface temperature trends remains unknown. Here, using initial-perturbation large ensembles, we find that future slowdown in AA reduction over Europe and North America expedites the subpolar North Atlantic surface warming by intensifying the Atlantic meridional overturning circulation. Further, it accelerates the South Indian Ocean and Southern Ocean surface warming through positive low-cloud feedback and oceanic dynamical adjustment, triggered by the poleward migration of westerlies under interhemispheric energy constraint. These AA-driven warmings exacerbate greenhouse warming, significantly enhancing the detectability of local decadal warming trends.&lt;/em&gt;&lt;/p&gt;
  527. &lt;/blockquote&gt;
  528. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl108271" target="_blank"&gt;Deglacial Pulse of Neutralized Carbon From the Pacific Seafloor: A Natural Analog for Ocean&amp;nbsp;&lt;span id="skstip116" class="skstip advanced disabled"&gt;Alkalinity&lt;/span&gt;&amp;nbsp;Enhancement?&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Green et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Geophysical Research Letters:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  529. &lt;blockquote&gt;
  530. &lt;p&gt;&lt;em&gt;The ocean carbon reservoir controls atmospheric carbon dioxide (CO2) on millennial timescales. Radiocarbon (14C) anomalies in eastern North Pacific sediments suggest a significant release of geologic&amp;nbsp;14C-free carbon at the end of the last ice age but without evidence of ocean acidification. Using inverse carbon cycle modeling optimized with reconstructed atmospheric CO2&amp;nbsp;and&amp;nbsp;14C/C, we develop first-order constraints on geologic carbon and alkalinity release over the last 17.5 thousand years. We construct scenarios allowing the release of 850&amp;ndash;2,400&amp;nbsp;Pg&amp;nbsp;C, with a maximum release rate of 1.3&amp;nbsp;Pg&amp;nbsp;C&amp;nbsp;yr&amp;minus;1, all of which require an approximate equimolar alkalinity release. These neutralized carbon addition scenarios have minimal impacts on the simulated marine carbon cycle and atmospheric CO2, thereby demonstrating safe and effective ocean carbon storage. This deglacial phenomenon could serve as a natural analog to the successful implementation of gigaton-scale ocean alkalinity enhancement, a promising marine carbon dioxide removal method.&lt;/em&gt;&lt;/p&gt;
  531. &lt;/blockquote&gt;
  532. &lt;p&gt;&lt;strong&gt;From this week's government/NGO&amp;nbsp;&lt;a href="https://skepticalscience.com/new_research_2024_10.html#gov-ngo"&gt;section:&lt;/a&gt;&lt;/strong&gt;&amp;nbsp;&lt;/p&gt;
  533. &lt;p&gt;&lt;strong&gt;&lt;a href="https://escholarship.org/content/qt12s624vf/qt12s624vf.pdf?t=sbz1qn" target="_blank"&gt;Climate Impact of Primary Plastic Production&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Karali et al.,&amp;nbsp;&lt;strong&gt;Lawrence Berkeley National Laboratory:&lt;/strong&gt;&lt;/p&gt;
  534. &lt;blockquote&gt;&lt;em&gt;Plastics show the strongest production growth of all bulk materials over the last decade. The industry&amp;rsquo;s current growth trajectory is exponential and plastic production is expected to double or triple by 2050. The rapidly increasing production of plastics and the continued reliance on fossil fuels for production, have contributed to numerous environmental problems and health harms. As a result, plastic pollution has become an increasing threat to natural ecosystems, human health and climate. However, there is a lack of granularity on the contribution of the primary plastics specifically to greenhouse gas (GHG) emissions and their impact on the remaining global carbon budget needed to stay below a 1.5&amp;deg;C or 2&amp;deg;C global average temperature rise. The authors explore the contribution of primary plastic production to climate change disaggregated by polymer and technology.&lt;/em&gt;&lt;/blockquote&gt;
  535. &lt;p&gt;&lt;strong&gt;&lt;a href="https://nexus25.org/publication/the-elephant-in-the-climate-room-financing-sustainable-security-and-supporting-future-fit-systems" target="_blank"&gt;The Elephant in the Climate Room: Financing Sustainable Security and Supporting Future-Fit Systems&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Cicarelli et al.,&amp;nbsp;&lt;strong&gt;The Center for Climate and Security:&lt;/strong&gt;&lt;/p&gt;
  536. &lt;blockquote&gt;&lt;em&gt;The authors outline the key challenges facing policymakers ahead of this year's "Spring Meetings" of the International Monetary Fund and World Bank, particularly in the context of food security challenges, global instability, and gaps in climate finance. The gap in climate finance has implications beyond sustainable development and humanitarian needs. Further, investments in climate adaptation and resilience are essential for addressing the security implications of climate change, helping reduce risks and vulnerabilities, and helping build more stable and secure societies.&lt;/em&gt;&amp;nbsp;&lt;/blockquote&gt;
  537. &lt;h3&gt;129 articles in 64 journals by 682 contributing authors&lt;/h3&gt;
  538. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  539. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107334" target="_blank"&gt;Absorption of Solar Radiation by Noctilucent Clouds in a Changing Climate&lt;/a&gt;, L&amp;uuml;bken et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107334" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107334" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl107334&lt;/p&gt;
  540. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1126/sciadv.ado2515" target="_blank"&gt;Hydrologic cycle weakening in hothouse climates&lt;/a&gt;, Liu et al., &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.ado2515&lt;/p&gt;
  541. &lt;!--more--&gt;
  542. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1175/jcli-d-23-0630.1" target="_blank"&gt;Intensified Impact of Spring Tibetan Plateau Snow Cover on Summer Compound Heat Waves in Western Europe after 1998&lt;/a&gt;, Dong et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-23-0630.1&lt;/p&gt;
  543. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jc020527" target="_blank"&gt;Role of Anomalous Ocean Warming on the Intensification of Pre-Monsoon Tropical Cyclones Over the Northern Bay of Bengal&lt;/a&gt;, Ray et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; 10.1029/2023jc020527&lt;/p&gt;
  544. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1175/jcli-d-23-0287.1" target="_blank"&gt;The Role of Atmospheric Stabilities and Moisture Convergence in the Enhanced Dry Season Precipitation over Land from 1979 to 2021&lt;/a&gt;, Lan et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-23-0287.1&lt;/p&gt;
  545. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  546. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jc020512" target="_blank"&gt;Decadal-Scale Variability in the Surface Flow of the Gulf of Maine Coastal Current: The Impact of Changing Climate Conditions on Coastal Circulation&lt;/a&gt;, Burkholder et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; 10.1029/2023jc020512&lt;/p&gt;
  547. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloplacha.2024.104442" target="_blank"&gt;Flow regime alteration in Arctic rivers due to dam operations and climate change&lt;/a&gt;, Patro et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloplacha.2024.104442" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloplacha.2024.104442&lt;/p&gt;
  548. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl109385" target="_blank"&gt;Rapid Acceleration of Arctic Near-Surface Wind Speed in a Warming Climate&lt;/a&gt;, Liu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL109385" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL109385" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2024gl109385&lt;/p&gt;
  549. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01346-2" target="_blank"&gt;Record-breaking fire weather in North America in 2021 was initiated by the Pacific northwest heat dome&lt;/a&gt;, Jain et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01346-2.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01346-2&lt;/p&gt;
  550. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41561-024-01422-4" target="_blank"&gt;Weakening of the Atlantic Meridional Overturning Circulation abyssal limb in the North Atlantic&lt;/a&gt;, Bil&amp;oacute; et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-024-01422-4&lt;/p&gt;
  551. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  552. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jd040540" target="_blank"&gt;Contributions From Cloud Morphological Changes to the Interannual Shortwave Cloud Feedback Based on MODIS and ISCCP Satellite Observations&lt;/a&gt;, Tan et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023JD040540" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023JD040540" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023jd040540&lt;/p&gt;
  553. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl108791" target="_blank"&gt;Data Drought in the Humid Tropics: How to Overcome the Cloud Barrier in Greenhouse Gas Remote Sensing&lt;/a&gt;, Frankenberg et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108791" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108791" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2024gl108791&lt;/p&gt;
  554. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  555. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef003629" target="_blank"&gt;Assessment of the Global Relationship of Different Types of Droughts in Model Simulations Under High Anthropogenic Emissions&lt;/a&gt;, Gimeno?Sotelo et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF003629" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF003629" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef003629&lt;/p&gt;
  556. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl108013" target="_blank"&gt;Atlantic Warming Enhances the Influence of Atlantic Ni&amp;ntilde;o on ENSO&lt;/a&gt;, Wang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL108013" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL108013" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl108013&lt;/p&gt;
  557. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.atmosres.2024.107440" target="_blank"&gt;Characteristic changes in compound drought and heatwave events under climate change&lt;/a&gt;, Wang et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2024.107440&lt;/p&gt;
  558. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.wace.2024.100673" target="_blank"&gt;Compound wind and rainfall extremes: Drivers and future changes over the UK and Ireland&lt;/a&gt;, Manning et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2024.100673" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2024.100673&lt;/p&gt;
  559. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl108654" target="_blank"&gt;Projected Global Temperature Changes After Net Zero Are Small But Significant&lt;/a&gt;, Borowiak et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108654" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108654" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2024gl108654&lt;/p&gt;
  560. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl106747" target="_blank"&gt;The Multi-Scale Response of the Eddy Kinetic Energy and Transport to Strengthened Westerlies in an Idealized Antarctic Circumpolar Current&lt;/a&gt;, Liu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106747" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106747" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl106747&lt;/p&gt;
  561. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jd039935" target="_blank"&gt;Thermal Response of Large Seasonally Ice-Covered Lakes Over Tibetan Plateau to Climate Change&lt;/a&gt;, Wu et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2023jd039935&lt;/p&gt;
  562. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/bg-21-1923-2024" target="_blank"&gt;Timescale dependence of airborne fraction and underlying climate&amp;ndash;carbon-cycle feedbacks for weak perturbations in CMIP5 models&lt;/a&gt;, Torres Mendon&amp;ccedil;a et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-21-1923-2024&lt;/p&gt;
  563. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  564. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/gmd-17-3111-2024" target="_blank"&gt;An overview of cloud&amp;ndash;radiation denial experiments for the Energy Exascale Earth System Model version 1&lt;/a&gt;, Harrop et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-3111-2024&lt;/p&gt;
  565. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07220-3" target="_blank"&gt;Evaluation of metrics for assessing dipolar climate patterns in climate models&lt;/a&gt;, Veiga &amp;amp; Yuan, &lt;em&gt;Climate Dynamics&lt;/em&gt; 10.1007/s00382-024-07220-3&lt;/p&gt;
  566. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07192-4" target="_blank"&gt;Improving land surface feedbacks to the atmosphere in convection-permitting climate simulations for Europe&lt;/a&gt;, Halladay et al., &lt;em&gt;Climate Dynamics&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s00382" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s00382-024-07192-4.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00382-024-07192-4&lt;/p&gt;
  567. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01352-4" target="_blank"&gt;Projected changes in compound hot-dry events depend on the dry indicator considered&lt;/a&gt;, Hosseinzadehtalaei et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01352-4.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01352-4&lt;/p&gt;
  568. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/gmd-17-3081-2024" target="_blank"&gt;The computational and energy cost of simulation and storage for climate science: lessons from CMIP6&lt;/a&gt;, Acosta et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-3081-2024&lt;/p&gt;
  569. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/gmd-17-1217-2024" target="_blank"&gt;Towards the definition of a solar forcing dataset for CMIP7&lt;/a&gt;, Funke et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://gmd.copernicus.org/articles/17/1217/2024/gmd" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://gmd.copernicus.org/articles/17/1217/2024/gmd-17-1217-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/gmd-17-1217-2024&lt;/p&gt;
  570. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  571. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.atmosres.2024.107425" target="_blank"&gt;Contribution of climatic variables and their interactions to reference evapotranspiration changes considering freeze-thaw cycles in the Tibetan Plateau during 1960&amp;ndash;2022&lt;/a&gt;, Chang et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2024.107425&lt;/p&gt;
  572. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/egusphere-2023-1587" target="_blank"&gt;Geometric amplification and suppression of ice-shelf basal melt in West Antarctica&lt;/a&gt;, De Rydt &amp;amp; Naughten Naughten Naughten Naughten, &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://tc.copernicus.org/articles/18/1863/2024/tc" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://tc.copernicus.org/articles/18/1863/2024/tc-18-1863-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/egusphere-2023-1587&lt;/p&gt;
  573. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01322-w" target="_blank"&gt;Ice acceleration and rotation in the Greenland Ice Sheet interior in recent decades&lt;/a&gt;, L&amp;oslash;kkegaard et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01322-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01322-w&lt;/p&gt;
  574. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/tc-2023-138" target="_blank"&gt;Permafrost degradation of peatlands in northern Sweden&lt;/a&gt;, Valman et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://tc.copernicus.org/articles/18/1773/2024/tc" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://tc.copernicus.org/articles/18/1773/2024/tc-18-1773-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/tc-2023-138&lt;/p&gt;
  575. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  576. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47598-6" target="_blank"&gt;Sustained increase in suspended sediments near global river deltas over the past two decades&lt;/a&gt;, Hou et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47598-6.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47598-6&lt;/p&gt;
  577. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloplacha.2024.104451" target="_blank"&gt;The dominant modes of recent sea level variability from 1993 to 2020 in the China Seas&lt;/a&gt;, Feng et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2024.104451&lt;/p&gt;
  578. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  579. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl106413" target="_blank"&gt;Deglacial Carbon Escape From the Northern Rim of the Southern Ocean&lt;/a&gt;, Umling et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106413" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106413" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl106413&lt;/p&gt;
  580. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47369-3" target="_blank"&gt;Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene&lt;/a&gt;, Lowry et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47369-3.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47369-3&lt;/p&gt;
  581. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  582. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/ecog.07200" target="_blank"&gt;Climatic stability predicts the congruence between species abundance and genetic diversity&lt;/a&gt;, Formoso?Freire et al., &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ecog.07200" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ecog.07200" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/ecog.07200&lt;/p&gt;
  583. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02222-7" target="_blank"&gt;Consequence of habitat specificity: a rising risk of habitat loss for endemic and sub-endemic woody species under climate change in the Hyrcanian ecoregion&lt;/a&gt;, S?kiewicz et al., &lt;em&gt;Regional Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10113" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10113-024-02222-7.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10113-024-02222-7&lt;/p&gt;
  584. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/1365-2745.14310" target="_blank"&gt;Contrasting responses of forest phenological guilds to complex floodplain change&lt;/a&gt;, Hole&amp;scaron;tov&amp;aacute; et al., &lt;em&gt;Journal of Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.14310" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/1365-2745.14310&lt;/p&gt;
  585. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41598-024-58980-1" target="_blank"&gt;Corals survive severe bleaching event in refuges related to taxa, colony size, and water depth&lt;/a&gt;, Winslow et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41598" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41598-024-58980-1.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41598-024-58980-1&lt;/p&gt;
  586. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.agrformet.2024.110019" target="_blank"&gt;Declined benefit of earlier spring greening on summer growth in northern ecosystems under future scenarios&lt;/a&gt;, Huang et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2024.110019&lt;/p&gt;
  587. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17291" target="_blank"&gt;Declined terrestrial ecosystem resilience&lt;/a&gt;, Yao et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.17291&lt;/p&gt;
  588. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/ddi.13832" target="_blank"&gt;Elevation modulates the impacts of climate change on the Brazilian Cerrado flora&lt;/a&gt;, Silva et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ddi.13832" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ddi.13832" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/ddi.13832&lt;/p&gt;
  589. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1126/sciadv.adn4152" target="_blank"&gt;Functional diversity enhances dryland forest productivity under long-term climate change&lt;/a&gt;, Hisano et al., &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adn4152&lt;/p&gt;
  590. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1098/rsbl.2024.0009" target="_blank"&gt;Hot and scared: how do heatwaves and predation risk impact resource acquisition and allocation?&lt;/a&gt;, Stahlschmidt et al., &lt;em&gt;Biology Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rsbl.2024.0009" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rsbl.2024.0009&lt;/p&gt;
  591. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17292" target="_blank"&gt;Impact of aridity rise and arid lands expansion on carbon-storing capacity, biodiversity loss, and ecosystem services&lt;/a&gt;, Tariq et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.17292&lt;/p&gt;
  592. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.marenvres.2024.106523" target="_blank"&gt;Kelp holdfast microclimates buffer invertebrate inhabitants from extreme temperatures&lt;/a&gt;, Perry et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.marenvres.2024.106523" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.marenvres.2024.106523&lt;/p&gt;
  593. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43017-024-00527-z" target="_blank"&gt;Mechanisms, detection and impacts of species redistributions under climate change&lt;/a&gt;, Lawlor et al., &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; 10.1038/s43017-024-00527-z&lt;/p&gt;
  594. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/ffgc.2024.1280254" target="_blank"&gt;Modeling the impacts of hot drought on forests in Texas&lt;/a&gt;, Lawal et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1280254/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1280254/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/ffgc.2024.1280254&lt;/p&gt;
  595. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1098/rspb.2023.2564" target="_blank"&gt;Multi-trait diversification in marine diatoms in constant and warmed environments&lt;/a&gt;, Hinners et al., &lt;em&gt;Proceedings of the Royal Society B: Biological Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rspb.2023.2564" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rspb.2023.2564&lt;/p&gt;
  596. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/ecog.07213" target="_blank"&gt;Reliability of presence-only data for assessing plant community responses to climate warming&lt;/a&gt;, Camila Pacheco?Ria&amp;ntilde;o et al., &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ecog.07213" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ecog.07213" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/ecog.07213&lt;/p&gt;
  597. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47563-3" target="_blank"&gt;Responses of marine trophic levels to the combined effects of ocean acidification and warming&lt;/a&gt;, Hu et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47563-3.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47563-3&lt;/p&gt;
  598. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47656-z" target="_blank"&gt;Speed of environmental change frames relative ecological risk in climate change and climate intervention scenarios&lt;/a&gt;, Hueholt et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47656-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47656-z&lt;/p&gt;
  599. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloplacha.2024.104440" target="_blank"&gt;The greening of vegetation on the Loess Plateau has resulted in a northward shift of the vegetation greenness line&lt;/a&gt;, Song et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2024.104440&lt;/p&gt;
  600. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/ece3.11300" target="_blank"&gt;Unravelling the impact of climate change on honey bees: An ensemble modelling approach to predict shifts in habitat suitability in Queensland, Australia&lt;/a&gt;, Tennakoon et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.11300" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.11300" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/ece3.11300&lt;/p&gt;
  601. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.agrformet.2024.110018" target="_blank"&gt;Wetting-warming climate increases ecosystem carbon use efficiency of Chinese arid and semi-arid ecosystem&lt;/a&gt;, Sun et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2024.110018&lt;/p&gt;
  602. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17258" target="_blank"&gt;&amp;lsquo;How to adapt forests?&amp;rsquo;&amp;mdash;Exploring the role of leaf trait diversity for long-term forest biomass under new climate normals&lt;/a&gt;, Billing et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://publications.pik" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://publications.pik-potsdam.de/pubman/item/item_29695_2/component/file_29833/29695oa.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/gcb.17258&lt;/p&gt;
  603. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  604. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/acp-24-4675-2024" target="_blank"&gt;A bottom-up emission estimate for the 2022 Nord Stream gas leak: derivation, simulations, and evaluation&lt;/a&gt;, Kouznetsov et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://acp.copernicus.org/articles/24/4675/2024/acp" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://acp.copernicus.org/articles/24/4675/2024/acp-24-4675-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/acp-24-4675-2024&lt;/p&gt;
  605. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gb007862" target="_blank"&gt;An Assessment of CO2 Storage and Sea-Air Fluxes for the Atlantic Ocean and Mediterranean Sea Between 1985 and 2018&lt;/a&gt;, P&amp;eacute;rez et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GB007862" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GB007862" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gb007862&lt;/p&gt;
  606. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/acp-24-4635-2024" target="_blank"&gt;CO anthropogenic emissions in Europe from 2011 to 2021: insights from Measurement of Pollution in the Troposphere (MOPITT) satellite data&lt;/a&gt;, Fortems-Cheiney et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://acp.copernicus.org/articles/24/4635/2024/acp" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://acp.copernicus.org/articles/24/4635/2024/acp-24-4635-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/acp-24-4635-2024&lt;/p&gt;
  607. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl106670" target="_blank"&gt;Global Analysis of Surface Ocean CO2 Fugacity and Air-Sea Fluxes With Low Latency&lt;/a&gt;, Chau et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106670" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106670" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl106670&lt;/p&gt;
  608. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/feart.2024.1338246" target="_blank"&gt;Methane pumping by rapidly refreezing lead ice in the ice-covered Arctic Ocean&lt;/a&gt;, Damm et al., &lt;em&gt;Frontiers in Earth Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/feart.2024.1338246/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/feart.2024.1338246/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/feart.2024.1338246&lt;/p&gt;
  609. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004137" target="_blank"&gt;Predicting Future Trends of Terrestrial Dissolved Organic Carbon Transport to Global River Systems&lt;/a&gt;, Nakhavali et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2023ef004137" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2023ef004137&lt;/p&gt;
  610. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloplacha.2024.104439" target="_blank"&gt;Seep carbonate clumped isotopes revealing ocean warming-induced gas hydrate dissociation&lt;/a&gt;, Liu et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2024.104439&lt;/p&gt;
  611. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  612. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41561-024-01397-2" target="_blank"&gt;Tectonics regulate CO2 release more strongly than chemical weathering in central Italy&lt;/a&gt;, , &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-024-01397-2&lt;/p&gt;
  613. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.agrformet.2024.110016" target="_blank"&gt;Wildfire impacts on the carbon budget of a managed Nordic boreal forest&lt;/a&gt;, Kelly et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2024.110016" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2024.110016&lt;/p&gt;
  614. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  615. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47853-w" target="_blank"&gt;Public perceptions on carbon removal from focus groups in 22 countries&lt;/a&gt;, Low et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47853-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47853-w&lt;/p&gt;
  616. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/cnl2.129" target="_blank"&gt;Research progress of hydrogen production and CO2 fixation in molten slag cooling process&lt;/a&gt;, Zhou et al., &lt;em&gt;Carbon Neutralization&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cnl2.129" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cnl2.129" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/cnl2.129&lt;/p&gt;
  617. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  618. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41560-024-01516-8" target="_blank"&gt;Artificial intelligence-aided wind plant optimization for nationwide evaluation of land use and economic benefits of wake steering&lt;/a&gt;, Harrison-Atlas et al., &lt;em&gt;Nature Energy&lt;/em&gt; 10.1038/s41560-024-01516-8&lt;/p&gt;
  619. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01978-4" target="_blank"&gt;Climate change will impact the value and optimal adoption of residential rooftop solar&lt;/a&gt;, Shi et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-024-01978-4&lt;/p&gt;
  620. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04792-2" target="_blank"&gt;Current progress on lignocellulosic bioethanol including a technological and economical perspective&lt;/a&gt;, Ceaser et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10668" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10668-024-04792-2.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10668-024-04792-2&lt;/p&gt;
  621. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/cnl2.122" target="_blank"&gt;Metallurgical slag used for efficient growth of Chlorella pyrenoidosa to achieve CO2 conversion to biodiesel&lt;/a&gt;, Guo et al., &lt;em&gt;Carbon Neutralization&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cnl2.122" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cnl2.122" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/cnl2.122&lt;/p&gt;
  622. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41560-024-01512-y" target="_blank"&gt;Potential for small and micro modular reactors to electrify developing regions&lt;/a&gt;, L&amp;rsquo;Her et al., &lt;em&gt;Nature Energy&lt;/em&gt; 10.1038/s41560-024-01512-y&lt;/p&gt;
  623. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04872-3" target="_blank"&gt;Technical feasibility and financial assessment of autonomous hydrogen refuelling stations fully supplied by mixed renewable energy systems for twenty selected sites located in France&lt;/a&gt;, Oueslati &amp;amp; Toumi, &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-024-04872-3&lt;/p&gt;
  624. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  625. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl108271" target="_blank"&gt;Deglacial Pulse of Neutralized Carbon From the Pacific Seafloor: A Natural Analog for Ocean Alkalinity Enhancement?&lt;/a&gt;, Green et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108271" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108271" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2024gl108271&lt;/p&gt;
  626. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41561-024-01428-y" target="_blank"&gt;Evidence of strong aerosol cooling implies great efficacy of marine cloud brightening&lt;/a&gt;, , &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-024-01428-y&lt;/p&gt;
  627. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107702" target="_blank"&gt;The Potential of Stratospheric Aerosol Injection to Reduce the Climatic Risks of Explosive Volcanic Eruptions&lt;/a&gt;, Quaglia et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107702" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107702" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl107702&lt;/p&gt;
  628. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Aerosols&lt;/strong&gt;&lt;/p&gt;
  629. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107772" target="_blank"&gt;Future Slower Reduction of Anthropogenic Aerosols Enhances Extratropical Ocean Surface Warming Trends&lt;/a&gt;, Gu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107772" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107772" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl107772&lt;/p&gt;
  630. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  631. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17524032.2024.2340654" target="_blank"&gt;An Experimental Study of Climate Change Messages: Who and How Many to Feature?&lt;/a&gt;, Raja &amp;amp; Carrico , &lt;em&gt;Environmental Communication&lt;/em&gt; &lt;a style="color: green;" href="https://figshare.com/articles/journal_contribution/An_Experimental_Study_of_Climate_Change_Messages_Who_and_How_Many_to_Feature_/25662538/1/files/45777916.pdf" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://figshare.com/articles/journal_contribution/An_Experimental_Study_of_Climate_Change_Messages_Who_and_How_Many_to_Feature_/25662538/1/files/45777916.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1080/17524032.2024.2340654&lt;/p&gt;
  632. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/14693062.2024.2341080" target="_blank"&gt;Communicating climate change as a generational issue: experimental effects on youth worry, motivation and belief in collective action&lt;/a&gt;, Timmons et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://www.tandfonline.com/doi/pdf/10.1080/14693062.2024.2341080?needAccess=true" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.tandfonline.com/doi/pdf/10.1080/14693062.2024.2341080?needAccess=true" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1080/14693062.2024.2341080&lt;/p&gt;
  633. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17524032.2024.2330004" target="_blank"&gt;Communicating Climate Change in the Era of Anxiety: Testing a Double-Moderated-Mediation Model&lt;/a&gt;, Kim, &lt;em&gt;Environmental Communication&lt;/em&gt; 10.1080/17524032.2024.2330004&lt;/p&gt;
  634. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17524032.2024.2341926" target="_blank"&gt;FutureCoast: A Playful Way to Assess Public Perceptions for Better Climate Change Communication&lt;/a&gt;, Orlove et al., &lt;em&gt;Environmental Communication&lt;/em&gt; &lt;a style="color: green;" href="https://www.tandfonline.com/doi/pdf/10.1080/17524032.2024.2341926?needAccess=true" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.tandfonline.com/doi/pdf/10.1080/17524032.2024.2341926?needAccess=true" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1080/17524032.2024.2341926&lt;/p&gt;
  635. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.envsci.2024.103760" target="_blank"&gt;The role and effectiveness of climate commissions in engaging the public on climate change in the UK&lt;/a&gt;, Eyers &amp;amp; Howarth , &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2024.103760" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2024.103760&lt;/p&gt;
  636. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02227-2" target="_blank"&gt;&amp;ldquo;This community will grow&amp;rdquo; &amp;mdash; little concern for future wildfires in a dry and increasingly hotter Swedish rural community&lt;/a&gt;, Eriksson et al., &lt;em&gt;Regional Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10113" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10113-024-02227-2.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10113-024-02227-2&lt;/p&gt;
  637. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  638. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00484-024-02684-8" target="_blank"&gt;A variety-specific analysis of climate change effects on California winegrapes&lt;/a&gt;, Parker et al., &lt;em&gt;International Journal of Biometeorology&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s00484" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s00484-024-02684-8.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00484-024-02684-8&lt;/p&gt;
  639. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11625-024-01490-w" target="_blank"&gt;Benefits of air quality for human health resulting from climate change mitigation through dietary change and food loss prevention policy&lt;/a&gt;, Jansakoo et al., &lt;em&gt;Sustainability Science&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11625" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11625-024-01490-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11625-024-01490-w&lt;/p&gt;
  640. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17277" target="_blank"&gt;Carbon footprint of synthetic nitrogen under staple crops: A first cradle-to-grave analysis&lt;/a&gt;, Abdo et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5281/zenodo.10909859" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.17277&lt;/p&gt;
  641. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13412-024-00917-1" target="_blank"&gt;Climate-smart agriculture, enhanced agroproduction, and carbon sequestration potential of agroecosystems in India: a meta-analysis&lt;/a&gt;, Tyagi &amp;amp; Haritash, &lt;em&gt;Journal of Environmental Studies and Sciences&lt;/em&gt; 10.1007/s13412-024-00917-1&lt;/p&gt;
  642. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloenvcha.2024.102837" target="_blank"&gt;Evaluating behavioral responses to climate change in terms of coping and adaptation: An index approach&lt;/a&gt;, Fischer &amp;amp; Denny, &lt;em&gt;Global Environmental Change&lt;/em&gt; 10.1016/j.gloenvcha.2024.102837&lt;/p&gt;
  643. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.agrformet.2024.109937" target="_blank"&gt;Long-term straw return to a wheat-maize system results in topsoil organic C saturation and increased yields while no stimulating or reducing yield-scaled N&lt;sub&gt;2&lt;/sub&gt;O and NO emissions&lt;/a&gt;, Yao et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2024.109937&lt;/p&gt;
  644. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103552" target="_blank"&gt;Rethinking the social license to operate? A theoretical exploration of its synergies with social acceptance and energy justice for a just transition&lt;/a&gt;, Minadakis &amp;amp; Vega-Ara&amp;uacute;jo, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2024.103552&lt;/p&gt;
  645. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1331530" target="_blank"&gt;Spatiotemporal variation of the carbon footprint of tobacco production from 2004 to 2017 in China&lt;/a&gt;, Zheng et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1331530/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1331530/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1331530&lt;/p&gt;
  646. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17565529.2024.2342682" target="_blank"&gt;The effect of carbon farming training on food security and development resilience in Northern Ghana&lt;/a&gt;, Okyere et al., &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2024.2342682&lt;/p&gt;
  647. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04907-9" target="_blank"&gt;Understanding herder&amp;rsquo;s perception and adaptation to climate change: an integrated framework&lt;/a&gt;, Cai et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-024-04907-9&lt;/p&gt;
  648. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  649. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1175/jamc-d-23-0083.1" target="_blank"&gt;Assessing Regional-Scale Heterogeneity in Blue&amp;ndash;Green Water Availability under the 1.5&amp;deg;C Global Warming Scenario&lt;/a&gt;, Tyagi et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-23-0083.1&lt;/p&gt;
  650. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1126/sciadv.adk9250" target="_blank"&gt;Dynamic pathway linking Pakistan flooding to East Asian heatwaves&lt;/a&gt;, Fu et al., &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adk9250&lt;/p&gt;
  651. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloplacha.2024.104442" target="_blank"&gt;Flow regime alteration in Arctic rivers due to dam operations and climate change&lt;/a&gt;, Patro et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloplacha.2024.104442" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloplacha.2024.104442&lt;/p&gt;
  652. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11069-024-06590-5" target="_blank"&gt;Quantifying future changes of flood hazards within the Broadland catchment in the UK&lt;/a&gt;, Gudde et al., &lt;em&gt;Natural Hazards&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11069" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11069-024-06590-5.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11069-024-06590-5&lt;/p&gt;
  653. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00704-024-04949-z" target="_blank"&gt;Spatiotemporal variability of future water sustainability using reliability resilience vulnerability framework&lt;/a&gt;, Hammad &amp;amp; Chung, &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; 10.1007/s00704-024-04949-z&lt;/p&gt;
  654. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  655. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04880-3" target="_blank"&gt;The relationship between CO2 emissions and macroeconomics indicators in low and high-income countries: using artificial intelligence&lt;/a&gt;, Abd El-Aal, &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10668" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10668-024-04880-3.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10668-024-04880-3&lt;/p&gt;
  656. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04904-y" target="_blank"&gt;&amp;ldquo;Who emits for whom&amp;rdquo;: did the digital trade networks increase carbon emissions transfers?&lt;/a&gt;, Wang et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-024-04904-y&lt;/p&gt;
  657. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  658. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.2307/2576224" target="_blank"&gt;A just transition or just a transition? The understanding and relevance of fairness in planning for a decarbonised transport system&lt;/a&gt;, Wallerstein, &lt;em&gt;Social Forces&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.2307/2576224&lt;/p&gt;
  659. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41560-024-01506-w" target="_blank"&gt;A relational approach to characterizing householder perceptions of disruption in heat transitions&lt;/a&gt;, Thomas et al., &lt;em&gt;Nature Energy&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41560" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41560-024-01506-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41560-024-01506-w&lt;/p&gt;
  660. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103557" target="_blank"&gt;Citizen-led decentralised energy futures: Emerging rationales of energy system organisation&lt;/a&gt;, Wieczorek et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2024.103557&lt;/p&gt;
  661. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101931" target="_blank"&gt;Energy and environment: How could energy-consuming transition promote the synergy of pollution reduction and carbon emission reduction in China?&lt;/a&gt;, Han et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2024.101931&lt;/p&gt;
  662. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04826-9" target="_blank"&gt;Green energy revolution: A unique approach for energy forecasting and optimization towards sustainable energy planning and social development&lt;/a&gt;, Dsilva Winfred Rufuss et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-024-04826-9&lt;/p&gt;
  663. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01995-3" target="_blank"&gt;Industrial policy, populism and the political economy of climate action&lt;/a&gt;, Driesen et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-024-01995-3&lt;/p&gt;
  664. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10640-024-00849-y" target="_blank"&gt;Is Green Transition in Europe Fostered by Energy and Environmental Efficiency Feedback Loops? The Role of Eco-Innovation, Renewable Energy and Green Taxation&lt;/a&gt;, Chatzistamoulou &amp;amp; Koundouri, &lt;em&gt;Environmental and Resource Economics&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10640" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10640-024-00849-y.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10640-024-00849-y&lt;/p&gt;
  665. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.jenvp.2024.102297" target="_blank"&gt;Limited overlap between behavioral tasks, pro-environmental propensity, and carbon footprint&lt;/a&gt;, Bosshard et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2024.102297" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2024.102297&lt;/p&gt;
  666. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114133" target="_blank"&gt;Modeling residential photovoltaic adoption: A system dynamics approach for solar energy expansion&lt;/a&gt;, Chayjan et al., &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2024.114133&lt;/p&gt;
  667. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114109" target="_blank"&gt;Modeling V2G spot market trading: The impact of charging tariffs on economic viability&lt;/a&gt;, Signer et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2024.114109" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2024.114109&lt;/p&gt;
  668. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103548" target="_blank"&gt;Navigating Russia's war and energy transition: Poland's coal challenge&lt;/a&gt;, ?ernoch et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2024.103548&lt;/p&gt;
  669. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10640-024-00859-w" target="_blank"&gt;Political &amp;lsquo;Colour&amp;rsquo; and Firm Behaviour: Evidence from U.S. Power Plants&amp;rsquo; Pollution Abatement&lt;/a&gt;, Di Maria et al., &lt;em&gt;Environmental and Resource Economics&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10640" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10640-024-00859-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10640-024-00859-w&lt;/p&gt;
  670. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11027-024-10134-4" target="_blank"&gt;Profiling national institutional archetypes for climate change technology implementation: application in small islands and least developed countries&lt;/a&gt;, Shah, &lt;em&gt;Mitigation and Adaptation Strategies for Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11027" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11027-024-10134-4.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11027-024-10134-4&lt;/p&gt;
  671. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.jenvp.2024.102307" target="_blank"&gt;The Influence of Disclosing Product Lifecycle Carbon Footprint Information on Consumer Purchase Intentions Based on the APE Model Perspective: An ERP and Questionnaire Study&lt;/a&gt;, Lv et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2024.102307&lt;/p&gt;
  672. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloenvcha.2024.102847" target="_blank"&gt;The substantial impacts of carbon capture and storage technology policies on climate change mitigation pathways in China&lt;/a&gt;, Fan et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; 10.1016/j.gloenvcha.2024.102847&lt;/p&gt;
  673. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  674. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1392033" target="_blank"&gt;Challenges for climate change adaptation in Latin America and the Caribbean region&lt;/a&gt;, Cavazos et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1392033/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1392033/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1392033&lt;/p&gt;
  675. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01356-0" target="_blank"&gt;Developing countries can adapt to climate change effectively using nature-based solutions&lt;/a&gt;, Villamayor-Tomas et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01356-0.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01356-0&lt;/p&gt;
  676. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.envsci.2024.103761" target="_blank"&gt;Exploring heat risk adaptation governance: A case study of the UK&lt;/a&gt;, Ravishankar &amp;amp; Howarth, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2024.103761" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2024.103761&lt;/p&gt;
  677. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11027-024-10133-5" target="_blank"&gt;Integration of climate change mitigation and adaptation in Blue Economy planning in Africa&lt;/a&gt;, March et al., &lt;em&gt;Mitigation and Adaptation Strategies for Global Change&lt;/em&gt; 10.1007/s11027-024-10133-5&lt;/p&gt;
  678. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100614" target="_blank"&gt;Is climate migration successful adaptation or maladaptation? A holistic assessment of outcomes in Kenya&lt;/a&gt;, Tubi &amp;amp; Israeli Adger, &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100614" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100614&lt;/p&gt;
  679. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  680. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1371/journal.pclm.0000315" target="_blank"&gt;Impact of climate and land use/land cover changes on malaria incidence in the Ecuadorian Amazon&lt;/a&gt;, Araujo Navas et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000315&amp;amp;type=printable" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000315&amp;amp;type=printable" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1371/journal.pclm.0000315&lt;/p&gt;
  681. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/feart.2024.1375827" target="_blank"&gt;Mapping urban heatwaves and islands: the reverse effect of Salento&amp;rsquo;s &amp;ldquo;white cities&amp;rdquo;&lt;/a&gt;, De Razza et al., &lt;em&gt;Frontiers in Earth Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/feart.2024.1375827/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/feart.2024.1375827/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/feart.2024.1375827&lt;/p&gt;
  682. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change &amp;amp; geopolitics&lt;/strong&gt;&lt;/p&gt;
  683. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/14693062.2024.2341945" target="_blank"&gt;Transparency is what states make of it: whose climate priorities are reflected in the Paris Agreement&amp;rsquo;s enhanced transparency framework?&lt;/a&gt;, van Deursen &amp;amp; Gupta, &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://www.tandfonline.com/doi/pdf/10.1080/14693062.2024.2341945?needAccess=true" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.tandfonline.com/doi/pdf/10.1080/14693062.2024.2341945?needAccess=true" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1080/14693062.2024.2341945&lt;/p&gt;
  684. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  685. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.envsci.2024.103756" target="_blank"&gt;Constitutionalizing the fight against climate change. Insights from France&lt;/a&gt;, Cepparulo &amp;amp; Giuriato, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; 10.1016/j.envsci.2024.103756&lt;/p&gt;
  686. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloenvcha.2024.102839" target="_blank"&gt;Diversity in global environmental scenario sets&lt;/a&gt;, Carlsen et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2024.102839" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2024.102839&lt;/p&gt;
  687. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  688. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/d41586-024-01151-z" target="_blank"&gt;Australia&amp;rsquo;s Great Barrier Reef is &amp;lsquo;transforming&amp;rsquo; because of repeated coral bleaching&lt;/a&gt;, Nogrady, &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-024-01151-z&lt;/p&gt;
  689. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13280-024-02024-5" target="_blank"&gt;From the question how to act in a sustainable manner, back to the question why we act unsustainably&lt;/a&gt;, Yttredal et al., &lt;em&gt;Ambio&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s13280" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s13280-024-02024-5.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s13280-024-02024-5&lt;/p&gt;
  690. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01391-x" target="_blank"&gt;Human influence can explain the widespread exceptional warmth in 2023&lt;/a&gt;, Min, &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01391-x.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01391-x&lt;/p&gt;
  691. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1098/rstb.2022.0326" target="_blank"&gt;Using the Red List of Ecosystems and the Nature-based Solutions Global Standard as an integrated process for climate change adaptation in the Andean high mountains&lt;/a&gt;, Vasseur &amp;amp; Andrade, &lt;em&gt;Philosophical Transactions of the Royal Society B: Biological Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2022.0326" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2022.0326" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1098/rstb.2022.0326&lt;/p&gt;
  692. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Book reviews&lt;/strong&gt;&lt;/p&gt;
  693. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/09644016.2024.2343623" target="_blank"&gt;A Strategic Nature: Public Relations and the Politics of American Environmentalism&lt;/a&gt;, Kinol, &lt;em&gt;Environmental Politics&lt;/em&gt; &lt;a style="color: green;" href="https://www.tandfonline.com/doi/pdf/10.1080/09644016.2024.2343623?needAccess=true" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.tandfonline.com/doi/pdf/10.1080/09644016.2024.2343623?needAccess=true" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1080/09644016.2024.2343623&lt;/p&gt;
  694. &lt;hr /&gt;
  695. &lt;h3 style="text-align: left;"&gt;&lt;a id="gov-ngo"&gt;&lt;/a&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  696. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://lisboncouncil.net/wp-content/uploads/2024/04/LISBON_COUNCIL_Research_Sustainable_Computing_For_A_Sustainable_Planet.pdf" target="_blank"&gt;Sustainable Computing for a Sustainable Planet&lt;/a&gt;, &lt;/strong&gt;David Osimo and Senan Khawaja, &lt;strong&gt;Lisbon Council&lt;/strong&gt;&lt;/p&gt;
  697. &lt;blockquote&gt;The authors say there is an increase in energy consumption for training large language models but not on their deployment. At the same time, advances in accelerated computing have moderated the overall growth in energy consumption relative to computational performance. The adoption of AI is shown to bring energy efficiency benefits to the economy. While data centers could potentially account for 4% of global energy consumption in 2030, AI is expected to reduce the remaining 96% of energy consumption and accelerate scientific discovery. Recent assessments within the European Union show challenges in science and innovation performance improvement compared to major trading partners, with China leading in volume of scientific publications and the US excelling in quality and impact. AI adoption by scientists is essential to maintaining European scientific leadership.&lt;/blockquote&gt;
  698. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Flood-Management/Flood-MAR/230410_Merced-R_FloodMAR-Reconnaissance-Study_Division-Report_v7.pdf" target="_blank"&gt;Merced River Watershed Flood-MAR Reconnaissance Study&lt;/a&gt;, &lt;/strong&gt;Singh et al., &lt;strong&gt;Statewide Infrastructure Investigations Branch, Califonria Department of Water Resources&lt;/strong&gt;&lt;/p&gt;
  699. &lt;blockquote&gt;To better understand climate vulnerabilities and how to address them, the California Department of Water Resources (DWR) conducted a three-year Merced study in partnership with Merced Irrigation District (MID) as a proof of concept to explore the effectiveness of Flood-MAR (Managed Aquiver Recharge) to concurrently reduce flood risk, improve water supply, and enhance ecosystems in the Merced River watershed, a tributary to the San Joaquin River. The Merced study is an exploratory watershed-scale analysis to develop and test analytical methods and models, assess climate change vulnerability, and evaluate adaptation strategies meeting multiple benefits that achieve these shared objectives; assess watershed vulnerability to climate change for flood protection, water supply, and ecosystems; develop Flood-MAR strategies reflecting a range of operational complexity and infrastructure improvements; quantitatively evaluate the performance of Flood-MAR strategies in providing multi-sector benefits and climate resilience.&lt;/blockquote&gt;
  700. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://nexus25.org/publication/the-elephant-in-the-climate-room-financing-sustainable-security-and-supporting-future-fit-systems" target="_blank"&gt;The Elephant in the Climate Room: Financing Sustainable Security and Supporting Future-Fit Systems&lt;/a&gt;, &lt;/strong&gt;Cicarelli et al., &lt;strong&gt;The Center for Climate and Security&lt;/strong&gt;&lt;/p&gt;
  701. &lt;blockquote&gt;The authors outline the key challenges facing policymakers ahead of this year's "Spring Meetings" of the International Monetary Fund and World Bank, particularly in the context of food security challenges, global instability, and gaps in climate finance. The gap in climate finance has implications beyond sustainable development and humanitarian needs. Further, investments in climate adaptation and resilience are essential for addressing the security implications of climate change, helping reduce risks and vulnerabilities, and helping build more stable and secure societies.&lt;/blockquote&gt;
  702. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.cbsnews.com/news/poll-reduce-climate-change-extreme-weather-04-21-2024/" target="_blank"&gt;CBS News Poll &amp;ndash; April 16-19, 2024, Adults in the U.S&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;CBS News and YouGov&lt;/strong&gt;&lt;/p&gt;
  703. &lt;blockquote&gt;Record heat, hurricanes, and wildfires all have been making news in recent years. While not everyone agrees events like these are the direct result of climate change, they do connect to peoples' opinions about it: a big majority of Americans feel the U.S. needs to address climate change, with those who report experiencing extreme weather more likely to say we should do so right now. Views on climate change have long been associated with partisanship, and they still are, but age is a factor, too. Younger Americans, including younger Republicans, are even more likely to say the U.S. needs to take steps to at least try to slow it. There's a sense of urgency from many in the public\, too. A large majority think it needs to be addressed at least in the next few years, including half who think it needs to be addressed right now. There is the sense that we should address climate change, and there's also some belief that we can. That extends down to the personal level, too. Most Americans believe humans can do something to at least slow the effects of climate change, and those who think so feel they have a responsibility to do something about it.&lt;/blockquote&gt;
  704. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://escholarship.org/content/qt12s624vf/qt12s624vf.pdf?t=sbz1qn" target="_blank"&gt;Climate Impact of Primary Plastic Production&lt;/a&gt;, &lt;/strong&gt;Karali et al., &lt;strong&gt;Lawrence Berkeley National Laboratory&lt;/strong&gt;&lt;/p&gt;
  705. &lt;blockquote&gt;Plastics show the strongest production growth of all bulk materials over the last decade. The industry&amp;rsquo;s current growth trajectory is exponential and plastic production is expected to double or triple by 2050. The rapidly increasing production of plastics and the continued reliance on fossil fuels for production, have contributed to numerous environmental problems and health harms. As a result, plastic pollution has become an increasing threat to natural ecosystems, human health and climate. However, there is a lack of granularity on the contribution of the primary plastics specifically to greenhouse gas (GHG) emissions and their impact on the remaining global carbon budget needed to stay below a 1.5&amp;deg;C or 2&amp;deg;C global average temperature rise. The authors explore the contribution of primary plastic production to climate change disaggregated by polymer and technology.&lt;/blockquote&gt;
  706. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://climate.copernicus.eu/esotc/2023" target="_blank"&gt;European State of the Climate&lt;/a&gt;, &lt;/strong&gt;Copernicus Climate Change Service, &lt;strong&gt;Copernicus Climate Change Service and the World Meteorological Organization&lt;/strong&gt;&lt;/p&gt;
  707. &lt;blockquote&gt;While focusing on a comprehensive overview of climate conditions in Europe, the authors also look at conditions for the Arctic and provide an overview of the global context. They provide a detailed analysis, with descriptions of climate conditions, key events, and their impacts, and explore the associated variations in key climate variables from across the Earth system. For 2023, a discussion of climate policy and action with a focus on human health is also included.&lt;/blockquote&gt;
  708. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.ilo.org/wcmsp5/groups/public/@ed_protect/@protrav/@safework/documents/publication/wcms_922850.pdf" target="_blank"&gt;Ensuring safety and health at work in a changing climate&lt;/a&gt;, &lt;/strong&gt;Scott et al., &lt;strong&gt;International Labour Office,&lt;/strong&gt;&lt;/p&gt;
  709. &lt;blockquote&gt;Climate change is already having serious impacts on the safety and health of workers in all regions of the world. Workers are among those most exposed to climate change hazards yet frequently have no choice but to continue working, even if conditions are dangerous. Global occupational safety and health (OSH) protections have struggled to keep up with the evolving risks of climate change, resulting in worker mortality and morbidity. Billions of workers are exposed to hazards exacerbated by climate change. Workers across different sectors are exposed to these hazards but some workers, such as agricultural workers and other outdoor workers carrying out heavy labor in hot climates, may be particularly at risk. Strong evidence demonstrates that numerous health conditions in workers have been linked to climate change, including cancer, cardiovascular disease, respiratory illnesses, kidney dysfunction, and mental health conditions, among many others. Every year, an estimated 22.85 million occupational injuries, 18,970 deaths, and 2.09 million disability-adjusted life years (DALYs) are attributable to excessive heat alone. Thousands more die from pesticide poisoning (&amp;gt;300,000), workplace air pollution (&amp;gt;860,000), solar UV radiation (&amp;gt;18,960 due to non-melanoma skin cancer alone), and parasitic and vector-borne diseases (&amp;gt;15,170). Many countries have implemented new laws to specifically address excessive heat in the working environment. These primarily include maximum temperature limits and guidelines for adaptive measures at the workplace level. For other climate change impacts, protections for workers are mainly integrated into existing OSH or environmental regulations.&lt;/blockquote&gt;
  710. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.wilsoncenter.org/sites/default/files/media/uploads/documents/MEP-ESCP_ClimateBrief_FINAL.pdf" target="_blank"&gt;Climate Priorities in the Middle East and North Africa: Examining Nationally Defined Contributions, Targets, and Gaps in Wealthy Versus Middle-Income States&lt;/a&gt;, &lt;/strong&gt;Taylor Luck, &lt;strong&gt;Wilson Center&lt;/strong&gt;&lt;/p&gt;
  711. &lt;blockquote&gt;The author examines climate strategies and actions in Middle East/North Africa states by evaluating gaps and challenges and provides recommendations for policymakers, partners, and the international community to bolster adaptation, mitigation, and resilience efforts in a fragile region on the frontlines of climate change.&lt;/blockquote&gt;
  712. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://library.wmo.int/records/item/68890-state-of-the-climate-in-asia-2023" target="_blank"&gt;State of the Climate in Asia 2023&lt;/a&gt;, &lt;/strong&gt;Op et al., &lt;strong&gt;World Meteorological Organization&lt;/strong&gt;&lt;/p&gt;
  713. &lt;blockquote&gt;The authors provide the status of key climate indicators and the latest data and information on impacts, risks, and policy from United Nations agencies. They address specific physical science, socio-economic, and policy aspects that are relevant to Asia and respond to individual country's needs in the fields of climate monitoring, climate change, and climate services.&lt;/blockquote&gt;
  714. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://resources.ca.gov/-/media/CNRA-Website/Files/Initiatives/Expanding-Nature-Based-Solutions/Californias-NBS-Climate-Targets-2024.pdf" target="_blank"&gt;California's Nature Based Climate Solutions&lt;/a&gt;, &lt;/strong&gt;State of Califronia, &lt;strong&gt;State of California&lt;/strong&gt;&lt;/p&gt;
  715. &lt;blockquote&gt;California has proposed comprehensive and science-driven nature-based solutions (NBS) climate targets. These solutions harness the power of nature to remove and store carbon from the atmosphere, buffer climate impacts, and build California&amp;rsquo;s resilience to future climate driven extremes.&lt;/blockquote&gt;
  716. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://scholarship.law.columbia.edu/faculty_scholarship/4447/" target="_blank"&gt;Legal Issues in Oceanic Transport of Carbon Dioxide for Sequestration&lt;/a&gt;, &lt;/strong&gt;Ariota et al., &lt;strong&gt;Sabin Center for Climate Change Law&lt;/strong&gt;&lt;/p&gt;
  717. &lt;blockquote&gt;The report, which is the first to comprehensively study international transport of carbon dioxide, makes several original contributions. First, it highlights the current legal uncertainties involving the cross-border shipping of carbon dioxide for sequestration. Second, it illustrates how market-based mechanisms under the Paris Climate Agreement do and do not relate to carbon dioxide shipping and sequestration, and the need for clarification. Third, the report provides a detailed analysis of the domestic U.S. laws applicable to the cross-border shipping and sequestration of carbon dioxide, and analyzes the legal consequences of the construction of a pier (or jetty) to enable the receipt of carbon dioxide shipped from overseas. Finally, liability regimes studied go beyond maritime conventions to include contractual liability and U.S. admiralty and maritime jurisdiction.&lt;/blockquote&gt;
  718. &lt;hr /&gt;
  719. &lt;h3&gt;Obtaining articles without journal subscriptions&lt;/h3&gt;
  720. &lt;p&gt;We know it's frustrating that many articles we cite here are not free to read. One-off paid access fees are generally astronomically priced, suitable for such as &lt;em&gt;"&lt;a href="https://einsteinpapers.press.princeton.edu/vol2-trans/100" target="_blank"&gt;On a Heuristic Point of View Concerning the Production and Transformation of Light&lt;/a&gt;"&amp;nbsp;&lt;/em&gt;&amp;nbsp;but not as a gamble on unknowns. With a median world income of US$ 9,373, for most of us US$ 42 is significant money to wager on an article's relevance and importance.&amp;nbsp;&lt;/p&gt;
  721. &lt;ul&gt;
  722. &lt;li&gt;&lt;a href="https://www.sciencebuddies.org/science-fair-projects/competitions/finding-and-accessing-scientific-papers"&gt;Here's an excellent collection&lt;/a&gt; of tips and techniques for obtaining articles, legally.&lt;/li&gt;
  723. &lt;/ul&gt;
  724. &lt;ul&gt;
  725. &lt;li&gt;&lt;a href="https://unpaywall.org/" target="_blank"&gt;Unpaywall&lt;/a&gt;&amp;nbsp;offers a browser extension for Chrome and Firefox that automatically indicates when an article is freely accessible and provides immediate access without further trouble. Unpaywall is also unscammy, works well, is itself offered free to use. The organizers (a legitimate nonprofit) report about a 50% success rate&lt;/li&gt;
  726. &lt;/ul&gt;
  727. &lt;ul&gt;
  728. &lt;li&gt;The weekly &lt;em&gt;New Research&lt;/em&gt; catch is checked against the Unpaywall database with accessible items being flagged. Especially for just-published articles this mechansim may fail. If you're interested in an article title and it is not listed here as "open access," be sure to check the link anyway.&amp;nbsp;&lt;/li&gt;
  729. &lt;/ul&gt;
  730. &lt;h3&gt;How is &lt;em&gt;New Research&lt;/em&gt; assembled?&lt;/h3&gt;
  731. &lt;p&gt;Most articles appearing here are found via&amp;nbsp; RSS feeds from journal publishers, filtered by search terms to produce raw output&amp;nbsp;for assessment of relevance.&amp;nbsp;&lt;/p&gt;
  732. &lt;p&gt;Relevant articles are then queried against the Unpaywall database, to identify open access articles and expose useful metadata for articles appearing in the database.&amp;nbsp;&lt;/p&gt;
  733. &lt;p&gt;The objective of New Research isn't to cast a tinge on scientific results, to color readers' impressions. Hence candidate articles are assessed via two metrics only:&lt;/p&gt;
  734. &lt;ul&gt;
  735. &lt;li&gt;Was an article deemed of sufficient merit by a team of journal editors and peer reviewers? The fact of journal RSS output assigns a "yes" to this automatically.&amp;nbsp;&lt;/li&gt;
  736. &lt;li&gt;Is an article relevant to the topic of anthropogenic climate change? Due to filter overlap with other publication topics of inquiry, of a typical week's 550 or so input articles about 1/4 of RSS output makes the cut.&lt;/li&gt;
  737. &lt;/ul&gt;
  738. &lt;p&gt;A few journals offer public access to "preprint" versions of articles for which the review process is not yet complete. For some key journals this all the mention we'll see in RSS feeds, so we include such items in &lt;em&gt;New Research&lt;/em&gt;. These are flagged as "preprint."&lt;/p&gt;
  739. &lt;p&gt;The section "Informed opinion, nudges &amp;amp; major initiatives" includes some items that are not scientific research per se but fall instead into the category of "perspectives," observations of implications of research findings, areas needing attention, etc.&lt;/p&gt;
  740. &lt;h3&gt;Suggestions&lt;/h3&gt;
  741. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  742. &lt;h3&gt;Journals covered&lt;/h3&gt;
  743. &lt;p&gt;A list of journals we cover may be found &lt;a href="https://skepticalscience.com/Skeptical-Science-New-Research-Source-Journals.shtml"&gt;here&lt;/a&gt;. We welcome pointers to omissions, new journals etc.&lt;/p&gt;
  744. &lt;h3&gt;Previous edition&lt;/h3&gt;
  745. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2024_16.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  746. <link>https://skepticalscience.com/new_research_2024_17.html</link>
  747. <guid>https://skepticalscience.com/new_research_2024_17.html</guid>
  748. <pubDate>Thu, 25 Apr 2024 13:24:58 EST</pubDate>
  749. </item>  <item>
  750. <title>Water is at the heart of farmers’ struggle to survive in Benin</title>
  751. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2024/04/water-is-at-the-heart-of-farmers-struggle-to-survive-in-benin/"&gt;re-post from Yale Climate Connections by Megan Val&amp;eacute;re Sosou&lt;/a&gt;&lt;/p&gt;
  752. &lt;p&gt;&lt;img class="attachment-newspack-featured-image size-newspack-featured-image wp-post-image" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2024/04/Screenshot-2024-04-19-at-1.24.34-PM.png?fit=1164%2C870&amp;amp;ssl=1" alt="A photo of rows of plants that are climbing up stakes in the ground." width="550" height="411" data-hero-candidate="1" /&gt;&lt;em&gt;Market gardening site of the Itch&amp;egrave;l&amp;eacute;r&amp;eacute; de Itagui agricultural cooperative in Dassa-Zoum&amp;egrave; (Image credit: Megan Val&amp;egrave;re Sossou)&lt;/em&gt;&lt;/p&gt;
  753. &lt;div class="entry-content"&gt;
  754. &lt;p class="has-drop-cap has-text-align-justify"&gt;For the residents of Dassa-Zoum&amp;egrave;, a city in the West African country of Benin, choosing between drinking water and having enough food has become a worrying dilemma.&lt;/p&gt;
  755. &lt;p class="has-text-align-justify"&gt;&amp;ldquo;Last year, our horticultural production plummeted due to water scarcity,&amp;rdquo; said Chantal Agbangla, a farmer residing in Soclogbo, a town located about 30 minutes by car from the capital of Dassa-Zoum&amp;eacute;. &amp;ldquo;We had to travel nine kilometers to find water, mainly for our agricultural and domestic needs.&amp;rdquo;&lt;/p&gt;
  756. &lt;p class="has-text-align-justify"&gt;Family farming, a pillar of the economy in Dassa-Zoum&amp;egrave;, is more threatened than ever by climate change. Small-scale farms cover only about 2% of cultivable land in the area of Dassa-Zoum&amp;eacute;, and their very survival seems threatened because water has become an increasingly precious commodity. Residents can no longer rely on the rainy season, as the irregularity of precipitation has made it an unreliable water source. Instead, they have embraced agroecological horticulture as a contingency plan against climate change. Agroecology emphasizes&amp;nbsp;&lt;a href="https://www.actioncontrelafaim.org/wp-content/uploads/2022/01/3.-Water-management-in-agroecology-VF.pdf"&gt;sustainable farming practices&lt;/a&gt;&amp;nbsp;that prioritize water retention in the soil, making this type of farming more resistant to drought.&lt;/p&gt;
  757. &lt;!--more--&gt;
  758. &lt;h4 class="wp-block-heading has-text-align-justify"&gt;&lt;span&gt;How climate change is affecting Benin&lt;/span&gt;&lt;/h4&gt;
  759. &lt;p class="has-text-align-justify"&gt;Benin is already facing climate change impacts like long periods of drought followed by intense downpours resulting in flooding. Despite its marginal contribution to heat-trapping greenhouse gas emissions, representing only 0.05% of the global total, Benin is among the nations&amp;nbsp;&lt;a href="https://www.banquemondiale.org/fr/country/benin/publication/benin-country-climate-and-development-report"&gt;most vulnerable&lt;/a&gt;&amp;nbsp;to climate change.&lt;/p&gt;
  760. &lt;p class="has-text-align-justify"&gt;&amp;ldquo;The commune of Dassa experiences extreme rainfall variability, exacerbated by climate change.&amp;rdquo; Said Romanic OGOUWALE, a professor and researcher in geography specializing in climatology at the University of Abomey-Calavi, Benin&amp;rsquo;s principal public university. &amp;ldquo;A situation aggravated by rising temperatures and decreasing water resources in recent times.&amp;rdquo;&lt;/p&gt;
  761. &lt;p class="has-text-align-justify"&gt;In 2010, the country experienced severe flooding that affected crop production. In response to these challenges, the Beninese government is actively engaged in the implementation of strategies to reduce the country&amp;rsquo;s contribution to climate change and adapt to its effects, including providing farmers with short-cycle crop seeds that can be harvested every two months like corn, soy, peanuts, beans.&lt;/p&gt;
  762. &lt;h4 class="wp-block-heading has-text-align-justify"&gt;How women are responding&lt;/h4&gt;
  763. &lt;p class="has-text-align-justify"&gt;In Benin, women are increasingly involved in the creation of agricultural cooperatives to promote empowerment and engagement, as women play a crucial role in the agricultural sector. Like other regions of the country, in Dassa-Zoum&amp;egrave;, several women&amp;rsquo;s agricultural cooperatives offer help to local farmers, such as the Itch&amp;egrave;l&amp;eacute;r&amp;eacute; agricultural cooperative in Dassa.&lt;/p&gt;
  764. &lt;p class="has-text-align-justify"&gt;&amp;ldquo;Even traditionally humid areas now suffer from drought,&amp;rdquo; said Yves GBEDJI from the Itch&amp;eacute;l&amp;eacute;r&amp;eacute; agricultural cooperative in Dassa-Zoum&amp;egrave;. &amp;ldquo;We must seek alternative water sources, sometimes traveling long distances to obtain it.&amp;rdquo; The LIFO and Olodjo rivers can supply water, but they are more than five kilometers away from these rural populations, making them difficult to access, especially without transport.&lt;/p&gt;
  765. &lt;p class="has-text-align-justify"&gt;Women are often faced with the dilemma of having to choose between using water for household chores such as washing dishes and laundry, or for irrigating their vegetable crops.&lt;/p&gt;
  766. &lt;p class="has-text-align-justify"&gt;&amp;ldquo;At times, we are forced to use water intended for our domestic needs to irrigate our horticultural crops, leading to conflicts within households,&amp;rdquo; said Chantal Agbangla.&lt;/p&gt;
  767. &lt;p class="has-text-align-justify"&gt;&amp;ldquo;The commune of Dassa experiences extreme rainfall variability, exacerbated by climate change.&lt;/p&gt;
  768. &lt;p class="has-text-align-justify"&gt;A situation aggravated by rising temperatures and decreasing water resources in recent times.&amp;rdquo;&lt;/p&gt;
  769. &lt;p class="has-text-align-justify"&gt;Jos&amp;eacute;phine KOBA is one of the many women turning to horticulture. She is in her forties, a mother of five children and is involved in the Itch&amp;egrave;l&amp;eacute;r&amp;eacute; de Itagui agricultural cooperative in Dassa-Zoum&amp;egrave;. She is a trainer at the cooperative on the production of compost from agricultural waste. &amp;ldquo;With the instability of the rainy season, we opted for horticulture to provide food year-round, especially in the dry season,&amp;rdquo; she said. &amp;ldquo;We grow tomatoes, peppers, vegetables, okra, and many other essential products.&amp;rdquo;&lt;/p&gt;
  770. &lt;p class="has-text-align-justify"&gt;Before agroecological practices were implemented, most crops were produced with chemical fertilizers. Now, locally made compost feeds these crops. However, access to water remains a major obstacle, especially in areas where the granite rock bed makes well construction difficult.&lt;/p&gt;
  771. &lt;h4 class="wp-block-heading has-text-align-justify"&gt;&lt;span&gt;Building wells&lt;/span&gt;&lt;/h4&gt;
  772. &lt;p class="has-text-align-justify"&gt;Several projects and programs have been launched to help these vulnerable populations of Dassa Zoum&amp;egrave;, particularly young people and women of Soclogbo, better cope with climate change. One recent project enabled farmers to install wells for irrigation, said Yves GBEDJI, a 30-year-old local farmer. The well program is funded by the Dutch Embassy in Benin. It aims to improve the food and nutritional security of rural populations through increasing agricultural productivity and increasing income.&lt;/p&gt;
  773. &lt;p class="has-text-align-justify"&gt;&amp;ldquo;As for the Benkadi project, it trained us in sustainable techniques such as reforestation, building ditches, and rational water resource management,&amp;rdquo; said GBEDJI. The Benkadi project is led by a consortium of civil society organizations grouped in four different West African countries including Benin, Ivory Coast, Burkina Faso, and Mali with a Dutch partner, Woord end Daad. This project aims to strengthen the resilience and adaptation of local populations in the face of climate change.&lt;/p&gt;
  774. &lt;h4 class="wp-block-heading has-text-align-justify"&gt;&lt;span&gt;What&amp;rsquo;s next?&lt;/span&gt;&lt;/h4&gt;
  775. &lt;p class="has-text-align-justify"&gt;This quest for water affects vulnerable individuals in rural communities of Dassa-Zoum&amp;egrave;, notably children, women, people with disabilities, and young people.&lt;/p&gt;
  776. &lt;p class="has-text-align-justify"&gt;For Marie Odile HOUNTONDJI, gender and social inclusion expert with the Benkadi project of&amp;nbsp;&lt;a href="https://pascibenin.org/plaidoyer/pascib-engagement-mission-et-objectifs/"&gt;the Civil Society Actors Platform in Benin&lt;/a&gt;, more vulnerable individuals should be involved in the conversations about how to face this problem. The objective, she said, is to achieve inclusive efforts to reduce the effects of climate change, especially in agriculture.&lt;/p&gt;
  777. &lt;p class="has-text-align-justify"&gt;As the residents of Dassa-Zoum&amp;egrave; struggle daily to access water, vital for their survival and that of their crops, one truth remains evident: In the face of the urgency posed by climate change, their resilience and determination stand as their most valuable assets.&lt;/p&gt;
  778. &lt;/div&gt;</description>
  779. <link>https://skepticalscience.com/water-farmers-struggle-benin.html</link>
  780. <guid>https://skepticalscience.com/water-farmers-struggle-benin.html</guid>
  781. <pubDate>Wed, 24 Apr 2024 15:33:10 EST</pubDate>
  782. </item>  <item>
  783. <title>Simon Clark: The climate lies you'll hear this year</title>
  784. <description>&lt;p class="greenbox"&gt;This video includes conclusions of the creator climate scientist&amp;nbsp;&lt;a href="https://www.simonoxfphys.com//" target="_blank"&gt;Dr. Simon Clark&lt;/a&gt;. It is presented to our readers as an informed perspective. Please see video description for references (if any).&lt;/p&gt;
  785. &lt;p&gt;This year you will be lied to! Simon Clark helps prebunk some misleading statements you'll hear about climate. The video includes a few interview snippets with John Cook and John Mason while a longer version of the interview is available on &lt;a href="https://go.nebula.tv/simonclark" target="_blank"&gt;subscription based Nebula&lt;/a&gt;.&lt;/p&gt;
  786. &lt;p&gt;Support Simon Clark on patreon: &lt;a href="https://patreon.com/simonoxfphys/" target="_blank"&gt;https://patreon.com/simonoxfphys&lt;/a&gt;&lt;/p&gt;
  787. &lt;p&gt;&lt;a href="https://www.youtube.com/watch?v=c7xxE45ZeY8" target="_blank"&gt;&lt;img src="https://i.ytimg.com/vi/c7xxE45ZeY8/hqdefault.jpg" data-pre-sourced="yes" data-sourced="yes" id="image1" data-original="https://i.ytimg.com/vi/c7xxE45ZeY8/hqdefault.jpg" data-src="https://i.ytimg.com/vi/c7xxE45ZeY8/hqdefault.jpg" alt="YouTube Video" "="" class="" style="max-width: 580px;"&gt;&lt;/a&gt;&lt;/p&gt;
  788. &lt;p&gt;&lt;!--more--&gt;&lt;/p&gt;</description>
  789. <link>https://skepticalscience.com/simon-clark-the-climate-lies-youll-hear-this-year.html</link>
  790. <guid>https://skepticalscience.com/simon-clark-the-climate-lies-youll-hear-this-year.html</guid>
  791. <pubDate>Fri, 26 Apr 2024 10:55:24 EST</pubDate>
  792. </item>  <item>
  793. <title>India makes a big bet on electric buses</title>
  794. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2024/04/india-makes-a-big-bet-on-electric-buses/"&gt;re-post from Yale Climate Connections by Sarah Spengeman&lt;/a&gt;&lt;/p&gt;
  795. &lt;p&gt;&lt;img class="attachment-newspack-featured-image size-newspack-featured-image wp-post-image" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2024/04/424-india-electric-bus.jpg?fit=1200%2C800&amp;amp;ssl=1" alt="A group of people waiting by the side of a road as a bus pulls up" width="550" height="367" data-hero-candidate="1" /&gt;&lt;em&gt;People wait to board an electric bus in Pune, India. (Image credit: courtesy of ITDP)&lt;/em&gt;&lt;/p&gt;
  796. &lt;div class="main-content"&gt;
  797. &lt;div class="entry-content"&gt;
  798. &lt;p class="has-drop-cap"&gt;Public transportation riders in Pune, India, love the city&amp;rsquo;s new electric buses so much they will actually skip an older diesel bus that arrives earlier to wait for a smoother, cooler ride in a new model. This has fed a new problem: overcrowding. Fortunately, more new buses are on the way.&lt;/p&gt;
  799. &lt;p&gt;Last fall, India&amp;rsquo;s Ministry of Housing and Urban Affairs launched a&amp;nbsp;&lt;a href="https://www.bloomberg.com/news/articles/2023-08-16/india-approves-7-billion-plan-to-electrify-public-transport"&gt;$7 billion initiative&lt;/a&gt;&amp;nbsp;to support 10,000 new electric buses in 169 Indian cities. The&amp;nbsp;&lt;a href="https://mohua.gov.in/upload/uploadfiles/files/PM-eBus-Sewa-Guidelines-Part-I.pdf"&gt;PM-eBus Sewa&lt;/a&gt;&amp;nbsp;program prioritizes small to medium-sized cities of up to 4 million people, particularly those now lacking organized bus service. India hopes this will make public transport &amp;mdash; not private vehicles &amp;mdash; integral to sustainable urban growth and city culture in the country that last year&amp;nbsp;&lt;a href="https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-no-153-india-overtakes-china-as-the-worlds-most-populous-country/"&gt;overtook China&lt;/a&gt;&amp;nbsp;to become the world&amp;rsquo;s most populous nation.&lt;/p&gt;
  800. &lt;p&gt;India&amp;rsquo;s burgeoning cities are expected to be home to an estimated&amp;nbsp;&lt;a href="https://penntoday.upenn.edu/news/understanding-indias-urban-future#:~:text=Through%20natural%20growth%2C%20urban%20migration,with%20less%20than%20500%2C000%20people."&gt;416 million more people by&lt;/a&gt;&amp;nbsp;&lt;a href="https://penntoday.upenn.edu/news/understanding-indias-urban-future#:~:text=Through%20natural%20growth%2C%20urban%20migration,with%20less%20than%20500%2C000%20people."&gt;2050&lt;/a&gt;&amp;nbsp;&amp;mdash; the largest urban increase in the world. Massive growth could worsen both traffic congestion and air quality in a country that already has&amp;nbsp;&lt;a href="https://www.iqair.com/us/world-most-polluted-cities"&gt;nine of the 10&lt;/a&gt;&amp;nbsp;most polluted cities on the planet and ranks&amp;nbsp;&lt;a href="https://theicct.org/wp-content/uploads/2021/06/Global_health_impacts_transport_emissions_2010-2015_20190226.pdf"&gt;second&lt;/a&gt;&amp;nbsp;in deaths related to transportation pollution.&lt;/p&gt;
  801. &lt;p&gt;But more traffic and pollution is not inevitable, since India has yet to build&amp;nbsp;&lt;a href="https://www.urbanet.info/urbanisation-in-india-infographics/"&gt;70 to 80%&lt;/a&gt;&amp;nbsp;of city infrastructure that will be needed by 2050. The government initiative aims to make clean, electrified public transportation the norm.&lt;/p&gt;
  802. &lt;p&gt;PM-eBus Sewa (Sewa means &amp;ldquo;service&amp;rdquo; in Hindi) will also invest in infrastructure like bus depots, interchange facilities, advanced fare collection systems, and fleet charging facilities. New, holistic transport systems in these rapidly developing cities will also create economic opportunities, giving all residents access to affordable, reliable transportation to travel to work or school.&lt;/p&gt;
  803. &lt;p&gt;Electric buses require a larger upfront investment even though they are cheaper than diesel buses over their lifetimes due to lower fuel and maintenance costs. Therefore, PM-eBus Sewa will focus on smaller cities with fewer financial resources. It also will use an innovative funding mechanism called a&amp;nbsp;&lt;a href="https://www.itdp.in/an-analysis-of-e-bus-procurement-in-india/"&gt;gross cost contract&lt;/a&gt;&amp;nbsp;model, which has already succeeded in several Indian cities. The local transportation authority contracts with a private company that owns the bus, often the manufacturer, to operate the bus and handle maintenance, charging, and staffing over a set time period. This allows cities to pay for buses over a longer term rather than all at once.&lt;/p&gt;
  804. &lt;p&gt;&amp;ldquo;India&amp;rsquo;s cities do want to run bus services but do not have funds for sustained bus operations,&amp;rdquo; explained Surendra Kumar Bagde, additional secretary, Ministry of Housing and Urban Affairs at the International Council on Clean Transportation&amp;rsquo;s&amp;nbsp;&lt;a href="https://theicct.org/event/india-clean-transportation-summit-aug23/"&gt;Clean Transport Summit&lt;/a&gt;&amp;nbsp;in New Delhi last August. &amp;ldquo;PM-ebus Sewa gives this sustained bus operations support.&amp;rdquo;&lt;/p&gt;
  805. &lt;!--more--&gt;
  806. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Public health benefits of electric buses&lt;/span&gt;&lt;/h4&gt;
  807. &lt;p&gt;In India, transportation is the&amp;nbsp;&lt;a href="https://www.nature.com/articles/s41467-022-29620-x"&gt;third-largest source&lt;/a&gt;&amp;nbsp;of emissions, after power generation and industry. The transition to electric vehicles will cut planet-heating emissions, but this alone will not achieve the country&amp;rsquo;s climate goals.&amp;nbsp;&lt;a href="https://www.itdp.org/wp-content/uploads/2022/11/CCSE-Roadmaps_India-FF.pdf"&gt;Recent research&lt;/a&gt;&amp;nbsp;from the nonprofit Institute for Transportation and Development Policy finds that India must shift 50% of projected travel to public transportation, walking, and biking by 2050 to cut transportation emissions in line with the goal of limiting global warming to 1.5 degrees Celsius. Electrifying buses focuses government investments on shared transport, supporting compact cities that put people&amp;rsquo;s needs ahead of cars. Experts at the International Council on Clean Transportation India provided&amp;nbsp;&lt;a href="https://theicct.org/publication/testing-the-pollutant-emissions-and-fuel-efficiency-of-a-commercial-bus-in-india/"&gt;analysis&lt;/a&gt;&amp;nbsp;demonstrating that electric buses also will improve air quality, which should cut respiratory problems and benefit public health.&lt;/p&gt;
  808. &lt;p&gt;In the fall of 2021 and spring of 2022, the International Council on Clean Transportation also conducted a&amp;nbsp;&lt;a href="https://theicct.org/wp-content/uploads/2022/08/Maharashtra-e-buses_FINAL.pdf"&gt;survey&lt;/a&gt;&amp;nbsp;in three cities &amp;mdash; Mumbai, Pune, and Navi Mumbai &amp;mdash; that were early adopters of electric buses in the western state of Maharashtra. Mumbai&amp;rsquo;s first six electric buses hit the roads in 2017 and then an additional 40 in 2019. Pune was able to start with 150 in 2019, using&amp;nbsp;&lt;a href="https://smartcities.gov.in/"&gt;Smart Cities Mission&lt;/a&gt;&amp;nbsp;funds, a national program to support sustainable development. And Navi Mumbai also started its e-bus service with 150 e-buses in 2019.&lt;/p&gt;
  809. &lt;p&gt;In conversations with 21 individuals, representing transit authorities, depot managers, and bus operators, the researchers heard overwhelming support for electric buses, citing multiple benefits over fossil-fueled buses. Transit authorities reported that electric buses required less maintenance time while being just as reliable as other buses. Santosh Patil, a driver from Navi Mumbai Municipal Corporation,&amp;nbsp;&lt;a href="https://theicct.org/electric-buses-improving-operations-aug22/"&gt;said&lt;/a&gt;&amp;nbsp;driving the e-bus is much less stressful because it doesn&amp;rsquo;t require frequent gear shifting in heavy traffic and is easier on the knees and back. He pointed out the e-bus is also free from the vibration, noise, and heat generated by fossil-fueled buses.&lt;/p&gt;
  810. &lt;p&gt;As for passengers, in April 2022, the Institute for Transportation and Development Policy conducted a&amp;nbsp;&lt;a href="https://www.itdp.in/wp-content/uploads/2022/10/Guidance-for-e-Bus-Rollout-in-Indian-Cities.pdf"&gt;survey&lt;/a&gt;&amp;nbsp;in Pune, finding that 78% preferred to ride electric buses over their fossil-fueled counterparts. The survey found riders prefer the smoother, less-noisy ride as well as the air-conditioning. Buses in Pune also operate on a bus rapid transit system, which provides buses with dedicated lanes and other features that make bus travel faster and easier than car travel &amp;mdash; key to making public transport the default choice.&lt;/p&gt;
  811. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Big bus ambitions&lt;/span&gt;&lt;/h4&gt;
  812. &lt;p&gt;In 2015, there were only&amp;nbsp;&lt;a href="https://theicct.org/wp-content/uploads/2022/08/Maharashtra-e-buses_FINAL.pdf"&gt;three electric buses&lt;/a&gt;&amp;nbsp;registered in India. Now there are&amp;nbsp;&lt;a href="https://vahan.parivahan.gov.in/vahan4dashboard/vahan/vahan/view/reportview.xhtml"&gt;7,757&lt;/a&gt;. Maharashtra state accounted for about 25% of e-buses operated in India as of February 2024 and is in the process of procuring 5,150 e-buses &amp;mdash; the second-largest e-bus tender in the country.&lt;/p&gt;
  813. &lt;p&gt;After announcing the PM-eBus Sewa policy, the national government set a goal of&amp;nbsp;&lt;a href="https://www.energymonitor.ai/news/signal-indias-plan-for-50000-electric-buses-gets-us-support/?cf-view"&gt;50,000&lt;/a&gt;&amp;nbsp;new electric buses deployed by 2027.&lt;/p&gt;
  814. &lt;p&gt;&amp;ldquo;India is undergoing a remarkable transition to electric mobility in public transport,&amp;rdquo; said Vaishali Singh, who leads the Institute for Transportation and Development Policy&amp;rsquo;s bus electrification work in India, in an email. &amp;ldquo;But the real challenge lies ahead,&amp;rdquo; she noted. Transit authorities must rethink bus system planning and operations to account for charging needs, changes to maintenance, and worker training.&lt;/p&gt;
  815. &lt;p&gt;Another challenge: India has more than&amp;nbsp;&lt;a href="https://www.itdp.in/accelerating-electrification-of-private-buses/"&gt;2 million private buses&lt;/a&gt;, including charter buses for tourists. Late last year, Indian media&amp;nbsp;&lt;a href="https://economictimes.indiatimes.com/industry/renewables/govt-charts-plan-to-paint-800k-diesel-buses-green-scheme-likely-to-replace-fame-iii/articleshow/106362319.cms?from=mdr"&gt;reported&lt;/a&gt;&amp;nbsp;that the government plans to replace 800,000 diesel buses with electric ones over the next seven years through the next phase of its electrification subsidy. The plan calls for 550,000 new private e-buses, 200,000 e-buses for public transport, and 50,000 for schools.&lt;/p&gt;
  816. &lt;p&gt;If achieved, that would make India an undisputed leader in e-bus deployment and drive major growth of its domestic electric vehicle manufacturing. If this happens, by 2050, India may no longer be considered a &amp;ldquo;developing&amp;rdquo; country, but a global example of sustainable development with clean air, livable cities.&lt;/p&gt;
  817. &lt;p&gt;&lt;em&gt;Sarah Spengeman is communications deputy director at the&amp;nbsp;&lt;a href="https://cruxalliance.org/"&gt;Crux Alliance&lt;/a&gt;, which was established in 2018 to support the rapid implementation of ambitious, cutting-edge climate policies.&lt;/em&gt;&lt;/p&gt;
  818. &lt;/div&gt;
  819. &lt;/div&gt;</description>
  820. <link>https://skepticalscience.com/india-electric-buses.html</link>
  821. <guid>https://skepticalscience.com/india-electric-buses.html</guid>
  822. <pubDate>Mon, 22 Apr 2024 15:37:03 EST</pubDate>
  823. </item>  <item>
  824. <title>At a glance - Clearing up misconceptions regarding 'hide the decline'</title>
  825. <description>&lt;p class="greenbox"&gt;On February 14, 2023 we announced our &lt;a href="https://sks.to/at-a-glance" target="_blank"&gt;&lt;strong&gt;Rebuttal Update Project&lt;/strong&gt;&lt;/a&gt;. This included an &lt;strong&gt;ask for feedback&lt;/strong&gt; about the added "At a glance" section in the updated basic rebuttal versions. This weekly blog post series highlights this new section of one of the updated basic rebuttal versions and serves as a "bump" for our ask. This week features "&lt;a href="https://skepticalscience.com/Mikes-Nature-trick-hide-the-decline-basic.htm" target="_blank"&gt;Clearing up misconceptions regarding 'hide the decline'&lt;/a&gt;". More will follow in the upcoming weeks. Please follow the Further Reading link at the bottom to read the full rebuttal and to join the discussion in the comment thread there.&lt;/p&gt;
  826. &lt;p&gt;&lt;a href="https://sks.to/decline" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/FactMythBoxes-Decline-570px.jpg" alt="Fact-Myth-Box" width="570" height="353" /&gt;&lt;/a&gt;&lt;/p&gt;
  827. &lt;h2&gt;At a glance&lt;/h2&gt;
  828. &lt;p&gt;It's been many years since 'climategate' - when in 2009, the email server at the Climate Research Unit, University of East Anglia, was hacked. The unidentified hacker helped themselves to thousands of emails. These were sifted through and a selection was in due course made available for public download on a Russian server.&lt;/p&gt;
  829. &lt;p&gt;What followed was typical of the tactics used in the campaign to deny the existence of human-caused climate change and is illustrative for that reason. A lot of this manufactured controversy centred on one email, written by Dr Phil Jones, in which the following sentence was picked out and trumpeted all over the media:&lt;/p&gt;
  830. &lt;blockquote&gt;"I've just completed Mike's Nature trick of adding in the real temps to each series for the last 20 years (ie from 1981 onwards) and from 1961 for Keith's to hide the decline."&lt;/blockquote&gt;
  831. &lt;p&gt;"Gotcha!", the deniers proclaimed.&lt;/p&gt;
  832. &lt;p&gt;Climategate was marketed to the public by encouraging them to take such sentences at face value - without any idea of what they actually meant. The notion being planted was that climate scientists were busy covering up declining temperatures.&lt;/p&gt;
  833. &lt;p&gt;It meant nothing of the sort. The people in that email were not talking about temperatures. They were talking about tree-rings.&lt;/p&gt;
  834. &lt;p&gt;&lt;strong&gt;"Mike's Nature trick"&lt;/strong&gt; referred to a technique described in a 1998 Nature paper. The paper presented a 600 year-long global temperature reconstruction by Michael Mann and colleagues. Michael has long used tree-ring growth patterns in ancient wood to reconstruct conditions at the time those rings formed. The basic idea is that in cold, dry years, trees grow more slowly so their rings are relatively narrow and densely-spaced. In warm wet years, it's the opposite.&lt;/p&gt;
  835. &lt;p&gt;The "trick" is the technique of plotting recent instrumental data - in other words direct temperature measurements - alongside the reconstructed tree-ring data for the time they overlap. Why? Because it's one way of checking if the reconstructed tree-ring data are a good proxy for temperatures of the past. It therefore makes entire sense to run such checks. Now to the 'decline'. What declined?&lt;/p&gt;
  836. &lt;p&gt;Beyond a certain point on the timeline, around 1960, the temperature reconstructions based on some tree-ring data fell away and downwards from observed thermometer records. They declined from reality. This only happened with certain tree-ring datasets from specific places. Known as the 'divergence problem', it had been discussed in the scientific literature since the mid 1990s - 15 years before 'climategate'. However, not a lot of people realised that. How lucky for the deniers. "Hide the decline!", they chanted feverishly, to anybody who would listen.&lt;/p&gt;
  837. &lt;p&gt;Everything that occurs in the physical world has a cause. The divergence of temperature reconstructions, based on tree-ring growth, from the observational temperature record is a case in point. The loss of tree-ring sensitivity to temperatures kicked in around 1960. It only affected certain tree-species at certain locations. However, in those cases the post-1960 tree-ring datasets do not reflect the actual conditions. In other words, the data are useless. That's the decline for you. Much ado about nothing.&lt;/p&gt;
  838. &lt;p class="bluebox"&gt;&lt;em&gt;&lt;strong&gt;&lt;em&gt;Please use&amp;nbsp;&lt;a href="https://docs.google.com/forms/d/e/1FAIpQLSdRzpqErVxgQBFL55F9I9PloC4qWugawcCJXTofNwiq0ZKOLg/viewform?usp=pp_url&amp;amp;entry.386351903=https://skepticalscience.com/Mikes-Nature-trick-hide-the-decline-basic.htm" target="_blank"&gt;this form&lt;/a&gt; to provide feedback about this new "At a glance" section. Read a more technical version below or dig deeper via the tabs above!&lt;/em&gt;&lt;/strong&gt;&lt;/em&gt;&lt;/p&gt;
  839. &lt;hr /&gt;
  840. &lt;h2&gt;&lt;a href="https://skepticalscience.com/Mikes-Nature-trick-hide-the-decline-basic.htm#FurtherDetails"&gt;Click for Further details&lt;/a&gt;&lt;/h2&gt;
  841. &lt;!--more--&gt;
  842. &lt;p&gt;In case you'd like to explore more of our recently updated rebuttals, here are the links to all of them:&lt;/p&gt;
  843. &lt;table border="0"&gt;
  844. &lt;tbody&gt;
  845. &lt;tr&gt;
  846. &lt;td&gt;&lt;strong&gt;Myths with link to rebuttal&lt;/strong&gt;&lt;/td&gt;
  847. &lt;td&gt;&lt;strong&gt;Short URLs&lt;/strong&gt;&lt;/td&gt;
  848. &lt;/tr&gt;
  849. &lt;tr&gt;
  850. &lt;td&gt;&lt;a href="https://sks.to/1970s" target="_blank"&gt;Ice age predicted in the 1970s&lt;/a&gt;&lt;/td&gt;
  851. &lt;td&gt;sks.to/1970s&lt;/td&gt;
  852. &lt;/tr&gt;
  853. &lt;tr&gt;
  854. &lt;td&gt;&lt;a href="https://sks.to/1998" target="_blank"&gt;It hasn't warmed since 1998&lt;/a&gt;&lt;/td&gt;
  855. &lt;td&gt;sks.to/1998&lt;/td&gt;
  856. &lt;/tr&gt;
  857. &lt;tr&gt;
  858. &lt;td&gt;&lt;a href="https://sks.to/antarctica" target="_blank"&gt;Antarctica is gaining ice&lt;/a&gt;&lt;/td&gt;
  859. &lt;td&gt;sks.to/antarctica&lt;/td&gt;
  860. &lt;/tr&gt;
  861. &lt;tr&gt;
  862. &lt;td&gt;&lt;a href="https://sks.to/climategate" target="_blank"&gt;CRU emails suggest conspiracy&lt;/a&gt;&lt;/td&gt;
  863. &lt;td&gt;sks.to/climategate&lt;/td&gt;
  864. &lt;/tr&gt;
  865. &lt;tr&gt;
  866. &lt;td&gt;&lt;a href="https://sks.to/hockey" target="_blank"&gt;What evidence is there for the hockey stick&lt;/a&gt;&lt;/td&gt;
  867. &lt;td&gt;sks.to/hockey&lt;/td&gt;
  868. &lt;/tr&gt;
  869. &lt;tr&gt;
  870. &lt;td&gt;&lt;a href="https://sks.to/lag" target="_blank"&gt;CO&lt;sub&gt;2&lt;/sub&gt; lags temperature&lt;/a&gt;&lt;/td&gt;
  871. &lt;td&gt;sks.to/lag&lt;/td&gt;
  872. &lt;/tr&gt;
  873. &lt;tr&gt;
  874. &lt;td&gt;&lt;a href="https://sks.to/past" target="_blank"&gt;Climate's changed before&lt;/a&gt;&lt;/td&gt;
  875. &lt;td&gt;sks.to/past&lt;/td&gt;
  876. &lt;/tr&gt;
  877. &lt;tr&gt;
  878. &lt;td&gt;&lt;a href="https://sks.to/sun" target="_blank"&gt;It's the sun&lt;/a&gt;&lt;/td&gt;
  879. &lt;td&gt;sks.to/sun&lt;/td&gt;
  880. &lt;/tr&gt;
  881. &lt;tr&gt;
  882. &lt;td&gt;&lt;a href="https://sks.to/temp" target="_blank"&gt;Temperature records are unreliable&lt;/a&gt;&lt;/td&gt;
  883. &lt;td&gt;sks.to/temp&lt;/td&gt;
  884. &lt;/tr&gt;
  885. &lt;tr&gt;
  886. &lt;td&gt;&lt;a href="https://sks.to/thermo" target="_blank"&gt;The greenhouse effect and the 2nd law of thermodynamics&lt;/a&gt;&lt;/td&gt;
  887. &lt;td&gt;sks.to/thermo&lt;/td&gt;
  888. &lt;/tr&gt;
  889. &lt;tr&gt;
  890. &lt;td&gt;&lt;a href="https://sks.to/iceage" target="_blank"&gt;We're heading into an ice age&lt;/a&gt;&lt;/td&gt;
  891. &lt;td&gt;sks.to/iceage&lt;/td&gt;
  892. &lt;/tr&gt;
  893. &lt;tr&gt;
  894. &lt;td&gt;&lt;a href="https://sks.to/impacts" target="_blank"&gt;Positives and negatives of global warming&lt;/a&gt;&lt;/td&gt;
  895. &lt;td&gt;sks.to/impacts&lt;/td&gt;
  896. &lt;/tr&gt;
  897. &lt;tr&gt;
  898. &lt;td&gt;&lt;a href="https://sks.to/consensus" target="_blank"&gt;The 97% consensus on global warming&lt;/a&gt;&lt;/td&gt;
  899. &lt;td&gt;sks.to/consensus&lt;/td&gt;
  900. &lt;/tr&gt;
  901. &lt;tr&gt;
  902. &lt;td&gt;&lt;a href="https://sks.to/cooling" target="_blank"&gt;Global cooling - Is global warming still happening?&lt;/a&gt;&lt;/td&gt;
  903. &lt;td&gt;sks.to/cooling&lt;/td&gt;
  904. &lt;/tr&gt;
  905. &lt;tr&gt;
  906. &lt;td&gt;&lt;a href="https://sks.to/model" target="_blank"&gt;How reliable are climate models?&lt;/a&gt;&lt;/td&gt;
  907. &lt;td&gt;sks.to/model&lt;/td&gt;
  908. &lt;/tr&gt;
  909. &lt;tr&gt;
  910. &lt;td&gt;&lt;a href="https://sks.to/species" target="_blank"&gt;Can animals and plants adapt to global warming?&lt;/a&gt;&lt;/td&gt;
  911. &lt;td&gt;sks.to/species&lt;/td&gt;
  912. &lt;/tr&gt;
  913. &lt;tr&gt;
  914. &lt;td&gt;&lt;a href="https://sks.to/cosmic" target="_blank"&gt;What's the link between cosmic rays and climate change?&lt;/a&gt;&lt;/td&gt;
  915. &lt;td&gt;sks.to/cosmic&lt;/td&gt;
  916. &lt;/tr&gt;
  917. &lt;tr&gt;
  918. &lt;td&gt;&lt;a href="https://sks.to/gore" target="_blank"&gt;Is Al Gore's An Inconvenient Truth accurate?&lt;/a&gt;&lt;/td&gt;
  919. &lt;td&gt;sks.to/gore&lt;/td&gt;
  920. &lt;/tr&gt;
  921. &lt;tr&gt;
  922. &lt;td&gt;&lt;a href="https://sks.to/glacier" target="_blank"&gt;Are glaciers growing or retreating?&lt;/a&gt;&lt;/td&gt;
  923. &lt;td&gt;sks.to/glacier&lt;/td&gt;
  924. &lt;/tr&gt;
  925. &lt;tr&gt;
  926. &lt;td&gt;&lt;a href="https://sks.to/acid" target="_blank"&gt;Ocean acidification: global warming's evil twin&lt;/a&gt;&lt;/td&gt;
  927. &lt;td&gt;sks.to/acid&lt;/td&gt;
  928. &lt;/tr&gt;
  929. &lt;tr&gt;
  930. &lt;td&gt;&lt;a href="https://sks.to/agw" target="_blank"&gt;The human fingerprint in global warming&lt;/a&gt;&lt;/td&gt;
  931. &lt;td&gt;sks.to/agw&lt;/td&gt;
  932. &lt;/tr&gt;
  933. &lt;tr&gt;
  934. &lt;td&gt;&lt;a href="https://sks.to/evidence" target="_blank"&gt;Empirical evidence that humans are causing global warming&lt;/a&gt;&lt;/td&gt;
  935. &lt;td&gt;sks.to/evidence&lt;/td&gt;
  936. &lt;/tr&gt;
  937. &lt;tr&gt;
  938. &lt;td&gt;&lt;a href="https://sks.to/greenhouse" target="_blank"&gt;How do we know more CO&lt;sub&gt;2&lt;/sub&gt; is causing warming?&lt;/a&gt;&lt;/td&gt;
  939. &lt;td&gt;sks.to/greenhouse&lt;/td&gt;
  940. &lt;/tr&gt;
  941. &lt;tr&gt;
  942. &lt;td&gt;&lt;a href="https://sks.to/vapor" target="_blank"&gt;Explaining how the water vapor greenhouse effect works&lt;/a&gt;&lt;/td&gt;
  943. &lt;td&gt;sks.to/vapor&lt;/td&gt;
  944. &lt;/tr&gt;
  945. &lt;tr&gt;
  946. &lt;td&gt;&lt;a href="https://sks.to/OISM" target="_blank"&gt;The tricks employed by the flawed OISM Petition Project to cast doubt on the scientific consensus on climate change&lt;/a&gt;&lt;/td&gt;
  947. &lt;td&gt;sks.to/OISM&lt;/td&gt;
  948. &lt;/tr&gt;
  949. &lt;tr&gt;
  950. &lt;td&gt;&lt;a href="https://sks.to/extreme" target="_blank"&gt;Is extreme weather caused by global warming?&lt;/a&gt;&lt;/td&gt;
  951. &lt;td&gt;sks.to/extreme&lt;/td&gt;
  952. &lt;/tr&gt;
  953. &lt;tr&gt;
  954. &lt;td&gt;&lt;a href="https://sks.to/trace" target="_blank"&gt;How substances in trace amounts can cause large effects&lt;/a&gt;&lt;/td&gt;
  955. &lt;td&gt;sks.to/trace&lt;/td&gt;
  956. &lt;/tr&gt;
  957. &lt;tr&gt;
  958. &lt;td&gt;&lt;a href="https://sks.to/sealevel" target="_blank"&gt;How much is sea level rising?&lt;/a&gt;&lt;/td&gt;
  959. &lt;td&gt;sks.to/sealevel&lt;/td&gt;
  960. &lt;/tr&gt;
  961. &lt;tr&gt;
  962. &lt;td&gt;&lt;a href="https://sks.to/pollutant" target="_blank"&gt;Is CO&lt;sub&gt;2&lt;/sub&gt; a pollutant?&lt;/a&gt;&lt;/td&gt;
  963. &lt;td&gt;sks.to/pollutant&lt;/td&gt;
  964. &lt;/tr&gt;
  965. &lt;tr&gt;
  966. &lt;td&gt;&lt;a href="https://sks.to/cold" target="_blank"&gt;Does cold weather disprove global warming?&lt;/a&gt;&lt;/td&gt;
  967. &lt;td&gt;sks.to/cold&lt;/td&gt;
  968. &lt;/tr&gt;
  969. &lt;tr&gt;
  970. &lt;td&gt;&lt;a href="https://sks.to/volcano" target="_blank"&gt;Do volcanoes emit more CO&lt;sub&gt;2&lt;/sub&gt; than humans?&lt;/a&gt;&lt;/td&gt;
  971. &lt;td&gt;sks.to/volcano&lt;/td&gt;
  972. &lt;/tr&gt;
  973. &lt;tr&gt;
  974. &lt;td&gt;&lt;a href="https://sks.to/co2" target="_blank"&gt;How do human CO&lt;sub&gt;2&lt;/sub&gt; emissions compare to natural CO2 emissions?&lt;/a&gt;&lt;/td&gt;
  975. &lt;td&gt;sks.to/co2&lt;/td&gt;
  976. &lt;/tr&gt;
  977. &lt;tr&gt;
  978. &lt;td&gt;&lt;a href="https://sks.to/money" target="_blank"&gt;Climate scientists could make more money in other careers&lt;/a&gt;&lt;/td&gt;
  979. &lt;td&gt;sks.to/money&lt;/td&gt;
  980. &lt;/tr&gt;
  981. &lt;tr&gt;
  982. &lt;td&gt;&lt;a href="https://sks.to/co2data" target="_blank"&gt;How reliable are CO&lt;sub&gt;2&lt;/sub&gt; measurements?&lt;/a&gt;&lt;/td&gt;
  983. &lt;td&gt;sks.to/co2data&lt;/td&gt;
  984. &lt;/tr&gt;
  985. &lt;tr&gt;
  986. &lt;td&gt;&lt;a href="https://sks.to/pastco2" target="_blank"&gt;Do high levels of CO&lt;sub&gt;2&lt;/sub&gt; in the past contradict the warming effect of CO&lt;sub&gt;2&lt;/sub&gt;?&lt;/a&gt;&lt;/td&gt;
  987. &lt;td&gt;sks.to/pastco2&lt;/td&gt;
  988. &lt;/tr&gt;
  989. &lt;tr&gt;
  990. &lt;td&gt;&lt;a href="https://sks.to/cloud" target="_blank"&gt;What is the net feedback of clouds?&lt;/a&gt;&lt;/td&gt;
  991. &lt;td&gt;sks.to/cloud&lt;/td&gt;
  992. &lt;/tr&gt;
  993. &lt;tr&gt;
  994. &lt;td&gt;&lt;a href="https://sks.to/name" target="_blank"&gt;Global warming vs climate change&lt;/a&gt;&lt;/td&gt;
  995. &lt;td&gt;sks.to/name&lt;/td&gt;
  996. &lt;/tr&gt;
  997. &lt;tr&gt;
  998. &lt;td&gt;&lt;a href="https://sks.to/mars" target="_blank"&gt;Is Mars warming?&lt;/a&gt;&lt;/td&gt;
  999. &lt;td&gt;sks.to/mars&lt;/td&gt;
  1000. &lt;/tr&gt;
  1001. &lt;tr&gt;
  1002. &lt;td&gt;&lt;a href="https://sks.to/underestimat" target="_blank"&gt;How the IPCC is more likely to underestimate the climate response&lt;/a&gt;&lt;/td&gt;
  1003. &lt;td&gt;sks.to/underestimat&lt;/td&gt;
  1004. &lt;/tr&gt;
  1005. &lt;tr&gt;
  1006. &lt;td&gt;&lt;a href="https://sks.to/sensitivity" target="_blank"&gt;How sensitive is our climate?&lt;/a&gt;&lt;/td&gt;
  1007. &lt;td&gt;sks.to/sensitivity&lt;/td&gt;
  1008. &lt;/tr&gt;
  1009. &lt;tr&gt;
  1010. &lt;td&gt;&lt;a href="https://sks.to/warming" target="_blank"&gt;Evidence for global warming&lt;/a&gt;&lt;/td&gt;
  1011. &lt;td&gt;sks.to/warming&lt;/td&gt;
  1012. &lt;/tr&gt;
  1013. &lt;tr&gt;
  1014. &lt;td&gt;&lt;a href="https://sks.to/falsify" target="_blank"&gt;Has the greenhouse effect been falsified?&lt;/a&gt;&lt;/td&gt;
  1015. &lt;td&gt;sks.to/falsify&lt;/td&gt;
  1016. &lt;/tr&gt;
  1017. &lt;tr&gt;
  1018. &lt;td&gt;&lt;a href="https://sks.to/breath" target="_blank"&gt;Does breathing contribute to CO&lt;sub&gt;2&lt;/sub&gt; buildup in the atmosphere?&lt;/a&gt;&lt;/td&gt;
  1019. &lt;td&gt;sks.to/breath&lt;/td&gt;
  1020. &lt;/tr&gt;
  1021. &lt;tr&gt;
  1022. &lt;td&gt;&lt;a href="https://sks.to/CO2increase" target="_blank"&gt;What is causing the increase in atmospheric CO2?&lt;/a&gt;&lt;/td&gt;
  1023. &lt;td&gt;sks.to/CO2increase&lt;/td&gt;
  1024. &lt;/tr&gt;
  1025. &lt;tr&gt;
  1026. &lt;td&gt;&lt;a href="https://sks.to/methane" target="_blank"&gt;What is methane's contribution to global warming?&lt;/a&gt;&lt;/td&gt;
  1027. &lt;td&gt;sks.to/methane&lt;/td&gt;
  1028. &lt;/tr&gt;
  1029. &lt;tr&gt;
  1030. &lt;td&gt;&lt;a href="https://sks.to/plant" target="_blank"&gt;Plants cannot live on CO2 alone&lt;/a&gt;&lt;/td&gt;
  1031. &lt;td&gt;sks.to/plant&lt;/td&gt;
  1032. &lt;/tr&gt;
  1033. &lt;tr&gt;
  1034. &lt;td&gt;&lt;a href="https://sks.to/saturate" target="_blank"&gt;Is the CO2 effect saturated?&lt;/a&gt;&lt;/td&gt;
  1035. &lt;td&gt;sks.to/saturate&lt;/td&gt;
  1036. &lt;/tr&gt;
  1037. &lt;tr&gt;
  1038. &lt;td&gt;&lt;a href="https://sks.to/waste" target="_blank"&gt;Greenhouse warming 100 times greater than waste heat&lt;/a&gt;&lt;/td&gt;
  1039. &lt;td&gt;sks.to/waste&lt;/td&gt;
  1040. &lt;/tr&gt;
  1041. &lt;tr&gt;
  1042. &lt;td&gt;&lt;a href="https://sks.to/bear" target="_blank"&gt;How will global warming affect polar bears?&lt;/a&gt;&lt;/td&gt;
  1043. &lt;td&gt;sks.to/bear&lt;/td&gt;
  1044. &lt;/tr&gt;
  1045. &lt;tr&gt;
  1046. &lt;td&gt;&lt;a href="https://sks.to/venus" target="_blank"&gt;The runaway greenhouse effect on Venus&lt;/a&gt;&lt;/td&gt;
  1047. &lt;td&gt;sks.to/venus&lt;/td&gt;
  1048. &lt;/tr&gt;
  1049. &lt;tr&gt;
  1050. &lt;td&gt;&lt;a href="https://sks.to/planets" target="_blank"&gt;What climate change is happening to other planets in the solar system?&lt;/a&gt;&lt;/td&gt;
  1051. &lt;td&gt;sks.to/planets&lt;/td&gt;
  1052. &lt;/tr&gt;
  1053. &lt;tr&gt;
  1054. &lt;td&gt;&lt;a href="https://sks.to/arctic" target="_blank"&gt;Has Arctic sea ice returned to normal?&lt;/a&gt;&lt;/td&gt;
  1055. &lt;td&gt;sks.to/arctic&lt;/td&gt;
  1056. &lt;/tr&gt;
  1057. &lt;tr&gt;
  1058. &lt;td&gt;&lt;a href="https://sks.to/green" target="_blank"&gt;Was Greenland really green in the past?&lt;/a&gt;&lt;/td&gt;
  1059. &lt;td&gt;sks.to/green&lt;/td&gt;
  1060. &lt;/tr&gt;
  1061. &lt;tr&gt;
  1062. &lt;td&gt;&lt;a href="https://sks.to/greenland" target="_blank"&gt;Is Greenland gaining or losing ice?&lt;/a&gt;&lt;/td&gt;
  1063. &lt;td&gt;sks.to/greenland&lt;/td&gt;
  1064. &lt;/tr&gt;
  1065. &lt;tr&gt;
  1066. &lt;td&gt;&lt;a href="https://sks.to/arcticcycle" target="_blank"&gt;Human activity is driving retreat of Arctic sea ice&lt;/a&gt;&lt;/td&gt;
  1067. &lt;td&gt;sks.to/arcticcycle&lt;/td&gt;
  1068. &lt;/tr&gt;
  1069. &lt;tr&gt;
  1070. &lt;td&gt;&lt;a href="https://sks.to/albedo" target="_blank"&gt;The albedo effect and global warming&lt;/a&gt;&lt;/td&gt;
  1071. &lt;td&gt;sks.to/albedo&lt;/td&gt;
  1072. &lt;/tr&gt;
  1073. &lt;tr&gt;
  1074. &lt;td&gt;&lt;a href="https://sks.to/correlate" target="_blank"&gt;Does CO2 always correlate with temperature?&lt;/a&gt;&lt;/td&gt;
  1075. &lt;td&gt;sks.to/correlate&lt;/td&gt;
  1076. &lt;/tr&gt;
  1077. &lt;tr&gt;
  1078. &lt;td&gt;&lt;a href="https://sks.to/cycle" target="_blank"&gt;Human fingerprints on climate change rule out natural cycles&lt;/a&gt;&lt;/td&gt;
  1079. &lt;td&gt;sks.to/cycle&lt;/td&gt;
  1080. &lt;/tr&gt;
  1081. &lt;tr&gt;
  1082. &lt;td&gt;&lt;a href="https://sks.to/elnino" target="_blank"&gt;Global warming and the El Ni&amp;ntilde;o Southern Oscillation&lt;/a&gt;&lt;/td&gt;
  1083. &lt;td&gt;sks.to/elnino&lt;/td&gt;
  1084. &lt;/tr&gt;
  1085. &lt;tr&gt;
  1086. &lt;td&gt;&lt;a href="https://sks.to/pdo" target="_blank"&gt;The Pacific Decadal Oscillation (PDO) is not causing global warming&lt;/a&gt;&lt;/td&gt;
  1087. &lt;td&gt;sks.to/pdo&lt;/td&gt;
  1088. &lt;/tr&gt;
  1089. &lt;tr&gt;
  1090. &lt;td&gt;&lt;a href="https://sks.to/settled" target="_blank"&gt;Is the science settled?&lt;/a&gt;&lt;/td&gt;
  1091. &lt;td&gt;sks.to/settled&lt;/td&gt;
  1092. &lt;/tr&gt;
  1093. &lt;tr&gt;
  1094. &lt;td&gt;&lt;a href="https://sks.to/weather" target="_blank"&gt;The difference between weather and climate&lt;/a&gt;&lt;/td&gt;
  1095. &lt;td&gt;sks.to/weather&lt;/td&gt;
  1096. &lt;/tr&gt;
  1097. &lt;tr&gt;
  1098. &lt;td&gt;&lt;a href="https://sks.to/decline" target="_blank"&gt;Clearing up misconceptions regarding 'hide the decline'&lt;/a&gt;&lt;/td&gt;
  1099. &lt;td&gt;sks.to/decline&lt;/td&gt;
  1100. &lt;/tr&gt;
  1101. &lt;/tbody&gt;
  1102. &lt;/table&gt;
  1103. &lt;p&gt;&amp;nbsp;&lt;/p&gt;
  1104. &lt;p class="bluebox"&gt;&lt;strong&gt;If you think that projects like these rebuttal updates are a good idea, please visit our &lt;a href="https://sks.to/support_sks?utm-source=sks&amp;amp;utm-campaign=aag&amp;amp;utm-term=contribute" target="_blank"&gt;support page to contribute&lt;/a&gt;!&lt;/strong&gt;&lt;/p&gt;</description>
  1105. <link>https://skepticalscience.com/at-a-glance-decline.html</link>
  1106. <guid>https://skepticalscience.com/at-a-glance-decline.html</guid>
  1107. <pubDate>Tue, 30 Apr 2024 10:31:11 EST</pubDate>
  1108. </item>  <item>
  1109. <title>2024 SkS Weekly Climate Change &amp; Global Warming News Roundup #16</title>
  1110. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, April 14, 2024 thru Sat, April 20, 2024.&lt;/div&gt;
  1111. &lt;hr /&gt;
  1112. &lt;h3&gt;Story of the week&lt;img class="figureright" src="https://skepticalscience.com/pics/Bloomberg__Nature_Kotz_et_al.png" alt="Bloomberg headline, Nature Kotz et al. 2024" width="260" height="185" /&gt;&lt;/h3&gt;
  1113. &lt;p&gt;Our story of the week hinges on these words from the abstract of a &lt;a href="https://www.nature.com/articles/s41586-024-07219-0" target="_blank"&gt;fresh academic publication&lt;/a&gt;:&lt;/p&gt;
  1114. &lt;blockquote&gt;
  1115. &lt;p&gt;&lt;em&gt;Here we use recent empirical findings from more than 1,600 regions worldwide over the past 40&amp;thinsp;years to project sub-national damages from temperature and precipitation, including daily variability and extremes&lt;a id="ref-link-section-d148688347e432" title="Kotz, M., Wenz, L., Stechemesser, A., Kalkuhl, M. &amp;amp; Levermann, A. Day-to-day temperature variability reduces economic growth. Nat. Clim. Change 11, 319&amp;ndash;325 (2021)." href="https://www.nature.com/articles/s41586-024-07219-0#ref-CR7" data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref"&gt;7&lt;/a&gt;,&lt;a id="ref-link-section-d148688347e435" title="Kotz, M., Levermann, A. &amp;amp; Wenz, L. The effect of rainfall changes on economic production. Nature 601, 223&amp;ndash;227 (2022)." href="https://www.nature.com/articles/s41586-024-07219-0#ref-CR8" data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref"&gt;8&lt;/a&gt;. Using an empirical approach that provides a robust lower bound on the persistence of impacts on economic growth, we find that the world economy is committed to an income reduction of 19% within the next 26&amp;thinsp;years independent of future emission choices&amp;nbsp;(relative to a baseline without climate impacts, likely range of 11&amp;ndash;29% accounting for physical climate and empirical uncertainty). These damages already outweigh the mitigation costs required to limit global warming to 2&amp;thinsp;&amp;deg;C by sixfold over this near-term time frame and thereafter diverge strongly dependent on emission choices.&lt;/em&gt;&lt;/p&gt;
  1116. &lt;/blockquote&gt;
  1117. &lt;p&gt;That dry language and the arc of the authors' research findings unpacks as evidence-based headlines:&lt;/p&gt;
  1118. &lt;ul style="list-style-type: disc;"&gt;
  1119. &lt;li&gt;&lt;strong&gt;&lt;a href="https://www.reuters.com/business/environment/climate-change-damage-could-cost-38-trillion-per-year-by-2050-study-finds-2024-04-17/" target="_blank"&gt;Climate change damage could cost $38 trillion per year by 2050, study finds&lt;/a&gt;&lt;/strong&gt;&lt;/li&gt;
  1120. &lt;li&gt;&lt;strong&gt;&lt;a href="https://www.reuters.com/business/environment/climate-change-damage-could-cost-38-trillion-per-year-by-2050-study-finds-2024-04-17/" target="_blank"&gt;The Big Climate Costs That Lie Just Below the Surface&lt;/a&gt;&lt;/strong&gt;&lt;/li&gt;
  1121. &lt;li&gt;&lt;strong&gt;&lt;a href="https://apnews.com/article/climate-change-damage-economy-income-costly-3e21addee3fe328f38b771645e237ff9" target="_blank"&gt;New study calculates climate change&amp;rsquo;s economic bite will hit about $38 trillion a year by 2049&lt;/a&gt;&lt;/strong&gt;&lt;/li&gt;
  1122. &lt;li&gt;&lt;strong&gt;&lt;a href="https://billmckibben.substack.com/p/is-38-trillion-a-lot" target="_blank"&gt;Is $38 trillion a lot?&lt;/a&gt;&lt;/strong&gt;&lt;/li&gt;
  1123. &lt;li&gt;&lt;strong&gt;&lt;a href="https://newrepublic.com/article/180834/38-trillion-climate-world-bank" target="_blank"&gt;Climate Change Will Cost $38 Trillion a Year. Who Will Pay for It?&lt;/a&gt;&lt;/strong&gt;&lt;/li&gt;
  1124. &lt;li&gt;&lt;strong&gt;&lt;a href="https://cleantechnica.com/2024/04/20/global-heating-will-cost-the-world-economy-38-trillion-a-year/" target="_blank"&gt;Global&amp;nbsp;&lt;span id="skstip39" class="skstip beginner disabled"&gt;Heating&lt;/span&gt;&amp;nbsp;Will Cost The World Economy $38 Trillion - A Year!&lt;/a&gt;&lt;/strong&gt;&lt;/li&gt;
  1125. &lt;/ul&gt;
  1126. &lt;p&gt;The paper's results will be refined, inevitably. With passing time the empirical, already-experienced evidence the paper relies upon to establish its projections will increasingly include measurable economic impact.&amp;nbsp; Meanwhile other researchers will doubtless be inspired to improve on this effort, "w&lt;em&gt;hat if the authors are incorrect?"&lt;/em&gt;&amp;nbsp;being a reasonable question to ask. Equally it's reasonable to ask &lt;em&gt;"how wrong can they be?"&lt;/em&gt; Even supposing that the unfolding truth reveals the authors have delivered a 50% overshoot, 19 trillion dollars is not a trivial amount of economic opportunity to lose. Our ultimate truth may also include underestimation. For the time being, Stanford University's&amp;nbsp;&lt;a href="https://sustainability.stanford.edu/people/marshall-burke" target="_blank"&gt;Marshall Burke&lt;/a&gt; may have the&amp;nbsp;&lt;a href="https://apnews.com/article/climate-change-damage-economy-income-costly-3e21addee3fe328f38b771645e237ff9" target="_blank"&gt;best assessment&lt;/a&gt; of this paper, for guiding our path forward: &lt;em&gt;"I wouldn&amp;rsquo;t put a ton of weight on their specific numerical estimates, but I think the big picture is basically right." &lt;/em&gt;Marshall seems suitably cautious; when starting at&lt;em&gt;&amp;nbsp;&lt;/em&gt;$38T/year, plus or minus a lot still ends up as a big deal. The big picture includes that we have other urgent needs for funds on this scale and can't afford accidental (or intentional) wasted opportunity costs of this magnitude. Procrastination on dealing with our climate problem loses us important options.&amp;nbsp;&lt;/p&gt;
  1127. &lt;h3&gt;Stories we promoted this week, by publication date:&lt;/h3&gt;
  1128. &lt;p&gt;&lt;strong&gt;Before April 14&lt;br /&gt;&lt;/strong&gt;&lt;/p&gt;
  1129. &lt;ul&gt;
  1130. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/12/shell-says-it-lobbies-for-energy-transition-during-climate-ruling-appeal" target="_blank"&gt;Shell says it `lobbies for energy transition` during climate ruling appeal&lt;/a&gt;&lt;/strong&gt;, The Guardian, Ajit Niranjan. &lt;em&gt;Company is fighting Dutch court ruling that says it must emit 45% less CO2 by 2030 than in 2019&lt;/em&gt;&lt;/li&gt;
  1131. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/commentisfree/2024/apr/13/climate-crisis-protest-activism-repression" target="_blank"&gt;Jail for holding a placard? Protest over the climate crisis is being brutally suppressed | Natasha Walter&lt;/a&gt;&lt;/strong&gt;, The Guardian, Natasha Walter. &lt;em&gt;The legal repression of activism has been fast and frightening, yet it won&amp;rsquo;t make protesters disappear and only sows division&lt;/em&gt;&lt;/li&gt;
  1132. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://science.feedback.org/review/review-climate-the-movie-the-cold-truth-reveals-numerous-well-known-misinformation-talking-points-inaccuracies/" target="_blank"&gt;Review of Climate: The Movie (The Cold Truth) reveals numerous, well-known misinformation talking points and inaccuracies&lt;/a&gt;&lt;/strong&gt;, Science Feedback, Darrik Burns (Editor). &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  1133. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/trump-allies-target-noaa-climate-research/" target="_blank"&gt;Trump allies target NOAA climate research&lt;/a&gt;&lt;/strong&gt;, E&amp;amp;E News, Scott Waldmann. &lt;em&gt;A planning document for a second Trump administration also recommends the National Weather Service commercialize its forecasting operations.&lt;/em&gt;&lt;/li&gt;
  1134. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://news.mongabay.com/2024/04/brazils-cattle-industry-could-suffer-major-losses-without-climate-policies-report-says/" target="_blank"&gt;Brazil&amp;rsquo;s cattle industry could suffer major losses without climate policies, report says&lt;/a&gt;&lt;/strong&gt;, Mongabay, Maxwell Radwin. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  1135. &lt;/ul&gt;
  1136. &lt;!--more--&gt;
  1137. &lt;p&gt;&lt;strong&gt;April 14&lt;/strong&gt;&lt;/p&gt;
  1138. &lt;ul&gt;
  1139. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_15.html" target="_blank"&gt;2024 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #15&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, B&amp;auml;rbel Winkler, Doug Bostrom &amp;amp; John Hartz. &lt;em&gt;A list of 31 news and opinion articles we shared during the week&lt;/em&gt;&lt;/li&gt;
  1140. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/us-news/2024/apr/14/climate-disinformation-explainer" target="_blank"&gt;How to spot five of the fossil fuel industry`s biggest disinformation tactics&lt;/a&gt;&lt;/strong&gt;, The Guardian, Amy Westervelt and Kyle Pope. &lt;em&gt;Amy Westervelt and Kyle Pope have covered climate disinformation for a combined 20-plus years &amp;ndash; here&amp;rsquo;s their guide on how to decode it&lt;/em&gt;&lt;/li&gt;
  1141. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/14/grownup-leaders-are-pushing-us-towards-catastrophe-says-former-us-climate-chief" target="_blank"&gt;&amp;lsquo;Grownup&amp;rsquo; leaders are pushing us towards catastrophe, says former US climate chief&lt;/a&gt;&lt;/strong&gt;, Environment, Thje Observer/The Guardian, Fiona Harvey. &lt;em&gt;"Paris agreement negotiator Todd Stern attacks premiers who say that decarbonisation programmes are unrealistic and should be slowed down." &lt;/em&gt;&lt;/li&gt;
  1142. &lt;/ul&gt;
  1143. &lt;ul&gt;
  1144. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/11/great-barrier-reef-severe-coral-bleaching-impact" target="_blank"&gt;Great Barrier Reef suffering &amp;lsquo;most severe&amp;rsquo; coral bleaching on record as footage shows damage 18 metres down&lt;/a&gt;&lt;/strong&gt;, Environment, The Guardian, Sharlotte Thou &amp;amp; Adam Morton. &lt;em&gt;"Marine researcher &amp;lsquo;devastated&amp;rsquo; by widespread event that is affecting coral species usually resistant to bleaching"&lt;/em&gt;&lt;/li&gt;
  1145. &lt;/ul&gt;
  1146. &lt;p&gt;&lt;strong&gt;April 15&lt;/strong&gt;&lt;/p&gt;
  1147. &lt;ul&gt;
  1148. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/15/great-barrier-reef-coral-bleaching-global-heating" target="_blank"&gt;Global heating pushes coral reefs towards worst planet-wide mass bleaching on record&lt;/a&gt;&lt;/strong&gt;, The Guardian, Graham Readfearn. &lt;em&gt;The percentage of reef areas experiencing bleaching-level heat stress is increasing by about 1% a week, scientists say&lt;/em&gt;&lt;/li&gt;
  1149. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/climate-change-bait-and-switch-threatens-sharks-and-rays/" target="_blank"&gt;Climate change `bait and switch` threatens sharks and rays&lt;/a&gt;&lt;/strong&gt;, Carbon Brief, Giuliana Viglione. &lt;em&gt;Cold-blooded sea creatures seeking refuge from warming ocean waters may find themselves at increasing risk of deadly cold shocks due to changes in ocean currents, new research warns. &lt;/em&gt;&lt;/li&gt;
  1150. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/15042024/climate-change-wildfire-risk-prescribed-burns-texas-panhandle/" target="_blank"&gt;As Climate Change Intensifies Wildfire Risk, Prescribed Burns Prove Their Worth in the Heat-Stressed Plains of the Texas Panhandle&lt;/a&gt;&lt;/strong&gt;, Inside Climate News, Keaton Peters. &lt;em&gt;In a small Texas city, officials say land previously treated with a prescribed burn stopped the Windy Deuce Fire from entering neighborhoods. But the practice of intentionally burning excess vegetation has faced opposition from some private landowners.&lt;/em&gt;&lt;/li&gt;
  1151. &lt;/ul&gt;
  1152. &lt;p&gt;&lt;strong&gt;April 16&lt;/strong&gt;&lt;/p&gt;
  1153. &lt;ul&gt;
  1154. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/science/world-4th-coral-bleaching-event-official-climate/" target="_blank"&gt;The world`s 4th coral bleaching event has officially arrived&lt;/a&gt;&lt;/strong&gt;, Grist, Sachi Kitajima Mulkey. &lt;em&gt;Scientists say it's shaping up to be the worst one yet.&lt;/em&gt;&lt;/li&gt;
  1155. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/epa-to-release-multiple-power-sector-rules-next-week/" target="_blank"&gt;EPA to release multiple power sector rules next week&lt;/a&gt;&lt;/strong&gt;, E&amp;amp;E News, Jean Chemnick . &lt;em&gt;"Up to four regulations would cover a variety of pollutants including carbon dioxide."&lt;/em&gt;&lt;/li&gt;
  1156. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/c7xxE45ZeY8" target="_blank"&gt;The climate lies you'll hear this year&lt;/a&gt;&lt;/strong&gt;, Youtube, Simon Clark. &lt;em&gt;This year you will be lied to! Let me help prebunk some misleading statements you'll hear about climate. &lt;/em&gt;&lt;/li&gt;
  1157. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thenarwhal.ca/alberta-drought-water-supply/" target="_blank"&gt;A parched place: the Alberta drought crisis is bigger than one summer&lt;/a&gt;&lt;/strong&gt;, The Narwhal, Drew Anderson. &lt;em&gt;"The province says it will soon release its emergency response plan and details on how water will be shared as it runs dry. But Alberta has been outspending the water supply for decades."&lt;/em&gt;&lt;/li&gt;
  1158. &lt;/ul&gt;
  1159. &lt;p&gt;&lt;strong&gt;April 17&lt;/strong&gt;&lt;/p&gt;
  1160. &lt;ul&gt;
  1161. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2024/04/climate-change-likely-killed-tens-of-thousands-of-people-in-2023/" target="_blank"&gt;Climate change likely killed tens of thousands of people in 2023&lt;/a&gt;&lt;/strong&gt;, Yale Climate Connections, Samantha Harrington. &lt;em&gt;And that&amp;rsquo;s an extremely conservative estimate. &lt;/em&gt;&lt;/li&gt;
  1162. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/17/climate-crisis-average-world-incomes-to-drop-by-nearly-a-fifth-by-2050" target="_blank"&gt;Climate crisis: average world incomes to drop by nearly a fifth by 2050&lt;/a&gt;&lt;/strong&gt;, The Guardian, Jonathan Watts. &lt;em&gt;Cost of environmental damage will be six times higher than price of limiting global heating to 2C, study finds&lt;/em&gt;&lt;/li&gt;
  1163. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://billmckibben.substack.com/p/is-38-trillion-a-lot" target="_blank"&gt;Is $38 trillion a lot?&lt;/a&gt;&lt;/strong&gt;, The Crucial Years, Bill McKibben. &lt;em&gt;Because that's what we're throwing away&lt;/em&gt;&lt;/li&gt;
  1164. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://qz.com/shell-climate-change-resolution-1851417483" target="_blank"&gt;Shell says doing more to rein in global warming is 'unrealistic'&lt;/a&gt;&lt;/strong&gt;, Quartz, Melvin Backman. &lt;em&gt;It's telling shareholders to vote down a proposal that it bolster its efforts to fight climate change&lt;/em&gt;&lt;/li&gt;
  1165. &lt;/ul&gt;
  1166. &lt;p&gt;&lt;strong&gt;April 18&lt;/strong&gt;&lt;/p&gt;
  1167. &lt;ul&gt;
  1168. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2024/apr/18/lethal-heatwave-in-sahel-worsened-by-fossil-fuel-burning-study-finds" target="_blank"&gt;Lethal heatwave in Sahel worsened by fossil fuel burning, study finds&lt;/a&gt;&lt;/strong&gt;, The Guardian, Jonathan Watts. &lt;em&gt;Deaths from record temperatures in Mali reportedly led to full morgues turning away bodies this month&lt;/em&gt;&lt;/li&gt;
  1169. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2024-04-human-climate-deadly-sahel.html" target="_blank"&gt;Human-induced' climate change behind deadly Sahel heat wave: Study&lt;/a&gt;&lt;/strong&gt;, Phys.org - latest science and technology news stories, AFP. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  1170. &lt;/ul&gt;
  1171. &lt;p&gt;&lt;strong&gt;April 19&lt;/strong&gt;&lt;/p&gt;
  1172. &lt;ul&gt;
  1173. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/egu24-personal-diary.html" target="_blank"&gt;EGU2024 - An intense week of joining sessions virtually&lt;/a&gt;&lt;/strong&gt;, Skeptical Science, B&amp;auml;rbel Winkler. &lt;em&gt;A personal diary of the happenings at a large scientific conference from our volunteer B&amp;auml;rbel Winkler's perspective.&lt;/em&gt;&lt;/li&gt;
  1174. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/accountability/big-oil-court-climate-homicide-lawsuits/" target="_blank"&gt;Taking Big Oil to court for `climate homicide` isn`t as far-fetched as it sounds&lt;/a&gt;&lt;/strong&gt;, Grist, Kate Yoder. &lt;em&gt;Are fossil fuel companies guilty of actual murder? &lt;/em&gt;&lt;/li&gt;
  1175. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theclimatebrink.com/p/a-primer-on-cloud-seeding" target="_blank"&gt;A primer on cloud seeding&lt;/a&gt;&lt;/strong&gt;, The Climate Brink, Andrew Dessler. &lt;em&gt;no, it did not cause the flooding in Dubai&lt;/em&gt;&lt;/li&gt;
  1176. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.independent.co.uk/news/ap-baku-azerbaijan-washington-dubai-b2531659.html" target="_blank"&gt;Next UN climate talks are critical to plot aid for poorer nations, says incoming president&lt;/a&gt;&lt;/strong&gt;, The Independent News, Seth Borenstein. &lt;em&gt;The man who will run this year&amp;rsquo;s United Nations climate talks in November views the upcoming negotiations as a key link in international efforts to curb worsening global warming &amp;mdash; if they can be successful&lt;/em&gt;&lt;/li&gt;
  1177. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://blogs.egu.eu/geolog/2024/04/19/the-egu-great-debate-about-the-anthropocene-scientists-and-comfort-zones/" target="_blank"&gt;EGU Blogs &amp;raquo; GeoLog &amp;raquo; The EGU Great Debate: About the Anthropocene, scientists and comfort zones? The EGU Great Debate: About the Anthropocene, scientists and comfort zones?&lt;/a&gt;&lt;/strong&gt;, EGU Blogs, Maria Scheel. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  1178. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.washingtonpost.com/climate-environment/2024/04/19/record-temperatures-heat-climate/" target="_blank"&gt;Earth&amp;rsquo;s record hot streak might be a sign of a new climate era&lt;/a&gt;&lt;/strong&gt;, Climate-Environment, Washington Post, Sarah Kaplan. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  1179. &lt;/ul&gt;
  1180. &lt;p&gt;&lt;strong&gt;April 20&lt;/strong&gt;&lt;/p&gt;
  1181. &lt;ul&gt;
  1182. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://cleantechnica.com/2024/04/20/global-heating-will-cost-the-world-economy-38-trillion-a-year/" target="_blank"&gt;Global Heating Will Cost The World Economy $38 Trillion - A Year!&lt;/a&gt;&lt;/strong&gt;, CleanTechnica, Steve Hanley. &lt;em&gt;&lt;/em&gt;&lt;/li&gt;
  1183. &lt;/ul&gt;
  1184. &lt;p class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/p&gt;</description>
  1185. <link>https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_16.html</link>
  1186. <guid>https://skepticalscience.com/2024-SkS-Weekly-News-Roundup_16.html</guid>
  1187. <pubDate>Sun, 21 Apr 2024 10:41:46 EST</pubDate>
  1188. </item>  <item>
  1189. <title>Skeptical Science New Research for Week #16 2024</title>
  1190. <description>&lt;h3&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/h3&gt;
  1191. &lt;p&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-45906-8" target="_blank"&gt;&lt;span id="skstip57" class="skstip advanced disabled"&gt;Glacial isostatic adjustment&lt;/span&gt;&amp;nbsp;reduces past and future Arctic subsea&amp;nbsp;&lt;span id="skstip58" class="skstip advanced disabled"&gt;permafrost&lt;/span&gt;&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Creel et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Nature Communications:&lt;/em&gt;&lt;/p&gt;
  1192. &lt;blockquote&gt;
  1193. &lt;p&gt;&lt;em&gt;Sea-level rise submerges terrestrial permafrost in the Arctic, turning it into subsea permafrost. Subsea permafrost underlies&amp;thinsp;~&amp;thinsp;1.8 million km2&amp;nbsp;of Arctic continental shelf, with thicknesses in places exceeding 700 m. Sea-level variations over glacial-interglacial cycles control subsea permafrost distribution and thickness, yet no permafrost model has accounted for glacial isostatic adjustment (GIA), which deviates local sea level from the global mean due to changes in ice and ocean loading. Here we incorporate GIA into a pan-Arctic model of subsea permafrost over the last 400,000 years. Including GIA significantly reduces present-day subsea permafrost thickness, chiefly because of hydro-isostatic effects as well as deformation related to Northern Hemisphere ice sheets. Additionally, we extend the simulation 1000 years into the future for emissions scenarios outlined in the Intergovernmental Panel on Climate Change&amp;rsquo;s sixth assessment report. We find that subsea permafrost is preserved under a low emissions scenario but mostly disappears under a high emissions scenario.&lt;/em&gt;&lt;/p&gt;
  1194. &lt;/blockquote&gt;
  1195. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1007/s11625-024-01486-6" target="_blank"&gt;How do we reinforce&amp;nbsp;&lt;span id="skstip212" class="skstip beginner disabled"&gt;climate&lt;/span&gt;&amp;nbsp;action?&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Zhao et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Sustainability Science:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  1196. &lt;blockquote&gt;
  1197. &lt;p&gt;&lt;em&gt;Humanity has a shrinking window to drastically reduce greenhouse gas emissions, yet climate action is still lacking on both individual and policy levels. We argue that this is because behavioral interventions have largely neglected the basic principles of operant conditioning as one set of tools to promote collective climate action. In this perspective, we propose an operant conditioning framework that uses rewards and punishments to shape transportation, food, waste, housing, and civic actions. This framework highlights the value of reinforcement in encouraging the switch to low-emission behavior, while also considering the benefit of decreasing high-emission behavior to expedite the transition. This approach also helps explain positive and negative spillovers from behavioral interventions.&amp;nbsp;&lt;/em&gt;&lt;/p&gt;
  1198. &lt;/blockquote&gt;
  1199. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01966-8" target="_blank"&gt;&lt;span id="skstip90" class="skstip beginner disabled"&gt;Climate change&lt;/span&gt;-driven cooling can kill marine megafauna at their distributional limits&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Lubitz et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Nature&amp;nbsp;&lt;span id="skstip91" class="skstip beginner disabled"&gt;Climate Change:&lt;/span&gt;&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  1200. &lt;blockquote&gt;
  1201. &lt;p&gt;&lt;em&gt;The impacts on marine species from secular warming and heatwaves are well demonstrated; however, the impacts of extreme cold events are poorly understood. Here we link the death of organisms from 81 species to an intense cold upwelling event in the Agulhas Current, and show trends of increasing frequency and intensification of upwelling in the Agulhas Current and East Australian Current. Using electronic tagging, we illustrate the potential impacts of upwelling events on the movement behaviour of bull sharks&amp;nbsp;Carcharhinus leucas, including alterations of migratory patterns and maintenance of shallower dive profiles when transiting through upwelling cells. Increasing upwelling could result in &amp;lsquo;bait and switch&amp;rsquo; situations, where climate change expands subtropical species&amp;rsquo; distribution, while simultaneously exposing climate migrants to an increased risk of cold-mortality events at poleward distributional limits. This shows the potential impacts of increased cold events, an understudied aspect of climate change research, and highlights the complexities of climate change effects on marine ecosystems.&lt;/em&gt;&lt;/p&gt;
  1202. &lt;/blockquote&gt;
  1203. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100605" target="_blank"&gt;Literature-informed&amp;nbsp;&lt;span id="skstip242" class="skstip advanced disabled"&gt;likelihood&lt;/span&gt;s of future emissions and temperatures&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Venmans &amp;amp; Carr,&amp;nbsp;&lt;/span&gt;&lt;em&gt;&lt;span id="skstip243" class="skstip beginner disabled"&gt;Climate&lt;/span&gt;&amp;nbsp;Risk Management:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  1204. &lt;div id="abstracts" class="Abstracts u-font-serif text-s"&gt;
  1205. &lt;div id="ab005" class="abstract author"&gt;
  1206. &lt;div id="as005"&gt;
  1207. &lt;blockquote&gt;
  1208. &lt;p id="sp0005"&gt;&lt;em&gt;How high should we build a dyke today, knowing that it will serve for more than 50&amp;nbsp;years? This depends on the probability distribution of future temperatures. We review the literature on estimates of future emissions for current/stated policy scenarios and current pledge scenarios. Reviewing expert elicitations, abatement costs of scenarios, learning rates of technologies, fossil fuel supply side dynamics and geoengineering, we argue that scenarios with emissions largely beyond current/stated policy scenarios and largely below current pledge scenarios are relatively unlikely. Based on this, we develop a literature-informed evaluation of the likelihoods of future temperature for use in Value at Risk stress tests in 2030, 2050 and 2100&lt;/em&gt;.&lt;/p&gt;
  1209. &lt;/blockquote&gt;
  1210. &lt;/div&gt;
  1211. &lt;/div&gt;
  1212. &lt;/div&gt;
  1213. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01990-8" target="_blank"&gt;&lt;span id="skstip203" class="skstip beginner disabled"&gt;Climate&lt;/span&gt;&amp;nbsp;damage&amp;nbsp;&lt;span id="skstip204" class="skstip advanced disabled"&gt;projection&lt;/span&gt;s beyond annual temperature&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Waidelich et al.,&amp;nbsp;&lt;/span&gt;&lt;em&gt;Nature&amp;nbsp;&lt;span id="skstip205" class="skstip beginner disabled"&gt;Climate Change:&lt;/span&gt;&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  1214. &lt;blockquote&gt;
  1215. &lt;p&gt;&lt;em&gt;Estimates of global economic damage from climate change assess the effect of annual temperature changes. However, the roles of precipitation, temperature variability and extreme events are not yet known. Here, by combining projections of climate models with empirical dose&amp;ndash;response functions translating shifts in temperature means and variability, rainfall patterns and extreme precipitation into economic damage, we show that at +3&amp;thinsp;&amp;deg;C global average losses reach 10% of gross domestic product, with worst effects (up to 17%) in poorer, low-latitude countries. Relative to annual temperature damage, the additional impacts of projecting variability and extremes are smaller and dominated by interannual variability, especially at lower latitudes. However, accounting for variability and extremes when estimating the temperature dose&amp;ndash;response function raises global economic losses by nearly two percentage points and exacerbates economic tail risks.&lt;/em&gt;&lt;/p&gt;
  1216. &lt;/blockquote&gt;
  1217. &lt;p&gt;&lt;strong&gt;From this week's government/NGO&amp;nbsp;&lt;a href="https://skepticalscience.com/new_research_2024_10.html#gov-ngo"&gt;section:&lt;/a&gt;&lt;/strong&gt;&lt;/p&gt;
  1218. &lt;p&gt;&lt;strong&gt;&lt;a href="https://globalenergymonitor.org/wp-content/uploads/2024/04/Boom-Bust-Coal-2024.pdf" target="_blank"&gt;Boom and Bust Coal. Tracking the Global Coal Plant Pipeline&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Global Energy Monitor,&amp;nbsp;&lt;strong&gt;Global Energy Monitor, CREA, E3G, Reclaim Finance, Sierra Club, SFOC, Kiko Network, CAN Europe, Bangladesh Groups, Trend Asia, Alliance for Climate Justice and Clean Energy, Chile Sustentable, POLEN Transiciones Justas, Iniciativa Clim&amp;aacute;tica de M&amp;eacute;xico, and Arayara:&lt;/strong&gt;&lt;/p&gt;
  1219. &lt;blockquote&gt;&lt;em&gt;Despite promising momentum, the world&amp;rsquo;s operating coal power capacity has grown 11% since 2015 and global coal use and coal capacity reached an all time high in 2023. The global coal fleet grew by 48.4 gigawatts (GW), or 2%, in 2023 to a total of 2,130 GW, with China driving two-thirds of additions. Outside of China, the coal fleet also saw a small 4.7 GW uptick for the first time since 2019. Although new retirement plans and phaseout commitments continued to emerge, less coal capacity was retired in 2023 than in any other single year in more than a decade. Globally, 69.5 GW of capacity came online while 21.1 GW was retired, resulting in a net annual increase of 48.4 GW, the highest since 2016, bringing the global total capacity to 2,130 GW. China&amp;rsquo;s 70.2 GW of new construction starts in 2023 represents 19x more than the rest of the world&amp;rsquo;s 3.7 GW and is the country&amp;rsquo;s highest annual capacity breaking ground since 2015. Outside of China and India, total proposed coal capacity is at its lowest since data collection began in 2015.&lt;/em&gt;&lt;/blockquote&gt;
  1220. &lt;p&gt;&lt;strong&gt;&lt;a href="https://climatecommunication.yale.edu/publications/ask-an-expert/" target="_blank"&gt;What do Americans want to know about climate change?&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Ballew et al.,&amp;nbsp;&lt;strong&gt;Yale University and George Mason University:&lt;/strong&gt;&lt;/p&gt;
  1221. &lt;blockquote&gt;&lt;em&gt;In this analysis, the authors investigated how the questions people would ask an expert vary across different subgroups, including demographic and political groups and Global Warming&amp;rsquo;s Six Americas. The Six Americas framework categorizes people into six distinct audiences based on their opinions about climate change, ranging from the Alarmed (who are the most worried and supportive of action) to the Dismissive (who do not believe climate change is happening or human caused and are often opposed to action). Americans are most interested in learning about solutions to global warming (44%), followed by evidence that it is happening (20%) or information about the causes (18%). Fewer Americans (11%) would ask first about the impacts of global warming. The topics people would ask about differ across demographic and political groups.&lt;/em&gt;&lt;/blockquote&gt;
  1222. &lt;h3 style="text-align: left;"&gt;143 articles in 61 journals by 832 contributing authors&lt;/h3&gt;
  1223. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  1224. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00704-024-04961-3" target="_blank"&gt;Assessment of climate variability and trends in different physiographic zones of North Western Himalayas&lt;/a&gt;, Shafiq et al., &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; 10.1007/s00704-024-04961-3&lt;/p&gt;
  1225. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/tc-18-1773-2024" target="_blank"&gt;InSAR-measured permafrost degradation of palsa peatlands in northern Sweden&lt;/a&gt;, Valman et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://tc.copernicus.org/articles/18/1773/2024/tc" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://tc.copernicus.org/articles/18/1773/2024/tc-18-1773-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/tc-18-1773-2024&lt;/p&gt;
  1226. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01274-1" target="_blank"&gt;The risk of concurrent heatwaves and extreme sea levels along the global coastline is increasing&lt;/a&gt;, Zhou &amp;amp; Wang, &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01274-1.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01274-1&lt;/p&gt;
  1227. &lt;!--more--&gt;
  1228. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/joc.8460" target="_blank"&gt;Using UNSEEN approach to attribute regional UK winter rainfall extremes&lt;/a&gt;, Cotterill et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/joc.8460" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/joc.8460" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/joc.8460&lt;/p&gt;
  1229. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/acp-24-4451-2024" target="_blank"&gt;Wintertime extreme warming events in the high Arctic: characteristics, drivers, trends, and the role of atmospheric rivers&lt;/a&gt;, Ma et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://acp.copernicus.org/articles/24/4451/2024/acp" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://acp.copernicus.org/articles/24/4451/2024/acp-24-4451-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/acp-24-4451-2024&lt;/p&gt;
  1230. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02209-4" target="_blank"&gt;&amp;ldquo;All the rivers we used to travel by&amp;rdquo;: Indigenous knowledge of hydrological change and its impacts in the Mackenzie Delta Region, Canada&lt;/a&gt;, Ziegler et al., &lt;em&gt;Regional Environmental Change&lt;/em&gt; 10.1007/s10113-024-02209-4&lt;/p&gt;
  1231. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  1232. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004114" target="_blank"&gt;Assessing Global and Regional Trends in Spatially Co-Occurring Hot or Wet Annual Maxima Under Climate Change&lt;/a&gt;, Biess et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004114" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004114" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef004114&lt;/p&gt;
  1233. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101910" target="_blank"&gt;Forecast urban ecosystem services to track climate change: Combining machine learning and emergy spatial analysis&lt;/a&gt;, Liu et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2024.101910&lt;/p&gt;
  1234. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  1235. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jd039910" target="_blank"&gt;An Ensemble Learning Model Reveals Accelerated Reductions in Snow Depth Over Arctic Sea Ice Under High-Emission Scenarios&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2023jd039910&lt;/p&gt;
  1236. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/gmd-17-2755-2024" target="_blank"&gt;Continental-scale bias-corrected climate and hydrological projections for Australia&lt;/a&gt;, Peter et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-2755-2024&lt;/p&gt;
  1237. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07201-6" target="_blank"&gt;Evaluation and projections of summer daily precipitation over Northeastern China in an optimal CMIP6 Multimodel Ensemble&lt;/a&gt;, LI &amp;amp; Jiao, &lt;em&gt;Climate Dynamics&lt;/em&gt; &lt;a style="color: green;" href="https://www.researchsquare.com/article/rs" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.researchsquare.com/article/rs-3505005/latest.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00382-024-07201-6&lt;/p&gt;
  1238. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.22541/essoar.169903658.89307701/v1" target="_blank"&gt;Greater climate sensitivity implied by anvil cloud thinning&lt;/a&gt;, Sokol et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://essopenarchive.org/doi/pdf/10.22541/essoar.169903658.89307701" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://essopenarchive.org/doi/pdf/10.22541/essoar.169903658.89307701" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.22541/essoar.169903658.89307701/v1&lt;/p&gt;
  1239. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.atmosres.2024.107413" target="_blank"&gt;Projected changes in extreme daily precipitation linked to changes in precipitable water and vertical velocity in CMIP6 models&lt;/a&gt;, Gimeno-Sotelo et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.atmosres.2024.107413" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.atmosres.2024.107413&lt;/p&gt;
  1240. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07215-0" target="_blank"&gt;Projected changes of compound droughts and heatwaves in China under 1.5 &amp;deg;C, 2 &amp;deg;C, and 3 &amp;deg;C of global warming&lt;/a&gt;, Liu et al., &lt;em&gt;Climate Dynamics&lt;/em&gt; 10.1007/s00382-024-07215-0&lt;/p&gt;
  1241. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jd039473" target="_blank"&gt;Responses of Mesoscale Convective System to Global Warming: A Study on the Henan 2021 Record-Breaking Rainfall Event&lt;/a&gt;, Lin et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2023jd039473&lt;/p&gt;
  1242. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/joc.8452" target="_blank"&gt;Spatial&amp;ndash;temporal assessment of future extreme precipitation and extreme high-temperature exposure across China&lt;/a&gt;, Jin et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8452&lt;/p&gt;
  1243. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107881" target="_blank"&gt;The Influence of Climate Variability and Future Climate Change on Atlantic Hurricane Season Length&lt;/a&gt;, Patricola et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107881" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107881" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl107881&lt;/p&gt;
  1244. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01976-6" target="_blank"&gt;Western North Pacific tropical cyclone activity modulated by phytoplankton feedback under global warming&lt;/a&gt;, Kim et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-024-01976-6&lt;/p&gt;
  1245. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  1246. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/gmd-17-2641-2024" target="_blank"&gt;A machine learning approach for evaluating Southern Ocean cloud radiative biases in a global atmosphere model&lt;/a&gt;, Fiddes et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-2641-2024&lt;/p&gt;
  1247. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.earscirev.2024.104773" target="_blank"&gt;A systematic review of predictor screening methods for downscaling of numerical climate models&lt;/a&gt;, Baghanam et al., &lt;em&gt;Earth&lt;/em&gt; 10.1016/j.earscirev.2024.104773&lt;/p&gt;
  1248. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00704-024-04965-z" target="_blank"&gt;An extremes-weighted empirical quantile mapping for global climate model data bias correction for improved emphasis on extremes&lt;/a&gt;, Rohith &amp;amp; Cibin, &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; 10.1007/s00704-024-04965-z&lt;/p&gt;
  1249. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl106693" target="_blank"&gt;Assessment of the Madden-Julian Oscillation in CMIP6 Models Based on Moisture Mode Theory&lt;/a&gt;, Lin et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106693" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106693" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl106693&lt;/p&gt;
  1250. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl106639" target="_blank"&gt;Model Biases in the Atmosphere-Ocean Partitioning of Poleward Heat Transport Are Persistent Across Three CMIP Generations&lt;/a&gt;, Donohoe et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106639" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL106639" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl106639&lt;/p&gt;
  1251. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100608" target="_blank"&gt;Synergies of CGE and IAM modelling for climate change implications on WEFE nexus in the Mediterranean&lt;/a&gt;, Orna et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100608" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100608&lt;/p&gt;
  1252. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1253. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47084-z" target="_blank"&gt;Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting&lt;/a&gt;, Park et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47084-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47084-z&lt;/p&gt;
  1254. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-45906-8" target="_blank"&gt;Glacial isostatic adjustment reduces past and future Arctic subsea permafrost&lt;/a&gt;, Creel et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-45906-8.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-45906-8&lt;/p&gt;
  1255. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2024gl108202" target="_blank"&gt;Glacier Retreat in Eastern Himalaya Drives Catastrophic Glacier Hazard Chain&lt;/a&gt;, Li et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108202" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GL108202" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2024gl108202&lt;/p&gt;
  1256. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/essd-16-1847-2024" target="_blank"&gt;High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard&lt;/a&gt;, B?aszczyk et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://essd.copernicus.org/articles/16/1847/2024/essd" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://essd.copernicus.org/articles/16/1847/2024/essd-16-1847-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/essd-16-1847-2024&lt;/p&gt;
  1257. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07225-y" target="_blank"&gt;Impacts of early-winter Arctic sea-ice loss on wintertime surface temperature in China&lt;/a&gt;, Xia et al., &lt;em&gt;Climate Dynamics&lt;/em&gt; 10.1007/s00382-024-07225-y&lt;/p&gt;
  1258. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/joc.8461" target="_blank"&gt;Influence of autumn Kara Sea ice on the subsequent winter minimum temperature over the Northeast China&lt;/a&gt;, Han et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8461&lt;/p&gt;
  1259. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/tc-18-1753-2024" target="_blank"&gt;Modelling present and future rock wall permafrost distribution in the Sisimiut mountain area, West Greenland&lt;/a&gt;, Marcer et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-18-1753-2024&lt;/p&gt;
  1260. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jc019988" target="_blank"&gt;Odden Ice Melt Linked to Labrador Sea Ice Expansions and the Great Salinity Anomalies of 1970&amp;ndash;1995&lt;/a&gt;, Allan &amp;amp; Allan, &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2023jc019988" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2023jc019988&lt;/p&gt;
  1261. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01355-1" target="_blank"&gt;Recent increase in the surface mass balance in central East Antarctica is unprecedented for the last 2000 years&lt;/a&gt;, Ekaykin et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01355-1.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01355-1&lt;/p&gt;
  1262. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00382-024-07168-4" target="_blank"&gt;Record-breaking Barents Sea ice loss favors to the unprecedented summertime extreme heatwave in 2021 over western North America by enhancing Rossby wave ridge&lt;/a&gt;, Wei et al., &lt;em&gt;Climate Dynamics&lt;/em&gt; &lt;a style="color: green;" href="https://www.researchsquare.com/article/rs" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.researchsquare.com/article/rs-2894029/latest.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00382-024-07168-4&lt;/p&gt;
  1263. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/tc-18-1709-2024" target="_blank"&gt;Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response&lt;/a&gt;, Ochwat et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-18-1709-2024&lt;/p&gt;
  1264. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47655-0" target="_blank"&gt;Weakened western Indian Ocean dominance on Antarctic sea ice variability in a changing climate&lt;/a&gt;, Zhang et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47655-0.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47655-0&lt;/p&gt;
  1265. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  1266. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/cp-20-891-2024" target="_blank"&gt;Spatial variability of marine-terminating ice sheet retreat in the Puget Lowland&lt;/a&gt;, McKenzie et al., &lt;em&gt;Climate of the Past&lt;/em&gt; &lt;a style="color: green;" href="https://cp.copernicus.org/articles/20/891/2024/cp" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://cp.copernicus.org/articles/20/891/2024/cp-20-891-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/cp-20-891-2024&lt;/p&gt;
  1267. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  1268. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41597-024-03221-3" target="_blank"&gt;A global database on coral recovery following marine heatwaves&lt;/a&gt;, van Woesik &amp;amp; Kratochwill, &lt;em&gt;Scientific Data&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41597" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41597-024-03221-3.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41597-024-03221-3&lt;/p&gt;
  1269. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47084-z" target="_blank"&gt;Amundsen Sea circulation controls bottom upwelling and Antarctic Pine Island and Thwaites ice shelf melting&lt;/a&gt;, Park et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47084-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47084-z&lt;/p&gt;
  1270. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/ece3.11283" target="_blank"&gt;An ensemble model predicts an upward range shift of the endemic and endangered Yellow-throated Apalis (Apalis flavigularis) under future climate change in Malawi&lt;/a&gt;, Banda et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017464" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.11283&lt;/p&gt;
  1271. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1371/journal.pclm.0000293" target="_blank"&gt;Are forest management practices to improve carbon balance compatible with maintaining bird diversity under climate change? A case study in Eastern North America&lt;/a&gt;, Labadie et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000293&amp;amp;type=printable" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000293&amp;amp;type=printable" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1371/journal.pclm.0000293&lt;/p&gt;
  1272. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1073/pnas.2303336121" target="_blank"&gt;Climate change impacts on mesophotic regions of the Great Barrier Reef&lt;/a&gt;, McWhorter et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; 10.1073/pnas.2303336121&lt;/p&gt;
  1273. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01966-8" target="_blank"&gt;Climate change-driven cooling can kill marine megafauna at their distributional limits&lt;/a&gt;, Lubitz et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5281/zenodo.10648450" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-024-01966-8&lt;/p&gt;
  1274. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17282" target="_blank"&gt;Climate-driven shifts in the diversity of plants in the Neotropical seasonally dry forest: Evaluating the effectiveness of protected areas&lt;/a&gt;, Manrique?Ascencio et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.17282&lt;/p&gt;
  1275. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1126/sciadv.adl4800" target="_blank"&gt;Drought- and heat-induced mortality of conifer trees is explained by leaf and growth legacies&lt;/a&gt;, Sterck et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://www.science.org/doi/pdf/10.1126/sciadv.adl4800?download=true" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.science.org/doi/pdf/10.1126/sciadv.adl4800?download=true" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1126/sciadv.adl4800&lt;/p&gt;
  1276. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/cobi.14268" target="_blank"&gt;Effects of increasing soil moisture on Antarctic desert microbial ecosystems&lt;/a&gt;, Zhang et al., &lt;em&gt;Conservation Biology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cobi.14268" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cobi.14268" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/cobi.14268&lt;/p&gt;
  1277. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01989-1" target="_blank"&gt;Frugivores enhance potential carbon recovery in fragmented landscapes&lt;/a&gt;, Bello et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41558" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41558-024-01989-1.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41558-024-01989-1&lt;/p&gt;
  1278. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/ddi.13837" target="_blank"&gt;Kelp forest diversity under projected end-of-century climate change&lt;/a&gt;, Assis et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ddi.13837" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ddi.13837" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/ddi.13837&lt;/p&gt;
  1279. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.2307/j.ctt20q1vvr.23" target="_blank"&gt;Latitude or altitude as the future refugium? A case for the future of forests in Asia Minor and its surroundings&lt;/a&gt;, , &lt;em&gt;Ascension Theory&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.2307/j.ctt20q1vvr.23&lt;/p&gt;
  1280. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17281" target="_blank"&gt;Microbial phosphorus-cycling genes in soil under global change&lt;/a&gt;, Wang et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.17281&lt;/p&gt;
  1281. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/ffgc.2024.1370365" target="_blank"&gt;Prediction of the potential geographical distribution of Cytospora chrysosperma in Xinjiang, China under climate change scenarios&lt;/a&gt;, Li et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1370365/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1370365/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/ffgc.2024.1370365&lt;/p&gt;
  1282. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023gl107477" target="_blank"&gt;Radiation, Air Temperature, and Soil Water Availability Drive Tree Water Deficit Across Temporal Scales in Canada's Western Boreal Forest&lt;/a&gt;, Perron et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107477" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL107477" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023gl107477&lt;/p&gt;
  1283. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/ffgc.2024.1379791" target="_blank"&gt;Response of Alnus glutinosa to Phytophthora bark infections at ambient and elevated CO2 levels&lt;/a&gt;, Mach&amp;aacute;?ov&amp;aacute; et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1379791/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1379791/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/ffgc.2024.1379791&lt;/p&gt;
  1284. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/ecy.4302" target="_blank"&gt;Temperature-driven homogenization of an ant community over 60 years in a montane ecosystem&lt;/a&gt;, Paraskevopoulos et al., &lt;em&gt;Ecology&lt;/em&gt; 10.1002/ecy.4302&lt;/p&gt;
  1285. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jc019892" target="_blank"&gt;The Combined Effects of Ocean Acidification and Respiration on Habitat Suitability for Marine Calcifiers Along the West Coast of North America&lt;/a&gt;, Feely et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023JC019892" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023JC019892" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023jc019892&lt;/p&gt;
  1286. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02223-6" target="_blank"&gt;The impact of temperature on increased airborne pollen and earlier onset of the pollen season in Trentino, Northern Italy&lt;/a&gt;, Cristofolini et al., &lt;em&gt;Regional Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10113" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10113-024-02223-6.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10113-024-02223-6&lt;/p&gt;
  1287. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1098/rsos.231280" target="_blank"&gt;Unexpected increase in structural integrity caused by thermally induced dwarfism in large benthic foraminifera&lt;/a&gt;, Titelboim et al., &lt;em&gt;Royal Society Open Science&lt;/em&gt; &lt;a style="color: green;" href="https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.231280" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.231280" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1098/rsos.231280&lt;/p&gt;
  1288. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/ddi.13829" target="_blank"&gt;Unexpected sources of uncertainty in projecting habitat shifts for Arctic shorebirds under climate change&lt;/a&gt;, Anderson et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ddi.13829" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ddi.13829" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/ddi.13829&lt;/p&gt;
  1289. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  1290. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17280" target="_blank"&gt;Carbon fluxes of China's coastal wetlands and impacts of reclamation and restoration&lt;/a&gt;, Lu et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.17280&lt;/p&gt;
  1291. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47202-x" target="_blank"&gt;Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia&lt;/a&gt;, Zhang-Zheng et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47202-x.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47202-x&lt;/p&gt;
  1292. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47436-9" target="_blank"&gt;Enhanced atmospheric oxidation toward carbon neutrality reduces methane&amp;rsquo;s climate forcing&lt;/a&gt;, Liu et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47436-9.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47436-9&lt;/p&gt;
  1293. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1347592" target="_blank"&gt;Evolution characteristics, carbon emission effects and influencing factors of production-living-ecological space in Taihang Mountain poverty belt, China&lt;/a&gt;, Chen et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1347592/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1347592/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1347592&lt;/p&gt;
  1294. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47383-5" target="_blank"&gt;Global energy use and carbon emissions from irrigated agriculture&lt;/a&gt;, Qin et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47383-5.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47383-5&lt;/p&gt;
  1295. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1093/pnasnexus/pgae134" target="_blank"&gt;Leakage of old carbon dioxide from a major river system in the Canadian Arctic&lt;/a&gt;, Dasari et al., &lt;em&gt;PNAS Nexus&lt;/em&gt; &lt;a style="color: green;" href="https://academic.oup.com/pnasnexus/advance" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://academic.oup.com/pnasnexus/advance-article-pdf/doi/10.1093/pnasnexus/pgae134/57118258/pgae134.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1093/pnasnexus/pgae134&lt;/p&gt;
  1296. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01347-1" target="_blank"&gt;Ocean acidification offsets the effect of warming on sediment denitrification and associated nitrous oxide production&lt;/a&gt;, Simone et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01347-1.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01347-1&lt;/p&gt;
  1297. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023jd040204" target="_blank"&gt;Radiative and Chemical Effects of Non-Homogeneous Methane on Terrestrial Carbon Fluxes in Asia&lt;/a&gt;, Zhang et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2023jd040204&lt;/p&gt;
  1298. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1073/pnas.2307219121" target="_blank"&gt;Refining greenhouse gas emission factors for Indonesian peatlands and mangroves to meet ambitious climate targets&lt;/a&gt;, Murdiyarso et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://www.pnas.org/doi/pdf/10.1073/pnas.2307219121" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.pnas.org/doi/pdf/10.1073/pnas.2307219121" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1073/pnas.2307219121&lt;/p&gt;
  1299. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01333-7" target="_blank"&gt;Restricted plant diversity limits carbon recapture after wildfire in warming boreal forests&lt;/a&gt;, Eckdahl et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01333-7.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01333-7&lt;/p&gt;
  1300. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17275" target="_blank"&gt;Shedding light on the increased carbon uptake by a boreal forest under diffuse solar radiation across multiple scales&lt;/a&gt;, Neimane?&amp;Scaron;roma et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.17275" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.17275" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/gcb.17275&lt;/p&gt;
  1301. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloplacha.2024.104433" target="_blank"&gt;Soil inorganic carbon stock and its changes across the Tibetan Plateau during the 1980s&amp;ndash;2020s&lt;/a&gt;, Lin et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2024.104433&lt;/p&gt;
  1302. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  1303. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/ffgc.2024.1293541" target="_blank"&gt;Spatiotemporal variation and response of gross primary productivity to climate factors in forests in Qiannan state from 2000 to 2020&lt;/a&gt;, Liao et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1293541/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/ffgc.2024.1293541/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/ffgc.2024.1293541&lt;/p&gt;
  1304. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.4211/hs.436be40748a246269102b20211b49762" target="_blank"&gt;Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples&lt;/a&gt;, Clayer et al., &lt;em&gt;HydroShare Resources&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.4211/hs.436be40748a246269102b20211b49762" target="_blank"&gt; Open Access&lt;/a&gt; 10.4211/hs.436be40748a246269102b20211b49762&lt;/p&gt;
  1305. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43017-024-00531-3" target="_blank"&gt;The role of biota in the Southern Ocean carbon cycle&lt;/a&gt;, Boyd et al., &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; 10.1038/s43017-024-00531-3&lt;/p&gt;
  1306. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  1307. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01365-z" target="_blank"&gt;A taxonomy to map evidence on the co-benefits, challenges, and limits of carbon dioxide removal&lt;/a&gt;, Pr&amp;uuml;tz et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01365-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01365-z&lt;/p&gt;
  1308. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47143-5" target="_blank"&gt;Maximizing carbon sequestration potential in Chinese forests through optimal management&lt;/a&gt;, Yu et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47143-5.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47143-5&lt;/p&gt;
  1309. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1126/sciadv.adl2787" target="_blank"&gt;Mechanically stable polymer molecular sieve membranes with switchable functionality designed for high CO2 separation performance&lt;/a&gt;, Lee &amp;amp; Bae, &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://www.science.org/doi/pdf/10.1126/sciadv.adl2787?download=true" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.science.org/doi/pdf/10.1126/sciadv.adl2787?download=true" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1126/sciadv.adl2787&lt;/p&gt;
  1310. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1349604" target="_blank"&gt;Pathways for marine carbon dioxide removal using electrochemical acid-base generation&lt;/a&gt;, Eisaman, &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1349604/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1349604/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1349604&lt;/p&gt;
  1311. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  1312. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04798-w" target="_blank"&gt;Factors affecting the production cost of green hydrogen and its challenge for sustainable development&lt;/a&gt;, Athia et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-024-04798-w&lt;/p&gt;
  1313. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41560-024-01510-0" target="_blank"&gt;Floating photovoltaics may reduce the risk of hydro-dominated energy development in Africa&lt;/a&gt;, Arnold et al., &lt;em&gt;Nature Energy&lt;/em&gt; 10.1038/s41560-024-01510-0&lt;/p&gt;
  1314. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1362706" target="_blank"&gt;Research trends in the use of secondary batteries for energy storage&lt;/a&gt;, Garc&amp;iacute;a-Pineda et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; 10.3389/fenvs.2024.1362706&lt;/p&gt;
  1315. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  1316. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1346117" target="_blank"&gt;A tool for assessing the sensitivity of soil-based approaches for quantifying enhanced weathering: a US case study&lt;/a&gt;, Suhrhoff et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1346117/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1346117/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1346117&lt;/p&gt;
  1317. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Black carbon&lt;/strong&gt; &lt;strong&gt;Aerosols&lt;/strong&gt;&lt;/p&gt;
  1318. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41561-024-01427-z" target="_blank"&gt;Substantial cooling effect from aerosol-induced increase in tropical marine cloud cover&lt;/a&gt;, Chen et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41561" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41561-024-01427-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41561-024-01427-z&lt;/p&gt;
  1319. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  1320. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1093/pnasnexus/pgae099" target="_blank"&gt;A longitudinal investigation of risk perceptions and adaptation behavior in the US Gulf Coast&lt;/a&gt;, Wong-Parodi et al., &lt;em&gt;PNAS Nexus&lt;/em&gt; &lt;a style="color: green;" href="https://academic.oup.com/pnasnexus/article" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://academic.oup.com/pnasnexus/article-pdf/3/4/pgae099/57187238/pgae099.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1093/pnasnexus/pgae099&lt;/p&gt;
  1321. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103543" target="_blank"&gt;Blame over blackouts: Correcting partisan misinformation regarding renewable energy in the United States&lt;/a&gt;, Benegal &amp;amp; Scruggs, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2024.103543&lt;/p&gt;
  1322. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.53667/hphn5917" target="_blank"&gt;Climate change in and out of the therapy room&lt;/a&gt;, Macagnino, &lt;em&gt;British Gestalt Journal&lt;/em&gt; &lt;a style="color: green;" href="https://oro.open.ac.uk/90919/3/90919.pdf" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://oro.open.ac.uk/90919/3/90919.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.53667/hphn5917&lt;/p&gt;
  1323. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13280-024-02012-9" target="_blank"&gt;Climate change, cultural continuity and ecological grief: Insights from the S&amp;aacute;mi Homeland&lt;/a&gt;, Markkula et al., &lt;em&gt;Ambio&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s13280" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s13280-024-02012-9.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s13280-024-02012-9&lt;/p&gt;
  1324. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.2307/807542" target="_blank"&gt;Does the Use of Media and Other Information Sources Cause the Perceived Experience of Climate Change or is it the Other Way Around?&lt;/a&gt;, Loban, &lt;em&gt;The English Journal&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.2307/807542&lt;/p&gt;
  1325. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1080/17524032.2024.2342510" target="_blank"&gt;The Green Beat: Exploring India&amp;rsquo;s Environmental Journalism and Climate Change Issues&lt;/a&gt;, Ogadimma, &lt;em&gt;Environmental Communication&lt;/em&gt; 10.1080/17524032.2024.2342510&lt;/p&gt;
  1326. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1327. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s13412-024-00916-2" target="_blank"&gt;Carbon emissions and food production: why climate change is a threat to Nigeria&amp;rsquo;s food security&lt;/a&gt;, Fagbemi et al., &lt;em&gt;Journal of Environmental Studies and Sciences&lt;/em&gt; 10.1007/s13412-024-00916-2&lt;/p&gt;
  1328. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.5194/gmd-17-3041-2024" target="_blank"&gt;CLASH &amp;ndash; Climate-responsive Land Allocation model with carbon Storage and Harvests&lt;/a&gt;, Ekholm et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://gmd.copernicus.org/articles/17/3041/2024/gmd" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://gmd.copernicus.org/articles/17/3041/2024/gmd-17-3041-2024.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/gmd-17-3041-2024&lt;/p&gt;
  1329. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1345888" target="_blank"&gt;Effectiveness of climate information services: an evaluation of the accuracy and socio-economic benefits for smallholder farmers in Niger and Mali&lt;/a&gt;, Bizo et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1345888/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1345888/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1345888&lt;/p&gt;
  1330. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1073/pnas.2215677121" target="_blank"&gt;Empirical modeling of agricultural climate risk&lt;/a&gt;, Burney et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://www.pnas.org/doi/pdf/10.1073/pnas.2215677121" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.pnas.org/doi/pdf/10.1073/pnas.2215677121" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1073/pnas.2215677121&lt;/p&gt;
  1331. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41467-024-47383-5" target="_blank"&gt;Global energy use and carbon emissions from irrigated agriculture&lt;/a&gt;, Qin et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41467" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41467-024-47383-5.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41467-024-47383-5&lt;/p&gt;
  1332. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.agrformet.2024.109937" target="_blank"&gt;Long-term straw return to a wheat-maize system results in topsoil organic C saturation and increased yields while no stimulating or reducing yield-scaled N&lt;sub&gt;2&lt;/sub&gt;O and NO emissions&lt;/a&gt;, Yao et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2024.109937&lt;/p&gt;
  1333. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef003842" target="_blank"&gt;Non-Linear Climate Change Impacts on Crop Yields May Mislead Stakeholders&lt;/a&gt;, Ruane et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF003842" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF003842" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef003842&lt;/p&gt;
  1334. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02219-2" target="_blank"&gt;Spatiotemporal variations of non-farming use of cropland in China under different SSP-RCP scenarios&lt;/a&gt;, Linghu et al., &lt;em&gt;Regional Environmental Change&lt;/em&gt; 10.1007/s10113-024-02219-2&lt;/p&gt;
  1335. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1336. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1345258" target="_blank"&gt;A new methodology for probabilistic flood displacement risk assessment: the case of Fiji and Vanuatu&lt;/a&gt;, Rossi et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1345258/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1345258/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1345258&lt;/p&gt;
  1337. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.atmosres.2024.107407" target="_blank"&gt;Characterization of the future northeast monsoon rainfall based on the clustered climate zone under CMIP6 in Peninsular Malaysia&lt;/a&gt;, Sa'adi et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2024.107407&lt;/p&gt;
  1338. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/joc.8386" target="_blank"&gt;Climate change and La Ni&amp;ntilde;a increase the likelihood of the &amp;lsquo;7&amp;middot;20&amp;rsquo; extraordinary typhoon-rainstorm in Zhengzhou, China&lt;/a&gt;, Wang &amp;amp; Yuan, &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8386&lt;/p&gt;
  1339. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004238" target="_blank"&gt;Future Changes in Floods, Droughts, and Their Extents in the Alps: A Sensitivity Analysis With a Non-Stationary Stochastic Streamflow Generator&lt;/a&gt;, Brunner &amp;amp; Gilleland, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004238" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004238" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef004238&lt;/p&gt;
  1340. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004222" target="_blank"&gt;Hydrological Projections in the Third Pole Using Artificial Intelligence and an Observation-Constrained Cryosphere-Hydrology Model&lt;/a&gt;, Long et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004222" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004222" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef004222&lt;/p&gt;
  1341. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00704-024-04969-9" target="_blank"&gt;Predicting the impact of climate change on the area of wetlands using remote sensing&lt;/a&gt;, Heidarzadeh et al., &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://www.researchsquare.com/article/rs" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.researchsquare.com/article/rs-3178370/latest.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00704-024-04969-9&lt;/p&gt;
  1342. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s00704-024-04952-4" target="_blank"&gt;Projections of meteorological drought events in the upper K?z?l?rmak basin under climate change scenarios&lt;/a&gt;, Sel&amp;ccedil;uk et al., &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s00704" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s00704-024-04952-4.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s00704-024-04952-4&lt;/p&gt;
  1343. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.gloplacha.2024.104433" target="_blank"&gt;Soil inorganic carbon stock and its changes across the Tibetan Plateau during the 1980s&amp;ndash;2020s&lt;/a&gt;, Lin et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2024.104433&lt;/p&gt;
  1344. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11069-024-06588-z" target="_blank"&gt;Trends and amount changes of temperature and precipitation under future projections in high&amp;ndash;low groups and intra-period for the Eastern Black Sea, the Wettest Basin in T&amp;uuml;rkiye&lt;/a&gt;, Nacar et al., &lt;em&gt;Natural Hazards&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11069" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11069-024-06588-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11069-024-06588-z&lt;/p&gt;
  1345. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.accre.2024.04.006" target="_blank"&gt;Using copula functions to predict climatic change impacts on floods in river source regions&lt;/a&gt;, Chen et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2024.04.006" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2024.04.006&lt;/p&gt;
  1346. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/joc.8460" target="_blank"&gt;Using UNSEEN approach to attribute regional UK winter rainfall extremes&lt;/a&gt;, Cotterill et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/joc.8460" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/joc.8460" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/joc.8460&lt;/p&gt;
  1347. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  1348. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1309885" target="_blank"&gt;Carbon finance and funding for forest sector climate solutions: a review and synthesis of the principles, policies, and practices&lt;/a&gt;, Zhou et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1309885/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1309885/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1309885&lt;/p&gt;
  1349. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01990-8" target="_blank"&gt;Climate damage projections beyond annual temperature&lt;/a&gt;, Waidelich et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-024-01990-8&lt;/p&gt;
  1350. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1381466" target="_blank"&gt;Corporate carbon emissions management and the disclosure of key audit matters&lt;/a&gt;, Wang &amp;amp; Wu, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1381466/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1381466/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1381466&lt;/p&gt;
  1351. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01375-x" target="_blank"&gt;Unequal impacts of urban industrial land expansion on economic growth and carbon dioxide emissions&lt;/a&gt;, Yoo et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01375-x.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01375-x&lt;/p&gt;
  1352. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  1353. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.esd.2024.101445" target="_blank"&gt;Amazon energy transition: The need to accelerate emission reduction by the extensive adoption of solar photovoltaics and storage in Brazil&lt;/a&gt;, Soliano Perreira et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2024.101445&lt;/p&gt;
  1354. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103540" target="_blank"&gt;Australian microgrids: Navigating complexity in the regional energy transition&lt;/a&gt;, Wright et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2024.103540" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2024.103540&lt;/p&gt;
  1355. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114106" target="_blank"&gt;Does citizen participation improve acceptance of a Green Deal? Evidence from choice experiments in Ukraine and Switzerland&lt;/a&gt;, Kostyuchenko et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2024.114106" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2024.114106&lt;/p&gt;
  1356. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.erss.2024.103542" target="_blank"&gt;Emerging challenges of offshore wind energy in the Global South: Perspectives from Brazil&lt;/a&gt;, Gorayeb et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2024.103542&lt;/p&gt;
  1357. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101908" target="_blank"&gt;Estimation of expressway carbon emissions and simulation of policies based on OTC data: A case study of Guangdong, China&lt;/a&gt;, Li et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2024.101908&lt;/p&gt;
  1358. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1002/wcc.887" target="_blank"&gt;Greener through gender: What climate mainstreaming can learn from gender mainstreaming&lt;/a&gt;, Lam et al., &lt;em&gt;WIREs Climate Change&lt;/em&gt; 10.1002/wcc.887&lt;/p&gt;
  1359. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11625-024-01486-6" target="_blank"&gt;How do we reinforce climate action?&lt;/a&gt;, Zhao et al., &lt;em&gt;Sustainability Science&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11625" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11625-024-01486-6.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11625-024-01486-6&lt;/p&gt;
  1360. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02217-4" target="_blank"&gt;Increased policy ambition is needed to avoid the effects of climate change and reach carbon removal targets in Portugal&lt;/a&gt;, Pedersen et al., &lt;em&gt;Regional Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10113" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10113-024-02217-4.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10113-024-02217-4&lt;/p&gt;
  1361. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.esd.2024.101447" target="_blank"&gt;Is South Korea's 2050 Carbon-Neutral scenario sufficient for meeting greenhouse gas emissions reduction goal?&lt;/a&gt;, Cho et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2024.101447&lt;/p&gt;
  1362. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.envsci.2024.103741" target="_blank"&gt;Performative politics of REDD+ experts: Siloed discourses and a missed opportunity&lt;/a&gt;, Kono &amp;amp; Upton, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2024.103741" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2024.103741&lt;/p&gt;
  1363. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04829-6" target="_blank"&gt;Promotion strategy of low-carbon multimodal transportation considering government regulation and cargo owners&amp;rsquo; willingness&lt;/a&gt;, Hu et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-024-04829-6&lt;/p&gt;
  1364. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fenvs.2024.1356689" target="_blank"&gt;Research on the spatial spillover effect of carbon trading market development on regional emission reduction&lt;/a&gt;, Cui et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1356689/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fenvs.2024.1356689/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2024.1356689&lt;/p&gt;
  1365. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s41558-024-01977-5" target="_blank"&gt;Revisiting Copenhagen climate mitigation targets&lt;/a&gt;, Li et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s41558" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s41558-024-01977-5.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41558-024-01977-5&lt;/p&gt;
  1366. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.enpol.2024.114119" target="_blank"&gt;Short-run marginal emission factors neglect impactful phenomena and are unsuitable for assessing the power sector emissions impacts of hydrogen electrolysis&lt;/a&gt;, Ricks et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://zenodo.org/records/10121371/files/H2_SRME_Comment_Working.pdf" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://zenodo.org/records/10121371/files/H2_SRME_Comment_Working.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1016/j.enpol.2024.114119&lt;/p&gt;
  1367. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10668-024-04908-8" target="_blank"&gt;Urban actions toward energy efficiency and carbon reduction&amp;mdash;an empirical study under the urbanization dynamics&lt;/a&gt;, Hsi et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; 10.1007/s10668-024-04908-8&lt;/p&gt;
  1368. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  1369. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10584-024-03711-8" target="_blank"&gt;Climate change, urban vulnerabilities and adaptation in Africa: a scoping review&lt;/a&gt;, Ansah et al., &lt;em&gt;Climatic Change&lt;/em&gt; 10.1007/s10584-024-03711-8&lt;/p&gt;
  1370. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.envsci.2024.103758" target="_blank"&gt;Coastal management and climate change on the island and the sea of Chilo&amp;eacute; (Chile): An evaluation of policies, regulations, and instruments&lt;/a&gt;, V&amp;aacute;zquez Pinillos &amp;amp; Chica Ruiz, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2024.103758" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2024.103758&lt;/p&gt;
  1371. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02211-w" target="_blank"&gt;European patterns of local adaptation planning&amp;mdash;a regional analysis&lt;/a&gt;, Buz&amp;aacute;si et al., &lt;em&gt;Regional Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10113" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10113-024-02211-w.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10113-024-02211-w&lt;/p&gt;
  1372. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s11069-024-06605-1" target="_blank"&gt;Exploring the determinants of disaster and climate resilience building in Zimbabwe&amp;rsquo;s rural communities&lt;/a&gt;, Nyahunda et al., &lt;em&gt;Natural Hazards&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s11069" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s11069-024-06605-1.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s11069-024-06605-1&lt;/p&gt;
  1373. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100609" target="_blank"&gt;How is the military and defence sector of EU member states adapting to climate risks?&lt;/a&gt;, Amakrane &amp;amp; Biesbroek, &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100609" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100609&lt;/p&gt;
  1374. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1331945" target="_blank"&gt;Navigating climate change complexity and deep uncertainty: approach for building socio-ecological resilience using qualitative dynamic simulation&lt;/a&gt;, Merino-Ben&amp;iacute;tez et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1331945/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1331945/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1331945&lt;/p&gt;
  1375. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/risa.14306" target="_blank"&gt;Optimal risk management considering environmental and climatic changes&lt;/a&gt;, Benkraiem et al., &lt;em&gt;Risk Analysis&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/risa.14306&lt;/p&gt;
  1376. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  1377. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100606" target="_blank"&gt;Community adaptation to heat stress &amp;minus; Social network analysis&lt;/a&gt;, Mondal et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100606" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100606&lt;/p&gt;
  1378. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1038/s43247-024-01361-3" target="_blank"&gt;Large transboundary health impact of Arctic wildfire smoke&lt;/a&gt;, Silver et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-024-01361-3.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-024-01361-3&lt;/p&gt;
  1379. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/ecog.06941" target="_blank"&gt;Present and future situation of West Nile virus in the Afro-Palaearctic pathogeographic system&lt;/a&gt;, Garc&amp;iacute;a?Carrasco et al., &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ecog.06941" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ecog.06941" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/ecog.06941&lt;/p&gt;
  1380. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1355793" target="_blank"&gt;Public health: a forgotten piece of the adaptation law puzzle&lt;/a&gt;, Boocock et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1355793/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/fclim.2024.1355793/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fclim.2024.1355793&lt;/p&gt;
  1381. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.uclim.2024.101901" target="_blank"&gt;Urban heat island in Warsaw (Poland): Current development and projections for 2050&lt;/a&gt;, Kuchcik et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2024.101901&lt;/p&gt;
  1382. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change &amp;amp; geopolitics&lt;/strong&gt;&lt;/p&gt;
  1383. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.envsci.2024.103754" target="_blank"&gt;Post-Paris agreement negotiations: A commitment to multilateralism despite the lack of funding&lt;/a&gt;, Ruiz-Campillo, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2024.103754" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2024.103754&lt;/p&gt;
  1384. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human culture&lt;/strong&gt;&lt;/p&gt;
  1385. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1007/s10113-024-02218-3" target="_blank"&gt;Modelling the impact of climate change on cultural practices: the future of fen skating (1981&amp;ndash;2079)&lt;/a&gt;, Richards, &lt;em&gt;Regional Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://link.springer.com/content/pdf/10.1007/s10113" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://link.springer.com/content/pdf/10.1007/s10113-024-02218-3.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1007/s10113-024-02218-3&lt;/p&gt;
  1386. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  1387. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1111/gcb.17279" target="_blank"&gt;Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol&lt;/a&gt;, Jansen et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.17279" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.17279" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1111/gcb.17279&lt;/p&gt;
  1388. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1029/2023ef004231" target="_blank"&gt;Projecting Global Mercury Emissions and Deposition Under the Shared Socioeconomic Pathways&lt;/a&gt;, Geyman et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004231" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023EF004231" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2023ef004231&lt;/p&gt;
  1389. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  1390. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/feart.2024.1330463" target="_blank"&gt;Issues of democratisation in citizen science for urban climate services&lt;/a&gt;, Str&amp;auml;hle &amp;amp; Urban, &lt;em&gt;Frontiers in Earth Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/articles/10.3389/feart.2024.1330463/pdf?isPublishedV2=False" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/articles/10.3389/feart.2024.1330463/pdf?isPublishedV2=False" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/feart.2024.1330463&lt;/p&gt;
  1391. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1016/j.crm.2024.100605" target="_blank"&gt;Literature-informed likelihoods of future emissions and temperatures&lt;/a&gt;, Venmans &amp;amp; Carr, &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2024.100605" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2024.100605&lt;/p&gt;
  1392. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.1126/science.adk8298" target="_blank"&gt;Opportunities to grow tribal clean energy in the US&lt;/a&gt;, Yazzie et al., &lt;em&gt;Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.science.org/doi/pdf/10.1126/science.adk8298?download=true" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.science.org/doi/pdf/10.1126/science.adk8298?download=true" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1126/science.adk8298&lt;/p&gt;
  1393. &lt;p style="text-align: left;"&gt;&lt;a href="http://dx.doi.org/10.3389/fclim.2024.1339915" target="_blank"&gt;Values must be at the heart of responding to loss and damage&lt;/a&gt;, McNamara et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; 10.3389/fclim.2024.1339915&lt;/p&gt;
  1394. &lt;hr /&gt;
  1395. &lt;h3 style="text-align: left;"&gt;&lt;a id="gov-ngo"&gt;&lt;/a&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  1396. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://emp.lbl.gov/sites/default/files/2024-04/Queued%20Up%202024%20Edition_1.pdf" target="_blank"&gt;Queued Up: 2024 Edition. Characteristics of Power Plants Seeking Transmission Interconnection As of the End of 2023&lt;/a&gt;, &lt;/strong&gt;Rand et al., &lt;strong&gt;Lawrence Berkeley National Laboratory&lt;/strong&gt;&lt;/p&gt;
  1397. &lt;blockquote&gt;Electric transmission system operators (ISOs, RTOs, or utilities) require projects seeking to connect to the grid to undergo a series of impact studies before they can be built. This process establishes what new transmission equipment or upgrades may be needed before a project can connect to the system and assigns the costs of that equipment. The lists of projects in this process are known as &amp;ldquo;interconnection queues&amp;rdquo;. The authors compile and analyze interconnection queue data from all seven ISOs/RTOs alongside 44 non-ISO utilities, which collectively represent over 95% of the currently installed U.S. electric generating capacity. The total capacity active in the queues is growing year-over-year, with over 1,570 GW of generation and an estimated 1,030 GW of storage capacity as of the end of 2023. In total, over 1,480 GW of zero-carbon generating capacity is currently seeking transmission access. Solar (1,086 GW) accounts for the largest share of generation capacity in the queues. Substantial wind (366 GW) capacity is also seeking interconnection, 1/3 of which is for offshore projects (120 GW). Solar and battery storage are &amp;ndash; by far &amp;ndash; the fastest-growing resources in the queues. Combined, they account for over 80% of new capacity entering the queues in 2023.&lt;/blockquote&gt;
  1398. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId={206C9B8E-0000-C71B-9D56-532AB97A2C2D}" target="_blank"&gt;State of Storage In New York. Annual Energy Storage Deployment Report&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;New York State Department of Public Service&lt;/strong&gt;&lt;/p&gt;
  1399. &lt;blockquote&gt;The New York State Public Service Commission's energy storage deployment policy has effectively strengthened the market for developing and installing qualified energy storage systems in New York. Total deployed (396 MW), awarded/contracted (581 MW) projects at the end of March 2024 equaled 977 MW in capacity, or about 65 percent of the 2025 target of 1,500 MW and 33 percent of the 2030 target of 3,000 MW. The number of energy storage projects in various interconnection queues, which reflects some of the awarded or contracted projects noted above and potential projects in the pipeline, also indicates robust activity in the industry. Over 38,000 MW of energy storage projects are presently in New York utility interconnection queues and the New York Independent System Operator interconnection queue, although some of these projects may not be built due to unfavorable project-specific economics and for other reasons.&lt;/blockquote&gt;
  1400. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nrel.gov/docs/fy24osti/85879.pdf" target="_blank"&gt;Achieving an 80% Renewable Portfolio in Alaska&amp;rsquo;s Railbelt: Cost Analysis&lt;/a&gt;, &lt;/strong&gt;Denholm et al., &lt;strong&gt;National Renewable Energy Laboratory&lt;/strong&gt;&lt;/p&gt;
  1401. &lt;blockquote&gt;The Alaska Railbelt utilities face growing challenges because of the declining supply of natural gas from the Cook Inlet and substantial projected price increases. The Railbelt power system extends from Fairbanks through Anchorage to the Kenai Peninsula and consists of five utilities. Renewable energy in the form of wind and solar is a potentially cost-competitive option to reduce reliance on natural gas, which in 2022 provided nearly two-thirds of the Railbelt electricity demand. The authors examine the system-level costs and benefits of increased renewable energy deployment in the Railbelt grid in the context of a proposed 80% renewable portfolio standard (RPS). This work studies the period from 2024 to 2040 and uses a model that simulates the planning, evolution, and operation of the power system to identify the mix of resources that maintains system reliability at the lowest electricity system cost over the period of analysis.&lt;/blockquote&gt;
  1402. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://restservice.epri.com/publicdownload/000000003002030215/0/Product" target="_blank"&gt;Valuing Improvements in Electric Vehicle Efficiency&lt;/a&gt;, &lt;/strong&gt;Cavanagh et al., &lt;strong&gt;Electric Power Research Institute and the Natural Resources Defense Council&lt;/strong&gt;&lt;/p&gt;
  1403. &lt;blockquote&gt;The authors explore the fundamental role that future vehicle efficiency improvements&amp;mdash;additional and complementary to electrification&amp;mdash;can play in lessening infrastructure and energy needs and reducing consumer costs. Electrification by itself brings major energy savings and other benefits, but the additional and often-overlooked improvements considered here reduce the amount of electricity needed to power vehicles, which is projected to be a large future load. The authors characterize key automotive technology advances and examines their potential effects from the perspective of consumers, electricity and charging infrastructure providers, and automakers.&lt;/blockquote&gt;
  1404. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://policy.friendsoftheearth.uk/insight/how-england-can-produce-more-onshore-renewable-energy-fast" target="_blank"&gt;How England can produce more onshore renewable energy fast&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Friends of the Earth&lt;/strong&gt;&lt;/p&gt;
  1405. &lt;blockquote&gt;Wind and solar farms are by far the cheapest forms of electricity production. For example, electricity from gas-fired power stations is almost 3 times more expensive to produce.?More renewable electricity production can therefore help lower energy bills. It will also reduce carbon emissions as it displaces gas-fired electricity and as transport and heating are electrified. Electrifying heating and transport are essential for meeting the UK&amp;rsquo;s international commitment to cut carbon emissions by 68% by 2030. The UK therefore needs a lot more renewable electricity.&lt;/blockquote&gt;
  1406. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://depts.washington.edu/flame/mature_forests/pdfs/BraidingSweetgrassReport.pdf" target="_blank"&gt;Braiding Indigenous and Western Knowledge for Climate-Adapted Forests: An Ecocultural State of Science Report&lt;/a&gt;, &lt;/strong&gt;Eisenberg et al., &lt;strong&gt;US. Forest Service&lt;/strong&gt;&lt;/p&gt;
  1407. &lt;blockquote&gt;North American forests are experiencing unprecedented challenges due to extreme wildfires, pathogen and insect outbreaks, heat stress, drought, rapid development, and invasive species. Exacerbated by climate change, these threats collectively diminish economic values, cultural values, and habitat. Particularly because of fire exclusion, contemporary and historical management policies are root causes of current forest conditions. Coupling Indigenous Knowledge (IK) with Western Science (WS) can catalyze proactive approaches to address threats to NA forests at meaningful scales. The authors recommend the following adaptive strategies to restore forest landscape resilience, adopt proactive stewardship; provide the flexibility to steward for dynamic landscapes and navigate uncertainties under rapidly changing conditions; ground agency planning and land and resource stewardship policies in ethics of reciprocity and responsibility to future generations; catalyze innovative approaches to forest stewardship by effectively funding adaptive forest stewardship and long-term monitoring at stand to landscape scales; and recognize and respect tribal sovereignty and indigenous knowledge.&lt;/blockquote&gt;
  1408. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://globalenergymonitor.org/wp-content/uploads/2024/04/Boom-Bust-Coal-2024.pdf" target="_blank"&gt;Boom and Bust Coal. Tracking the Global Coal Plant Pipeline&lt;/a&gt;, &lt;/strong&gt;Global Energy Monitor, &lt;strong&gt;Global Energy Monitor, CREA, E3G, Reclaim Finance, Sierra Club, SFOC, Kiko Network, CAN Europe, Bangladesh Groups, Trend Asia, Alliance for Climate Justice and Clean Energy, Chile Sustentable, POLEN Transiciones Justas, Iniciativa Clim&amp;aacute;tica de M&amp;eacute;xico, and Arayara&lt;/strong&gt;&lt;/p&gt;
  1409. &lt;blockquote&gt;Despite promising momentum, the world&amp;rsquo;s operating coal power capacity has grown 11% since 2015 and global coal use and coal capacity reached an all time high in 2023. The global coal fleet grew by 48.4 gigawatts (GW), or 2%, in 2023 to a total of 2,130 GW, with China driving two-thirds of additions. Outside of China, the coal fleet also saw a small 4.7 GW uptick for the first time since 2019. Although new retirement plans and phaseout commitments continued to emerge, less coal capacity was retired in 2023 than in any other single year in more than a decade. Globally, 69.5 GW of capacity came online while 21.1 GW was retired, resulting in a net annual increase of 48.4 GW, the highest since 2016, bringing the global total capacity to 2,130 GW. China&amp;rsquo;s 70.2 GW of new construction starts in 2023 represents 19x more than the rest of the world&amp;rsquo;s 3.7 GW and is the country&amp;rsquo;s highest annual capacity breaking ground since 2015. Outside of China and India, total proposed coal capacity is at its lowest since data collection began in 2015.&lt;/blockquote&gt;
  1410. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.ifri.org/sites/default/files/atoms/files/ifri_gherasim_global_gateway_2024.pdf" target="_blank"&gt;Global Gateway: Towards a European External Climate Security Strategy?&lt;/a&gt;, &lt;/strong&gt;Diana-Paula Gherasim, &lt;strong&gt;Center for Energy and Climate, French Institute for International Relations&lt;/strong&gt;&lt;/p&gt;
  1411. &lt;blockquote&gt;Bridging the global infrastructure investment gap, especially in Africa, is paramount for achieving the 2030 Sustainable Development Goals. The investment needs to be associated with the energy transitions and the fight against climate change further increases the financial gap for developing countries. Global Gateway puts principled connectivity at the core of the Europen Union's (EU) external action, linking geoeconomic and climate diplomacy with development policies under a Team Europe approach. Selected projects are to be driven both by the needs of partner countries and the EU&amp;rsquo;s interests. The aim is to mobilize 300 billion euros in investments by 2027 by using public funds to crowd in private investments. The private sector is to play a key role in shaping the Global Gateway actions. It remains to be seen if the Team Europe approach can make a difference at the required scale. Strategic adjustments could further unleash Global Gateway&amp;rsquo;s potential.&lt;/blockquote&gt;
  1412. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://cgspace.cgiar.org/server/api/core/bitstreams/44655f77-6744-453b-8225-1076a2107e06/content" target="_blank"&gt;Towards a Common Vision for Climate Change, Security and Migration in the Mediterranean&lt;/a&gt;, &lt;/strong&gt;Mastrorillo et al., &lt;strong&gt;Alliance Bioversity International and CIAT, CGIAR Focus Climate Security&lt;/strong&gt;&lt;/p&gt;
  1413. &lt;blockquote&gt;The white paper is the result of a high-level discussion carried out at the event &amp;ldquo;Towards a Common Vision of the Climate, Migration, and Security Nexus in the Mediterranean Region,&amp;rdquo; organized by the CGIAR Focus Climate Security and the Alliance of Bioversity &amp;amp; CIAT and held in Rome in June 2023. The discussion collected opinions of scientists, politicians, experts, and representatives of relevant international organizations on the climate-security-mobility nexus in the Mediterranean. The purpose of the discussion was to analyze current and foreseen vulnerabilities, risks, and hazards affecting livelihoods in the region, and identify potential solutions and integrated approaches to increasing climate adaptation capacities, reducing involuntary and unsafe migration, and sustaining peace and stability.&lt;/blockquote&gt;
  1414. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://pub.climate.win/solargap/" target="_blank"&gt;Closing NY&amp;rsquo;s Rooftop Solar Gap&lt;/a&gt;, &lt;/strong&gt;Rajan et al., &lt;strong&gt;Win Climate and Columbia Business School&lt;/strong&gt;&lt;/p&gt;
  1415. &lt;blockquote&gt;New York has a large rooftop solar gap: homeowners with an annual income above $50,000 are 2.5x more likely to have rooftop solar than those making below $50,000, who do not always pay enough income tax to claim the full credit. New York&amp;rsquo;s solar tax credit is inequitable: households making less than $50,000 make up 24% of owner-occupied households in New York State, but have only received 5% of the state&amp;rsquo;s residential tax credit subsidies. Refundable tax credits make solar more affordable: refundable residential tax credits could benefit up to 63% of New York&amp;rsquo;s 1.4 million energy-burdened households, and would cut the cost of solar for the average low-income household by 48%, from $98 to $51 a month.&lt;/blockquote&gt;
  1416. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://animal.law.harvard.edu/wp-content/uploads/Paris-compliant-livestock-report.pdf" target="_blank"&gt;Options for a Paris-Compliant Livestock Sector&lt;/a&gt;, &lt;/strong&gt;Harwatt et al., &lt;strong&gt;Harvard Law School&lt;/strong&gt;&lt;/p&gt;
  1417. &lt;blockquote&gt;All aspects of society must be radically transformed to align with the global temperature limits of the Paris Agreement. Much of the political focus has been on the energy transition, however, a food transition is also needed &amp;ndash; especially in highly emitting agricultural commodities from livestock production. The authors identify for the first time a potential Paris-compliant emissions trajectory for the livestock sector by eliciting responses from over 200 climate scientists and sustainable food/ agriculture experts based in 48 countries. Over 90% of participants focused the majority (51%) or some (40%) of their research on the causes, impacts, or mitigation of climate change, and most had 11 or more years of experience in their field.&lt;/blockquote&gt;
  1418. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://gwec.net/wp-content/uploads/2024/04/GWR-2024_digital-version_final.pdf" target="_blank"&gt;Global Wind Energy Report 2024&lt;/a&gt;, &lt;/strong&gt;Lee et al., &lt;strong&gt;Suzlon, Masdar et al&lt;/strong&gt;&lt;/p&gt;
  1419. &lt;blockquote&gt;The authors examine four areas &amp;ndash; investment, supply chains, system infrastructure and public consensus &amp;ndash; which will set the conditions for wind energy growth to take off through 2030 in pursuit of the tripling renewables goal. While not an exhaustive list, the authors consider these domains critical for meaningful engagement to mitigate the risks of an unstable and disorderly transition. This year&amp;rsquo;s report also delves into the potential pinch points that accompany the present-day technological era: a rapid innovation cycle in wind technology which undermines business profitability and risks product quality; interest groups actively using technology and social media to foment disinformation on climate change and renewables; robotics, artificial intelligence (AI) and automation introducing further disruptions to labor and workforce planning; and a digitalization gap between countries which impacts their capacity to allocate land, permit projects and operate smart, modern grids.&lt;/blockquote&gt;
  1420. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://liftoff.energy.gov/wp-content/uploads/2024/04/Liftoff_Innovative-Grid-Deployment_Final_4.15.pdf" target="_blank"&gt;Pathways to Commercial Liftoff: Innovative Grid Deployment&lt;/a&gt;, &lt;/strong&gt;White et al., &lt;strong&gt;Department of Energy&lt;/strong&gt;&lt;/p&gt;
  1421. &lt;blockquote&gt;The authors focus on identifying pathways to accelerate deployment of key commercially available but underutilized advanced grid solutions on the existing transmission and distribution system to address near-term hotspots and modernize the grid to prepare for a wide range of energy futures.&lt;/blockquote&gt;
  1422. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://climatecommunication.yale.edu/publications/ask-an-expert/" target="_blank"&gt;What do Americans want to know about climate change?&lt;/a&gt;, &lt;/strong&gt;Ballew et al., &lt;strong&gt;Yale University and George Mason University&lt;/strong&gt;&lt;/p&gt;
  1423. &lt;blockquote&gt;In this analysis, the authors investigated how the questions people would ask an expert vary across different subgroups, including demographic and political groups and Global Warming&amp;rsquo;s Six Americas. The Six Americas framework categorizes people into six distinct audiences based on their opinions about climate change, ranging from the Alarmed (who are the most worried and supportive of action) to the Dismissive (who do not believe climate change is happening or human caused and are often opposed to action). Americans are most interested in learning about solutions to global warming (44%), followed by evidence that it is happening (20%) or information about the causes (18%). Fewer Americans (11%) would ask first about the impacts of global warming. The topics people would ask about differ across demographic and political groups.&lt;/blockquote&gt;
  1424. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://live-etabiblio.pantheonsite.io/sites/default/files/ccsd_t2_results_summary_final.pdf" target="_blank"&gt;Perceptions of Large-Scale Solar Project Neighbors: Results From a National Survey&lt;/a&gt;, &lt;/strong&gt;Rand. et al, &lt;strong&gt;Lawrence Berkeley National Laboratory&lt;/strong&gt;&lt;/p&gt;
  1425. &lt;blockquote&gt;Driven by favorable economics, policy factors, and decarbonization goals, large-scale solar (LSS, defined here as ground-mounted photovoltaic projects &amp;ge;1 MWDC) has expanded rapidly in recent years, with more than 90 gigawatts (GW) now installed across the United States. Growth in LSS deployment is anticipated to accelerate in response to growing electricity demand and utility, state, and federal decarbonization goals. This continued expansion hinges, in part, on the continued support of local residents and decision-makers in communities hosting LSS projects. Understanding the perceptions and attitudes of existing LSS neighbors is critical to inform and enable future LSS deployment, and to improve outcomes for those host communities.&lt;/blockquote&gt;
  1426. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.whitehouse.gov/wp-content/uploads/2024/04/FY25-CEA-OMB-Climate-Macro-White-Paper-Final-2.pdf" target="_blank"&gt;Assessing Methods to Integrate the Physical Risks and Transition Risks and Opportunities of Climate Change Into the President&amp;rsquo;s Macroeconomic Forecast&lt;/a&gt;, &lt;/strong&gt;Council of Economic Advisors and hte Office of Management and Budget, &lt;strong&gt;White House&lt;/strong&gt;&lt;/p&gt;
  1427. &lt;blockquote&gt;The Federal government has broad exposure to the physical risks of climate change and the transition risks associated with the global shift away from carbon-intensive energy sources. At the same time, the shift to clean energy provides a generational opportunity to create new sources of economic growth. These transitional opportunities and challenges affect future output growth and other economic outcomes and are therefore relevant to the President&amp;rsquo;s Budget. Building on nearly three years of work completed under Section 6(a) of Executive Order 14030 on Climate-Related Financial Risk, the authors present a step-by-step method for quantifying these risks and opportunities into a macroeconomic forecasting framework with the goal of more accurately projecting near-term macroeconomic outcomes relevant to the President&amp;rsquo;s Budget. For each step, the authors assess available tools, methodological tradeoffs, and directions for further research based on the current literature.&lt;/blockquote&gt;
  1428. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://files.wri.org/d8/s3fs-public/2024-04/toward-better-meat_0.pdf?VersionId=ItFgDvM8QzaofUK6tvWrl_OtmK8dexFx" target="_blank"&gt;Toward "Better" Meat? Aligning Meat Sourcing Strategies with Corporate Climate and Sustainability Goals&lt;/a&gt;, &lt;/strong&gt;Waite et al., &lt;strong&gt;World Resources Institute&lt;/strong&gt;&lt;/p&gt;
  1429. &lt;blockquote&gt;The authors focus on assisting consumer-facing food companies with climate and other sustainability goals that plan to source not only &amp;ldquo;less meat&amp;rdquo; but also &amp;ldquo;better meat.&amp;rdquo; Because &amp;ldquo;better meat&amp;rdquo; has many meanings, the authors review evidence of the links between meat production, climate change, and other aspects of sustainability, looking across production practices and systems. They recommend six steps to help food companies meet multiple sustainability goals, from environmental effects measurement and sourcing strategy design to supplier engagement.&lt;/blockquote&gt;
  1430. &lt;p style="text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://scholarship.law.columbia.edu/sabin_climate_change/220/" target="_blank"&gt;Illuminating a Path to a Cleaner and More Resilient Energy System in Cuba&lt;/a&gt;, &lt;/strong&gt;Silverman-Roati et al., &lt;strong&gt;abin Center for Climate Change Law and Environmental Defense Fund&lt;/strong&gt;&lt;/p&gt;
  1431. &lt;blockquote&gt;The report provides detailed information on the current state of Cuba&amp;rsquo;s electricity sector and recommends reforms to advance the transition to a lower emission, reliable, and more climate resilient system. The recommendations include possible changes to Cuban domestic policies to, among other things, encourage greater public and private investment in the country&amp;rsquo;s energy transition. The report also explores how a bilateral dialogue between the U.S. and Cuban governments could help to drive renewable energy development in the island nation, in a manner that benefits the Cuban people as well as the interests of people throughout the region.&lt;/blockquote&gt;
  1432. &lt;hr /&gt;
  1433. &lt;h3&gt;Obtaining articles without journal subscriptions&lt;/h3&gt;
  1434. &lt;p&gt;We know it's frustrating that many articles we cite here are not free to read. One-off paid access fees are generally astronomically priced, suitable for such as &lt;em&gt;"&lt;a href="https://einsteinpapers.press.princeton.edu/vol2-trans/100" target="_blank"&gt;On a Heuristic Point of View Concerning the Production and Transformation of Light&lt;/a&gt;"&amp;nbsp;&lt;/em&gt;&amp;nbsp;but not as a gamble on unknowns. With a median world income of US$ 9,373, for most of us US$ 42 is significant money to wager on an article's relevance and importance.&amp;nbsp;&lt;/p&gt;
  1435. &lt;ul&gt;
  1436. &lt;li&gt;&lt;a href="https://www.sciencebuddies.org/science-fair-projects/competitions/finding-and-accessing-scientific-papers"&gt;Here's an excellent collection&lt;/a&gt; of tips and techniques for obtaining articles, legally.&lt;/li&gt;
  1437. &lt;/ul&gt;
  1438. &lt;ul&gt;
  1439. &lt;li&gt;&lt;a href="https://unpaywall.org/" target="_blank"&gt;Unpaywall&lt;/a&gt;&amp;nbsp;offers a browser extension for Chrome and Firefox that automatically indicates when an article is freely accessible and provides immediate access without further trouble. Unpaywall is also unscammy, works well, is itself offered free to use. The organizers (a legitimate nonprofit) report about a 50% success rate&lt;/li&gt;
  1440. &lt;/ul&gt;
  1441. &lt;ul&gt;
  1442. &lt;li&gt;The weekly &lt;em&gt;New Research&lt;/em&gt; catch is checked against the Unpaywall database with accessible items being flagged. Especially for just-published articles this mechansim may fail. If you're interested in an article title and it is not listed here as "open access," be sure to check the link anyway.&amp;nbsp;&lt;/li&gt;
  1443. &lt;/ul&gt;
  1444. &lt;h3&gt;How is &lt;em&gt;New Research&lt;/em&gt; assembled?&lt;/h3&gt;
  1445. &lt;p&gt;Most articles appearing here are found via&amp;nbsp; RSS feeds from journal publishers, filtered by search terms to produce raw output&amp;nbsp;for assessment of relevance.&amp;nbsp;&lt;/p&gt;
  1446. &lt;p&gt;Relevant articles are then queried against the Unpaywall database, to identify open access articles and expose useful metadata for articles appearing in the database.&amp;nbsp;&lt;/p&gt;
  1447. &lt;p&gt;The objective of New Research isn't to cast a tinge on scientific results, to color readers' impressions. Hence candidate articles are assessed via two metrics only:&lt;/p&gt;
  1448. &lt;ul&gt;
  1449. &lt;li&gt;Was an article deemed of sufficient merit by a team of journal editors and peer reviewers? The fact of journal RSS output assigns a "yes" to this automatically.&amp;nbsp;&lt;/li&gt;
  1450. &lt;li&gt;Is an article relevant to the topic of anthropogenic climate change? Due to filter overlap with other publication topics of inquiry, of a typical week's 550 or so input articles about 1/4 of RSS output makes the cut.&lt;/li&gt;
  1451. &lt;/ul&gt;
  1452. &lt;p&gt;A few journals offer public access to "preprint" versions of articles for which the review process is not yet complete. For some key journals this all the mention we'll see in RSS feeds, so we include such items in &lt;em&gt;New Research&lt;/em&gt;. These are flagged as "preprint."&lt;/p&gt;
  1453. &lt;p&gt;The section "Informed opinion, nudges &amp;amp; major initiatives" includes some items that are not scientific research per se but fall instead into the category of "perspectives," observations of implications of research findings, areas needing attention, etc.&lt;/p&gt;
  1454. &lt;h3&gt;Suggestions&lt;/h3&gt;
  1455. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  1456. &lt;h3&gt;Journals covered&lt;/h3&gt;
  1457. &lt;p&gt;A list of journals we cover may be found &lt;a href="https://skepticalscience.com/Skeptical-Science-New-Research-Source-Journals.shtml"&gt;here&lt;/a&gt;. We welcome pointers to omissions, new journals etc.&lt;/p&gt;
  1458. &lt;h3&gt;Previous edition&lt;/h3&gt;
  1459. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2024_15.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  1460. <link>https://skepticalscience.com/new_research_2024_16.html</link>
  1461. <guid>https://skepticalscience.com/new_research_2024_16.html</guid>
  1462. <pubDate>Thu, 18 Apr 2024 15:06:38 EST</pubDate>
  1463. </item>  <item>
  1464. <title>How extreme was the Earth's temperature in 2023</title>
  1465. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://www.theclimatebrink.com/p/how-extreme-was-the-earths-temperature"&gt;re-post from Andrew Dessler at the Climate Brink blog&lt;/a&gt;&lt;/p&gt;
  1466. &lt;p&gt;&lt;span&gt;In 2023, the Earth reached temperature levels unprecedented in modern times. Given that, it&amp;rsquo;s reasonable to ask: What&amp;rsquo;s going on? There&amp;rsquo;s been lots of&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.nature.com/articles/d41586-024-00816-z"&gt;discussions by scientists&lt;/a&gt;&lt;span&gt;&amp;nbsp;about whether this is just the normal progression of global warming or if something we don&amp;rsquo;t understand is happening &amp;mdash; in other words, we&amp;rsquo;ve broken the climate.&lt;/span&gt;&lt;/p&gt;
  1467. &lt;div class="captioned-image-container"&gt;
  1468. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F55f4decd-24cb-4030-bd9d-99f4eeca3884_1053x715.png" alt="" width="550" height="373" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/55f4decd-24cb-4030-bd9d-99f4eeca3884_1053x715.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:715,&amp;quot;width&amp;quot;:1053,&amp;quot;resizeWidth&amp;quot;:616,&amp;quot;bytes&amp;quot;:179215,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:false,&amp;quot;topImage&amp;quot;:true,&amp;quot;internalRedirect&amp;quot;:null}" /&gt;&lt;/div&gt;
  1469. &lt;em&gt;from the&amp;nbsp;&lt;a rel="" href="https://www.washingtonpost.com/climate-environment/2024/01/09/record-hot-year-2023-global-temperatures/"&gt;Washington Post&lt;/a&gt;&lt;/em&gt;&lt;/div&gt;
  1470. &lt;p&gt;In this post, I compare the observational temperature record to an ensemble of state-of-the-art CMIP6 models to see exactly how unusual 2023 was. It turns out that 2023 is just not that unusual when compared to the model ensemble.&lt;/p&gt;
  1471. &lt;p&gt;&lt;span&gt;Let&amp;rsquo;s start with observations. I&amp;rsquo;m going to be using the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://berkeleyearth.org/data/"&gt;Berkeley Earth global average temperature data&lt;/a&gt;&lt;span&gt;. In that data set, 2023 was a record-breaking 1.54C above the 1850-1900 average temperature. This temperature exceeded the previous record (set in 2016) by 0.17C.&lt;/span&gt;&lt;/p&gt;
  1472. &lt;p&gt;Beating the previous record by 0.17C is huge: if we look at the temperature observations since 1970, the margin by which records were broken averaged 0.07C, with a median of 0.05C. And no record in the last 50 years had a margin larger than 0.17C.&lt;/p&gt;
  1473. &lt;p&gt;What does the climate model ensemble show? I have analyzed 38 CMIP6 models over the period 1970-2030 driven by historical and SSP4.5 forcing. Here is a plot of the biggest margin for a record year vs. the year that record occurred:&lt;/p&gt;
  1474. &lt;!--more--&gt;
  1475. &lt;div class="captioned-image-container"&gt;
  1476. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd8078b7e-1e44-4714-ba87-af1e0ad9d8c7_586x438.png" alt="" width="550" height="411" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/d8078b7e-1e44-4714-ba87-af1e0ad9d8c7_586x438.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:438,&amp;quot;width&amp;quot;:586,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:26649,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:false,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null}" /&gt;&lt;/div&gt;
  1477. &lt;em&gt;based on CMIP6 models; each dot is one model; the orange cross is from the Berkeley Earth observations&lt;/em&gt;&lt;/div&gt;
  1478. &lt;p&gt;&lt;span&gt;As you can see, the record-breaking margin of 2023, 0.17C, was actually quite modest compared to the climate model ensemble. One model had a year that broke the previous record by nearly 0.45C &amp;mdash; all I can say is&amp;nbsp;&lt;/span&gt;&lt;em&gt;holy crap&lt;/em&gt;&lt;span&gt;, let&amp;rsquo;s hope that doesn&amp;rsquo;t happen in the real world.&lt;/span&gt;&lt;/p&gt;
  1479. &lt;p&gt;&lt;span&gt;A lot was also made of the fact that 2023 was the first year with a global average temperature anomaly to exceed 1.5C (in some data sets, at least). How unusual is that? Again, we can look at the models to see when they had their first year above 1.5C (as before, relative to the 1850-1900 baseline)&lt;/span&gt;&lt;span class="footnote-hovercard-target"&gt;&lt;a id="footnote-anchor-1-143129579" class="footnote-anchor" rel="" href="https://www.theclimatebrink.com/p/how-extreme-was-the-earths-temperature#footnote-1-143129579" target="_self" data-component-name="FootnoteAnchorToDOM"&gt;1&lt;/a&gt;&lt;/span&gt;&lt;span&gt;.&lt;/span&gt;&lt;/p&gt;
  1480. &lt;div class="captioned-image-container"&gt;
  1481. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc548f1b2-75df-49dc-b8ee-4a729b90b072_669x288.png" alt="" width="550" height="237" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/c548f1b2-75df-49dc-b8ee-4a729b90b072_669x288.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:288,&amp;quot;width&amp;quot;:669,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:12832,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null}" /&gt;&lt;/div&gt;
  1482. &lt;em&gt;the black arrows indicate where a CMIP6 model passes 1.5C threshold relative to the 1850-1900 baseline, the red arrow is the Berkeley Earth observations&lt;/em&gt;&lt;/div&gt;
  1483. &lt;p&gt;The median date for the model ensemble to have its first year above 1.5C is 2024, very close to when we actually did (2023). Thus, the model ensemble seems to be simulating the warming pretty accurately. And the ensemble does equally well for a more modern baseline, like 1970-1990.&lt;/p&gt;
  1484. &lt;div class="captioned-image-container"&gt;
  1485. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" title="Image" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F47c5f627-406b-434a-be09-a196f8376f95_1699x762.jpeg" alt="Image" width="550" height="247" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/47c5f627-406b-434a-be09-a196f8376f95_1699x762.jpeg&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:653,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:&amp;quot;Image&amp;quot;,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null}" /&gt;&lt;/div&gt;
  1486. &lt;em&gt;no&lt;/em&gt;&lt;/div&gt;
  1487. &lt;p&gt;&lt;span&gt;Many others have looked at different aspects of the problem and reached similar conclusions. Here&amp;rsquo;s a plot that Zeke&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://x.com/hausfath/status/1770910524168949945?s=20"&gt;posted on Twitter&lt;/a&gt;&lt;span&gt;&amp;nbsp;that shows that the observed temperature time series still falls within the range of models.&lt;/span&gt;&lt;/p&gt;
  1488. &lt;div class="captioned-image-container"&gt;
  1489. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" title="Image" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0fbeaa5d-7885-4224-95aa-f5a3cf7dfc37_4096x1990.jpeg" alt="Image" width="550" height="267" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/0fbeaa5d-7885-4224-95aa-f5a3cf7dfc37_4096x1990.jpeg&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:707,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:&amp;quot;Image&amp;quot;,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null}" /&gt;&lt;/div&gt;
  1490. &lt;/div&gt;
  1491. &lt;p&gt;This doesn&amp;rsquo;t mean we know everything about the climate of 2023. The extreme warmth was definitely surprising given the state of the climate in 2022, so important work remains to be done on understanding the physical mechanisms that were driving this record-breaking year.&lt;/p&gt;
  1492. &lt;p&gt;&lt;span&gt;But the real test of our climate understanding will come in the next few years. If global temperatures drop after the current El Ni&amp;ntilde;o fades, as expected, 2023&amp;rsquo;s high temperatures will be seen as an unusual blip in the long-term evolution of the climate (&lt;/span&gt;&lt;a rel="" href="https://www.theclimatebrink.com/p/the-pause-vs-the-surge"&gt;like &amp;ldquo;the pause&amp;rdquo; that occurred in the 2000s&lt;/a&gt;&lt;span&gt;). However, if temperatures stay high or, heaven forbid, keep rapidly warming, it would suggest that we&amp;rsquo;ve broken the climate system. Let&amp;rsquo;s hope that doesn&amp;rsquo;t happen.&lt;/span&gt;&lt;/p&gt;</description>
  1493. <link>https://skepticalscience.com/how-extreme-temperature-2023.html</link>
  1494. <guid>https://skepticalscience.com/how-extreme-temperature-2023.html</guid>
  1495. <pubDate>Wed, 17 Apr 2024 15:22:26 EST</pubDate>
  1496. </item>  <item>
  1497. <title>What is Mexico doing about climate change?</title>
  1498. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2024/04/what-is-mexico-doing-about-climate-change/"&gt;re-post from Yale Climate Connections&lt;/a&gt;&lt;/p&gt;
  1499. &lt;p class="has-drop-cap"&gt;The June general election in Mexico could mark a turning point in ensuring that the country&amp;rsquo;s climate policies better reflect the desire of its citizens to address the climate crisis, with both leading presidential candidates expressing support for renewable energy.&lt;/p&gt;
  1500. &lt;p&gt;Mexico is the 10th-most populated country with the 15th-largest economy and is also the 11th-most climate-polluting country in the world.&lt;/p&gt;
  1501. &lt;p&gt;In international surveys conducted in&amp;nbsp;&lt;a href="https://www.nber.org/papers/w30265"&gt;2022&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://climatecommunication.yale.edu/publications/international-public-opinion-on-climate-change-2023/"&gt;2023&lt;/a&gt;, Mexico had one of the highest percentages of citizens worried about human-caused climate change at 92%, compared to just 63% of Americans.* And 88% of Mexican respondents reported that they consider climate change an important issue that their country should address as a priority, compared to just 58% of Americans. This concern may reflect that Mexico is highly vulnerable to droughts, heat waves, hurricanes, flooding, and food and water insecurity worsened by climate change.&lt;/p&gt;
  1502. &lt;p&gt;But the Mexican government&amp;rsquo;s climate policy record has been inconsistent. At times, the country&amp;rsquo;s leaders have taken steps toward reducing its share of climate pollution, but its current and outgoing president Andr&amp;eacute;s Manuel L&amp;oacute;pez Obrador, commonly known by his initials AMLO, has tended to prioritize domestic fossil fuel resources over low-carbon alternatives.&lt;/p&gt;
  1503. &lt;p&gt;Mexico will hold its next general election on June 2, 2024. Voters will select the next president, who will succeed AMLO in October of this year.&lt;/p&gt;
  1504. &lt;!--more--&gt;
  1505. &lt;h4 class="wp-block-heading"&gt;A potential turning point&lt;/h4&gt;
  1506. &lt;p&gt;The leading presidential candidate, with about 60% support in polling, is&amp;nbsp;&lt;a href="https://www.nytimes.com/2024/03/01/world/americas/mexico-election-amlo-sheinbaum-galvez.html"&gt;Claudia Sheinbaum&lt;/a&gt;. She&amp;rsquo;s the former leader of Mexico City and an AMLO prot&amp;eacute;g&amp;eacute;e, but also a scientist with a Ph.D. in environmental engineering who co-authored chapters in the Fourth and Fifth IPCC reports. She also&amp;nbsp;&lt;a href="https://www.reuters.com/world/americas/mexicos-sheinbaum-spurs-hope-more-private-investment-energy-after-lopez-obrador-2023-12-21/"&gt;plans to encourage private investment in renewable energy in Mexico&lt;/a&gt;.&lt;/p&gt;
  1507. &lt;p&gt;Her closest opponent in the&amp;nbsp;&lt;a href="https://oraculus.mx/presidente2024/"&gt;polls&lt;/a&gt;, with 35% support, is X&amp;oacute;chitl G&amp;aacute;lvez, who has expressed an even more pro-clean energy position,&amp;nbsp;&lt;a href="https://www.climatechangenews.com/2023/09/07/mexico-elections-claudia-sheinbaum-xochitl-galvez/"&gt;declaring&lt;/a&gt;&amp;nbsp;that she would end the country&amp;rsquo;s addiction to fossil fuels.&lt;/p&gt;
  1508. &lt;h4 class="wp-block-heading"&gt;A brief history of Mexican climate leadership&lt;/h4&gt;
  1509. &lt;p&gt;Felipe Calder&amp;oacute;n was elected Mexican president for the 2006-2012 term (the Mexican constitution limits each president to a single six-year term). He had served as the country&amp;rsquo;s energy secretary in 2003-2004 and recognized the importance of addressing climate change. Under Calder&amp;oacute;n&amp;rsquo;s leadership, Mexico adopted a voluntary climate mitigation target in 2008 and passed a&amp;nbsp;&lt;a href="https://www.iea.org/policies/8683-general-law-of-climate-change-mexico"&gt;General Law on Climate Change&lt;/a&gt;&amp;nbsp;in 2012. Among other provisions, the law set targets to generate at least 35% of power with clean technologies by 2024 and to reduce climate pollution 30% below business-as-usual levels by 2020 and 50% below 2000 levels by 2050. Unfortunately, the former two goals have slipped out of reach.&lt;/p&gt;
  1510. &lt;p&gt;Calder&amp;oacute;n&amp;rsquo;s successor Enrique Pe&amp;ntilde;a Nieto had a more mixed record on climate and energy policy. His government passed&amp;nbsp;&lt;a href="https://climate-laws.org/document/special-tax-law-on-production-and-services-carbon-tax-and-credits_effc"&gt;a tax on carbon pollution&lt;/a&gt;, but it only applies to the additional emissions generated by burning coal or oil instead of natural gas. Pe&amp;ntilde;a Nieto signed a constitutional&amp;nbsp;&lt;a href="https://climate-laws.org/document/energy-reform-package_20c2"&gt;Reform on Energy&lt;/a&gt;&amp;nbsp;that was aimed at loosening the state-owned Federal Electricity Commission&amp;rsquo;s (CFE&amp;rsquo;s) monopoly over the national power sector, which has historically relied heavily on fossil fuels. That move opened up Mexico&amp;rsquo;s electricity generation to private clean energy investment, and also its oil and gas reserves to external investors.&lt;/p&gt;
  1511. &lt;p&gt;But AMLO moved to reverse those reforms when he replaced Pe&amp;ntilde;a Nieto in 2018, and he worked to maintain CFE&amp;rsquo;s share of Mexico&amp;rsquo;s power generation at a minimum of 54%. Clean energy investments in Mexico often come from foreign companies, and&amp;nbsp;&lt;a href="https://www.reuters.com/world/americas/mexican-lawmakers-vote-presidents-contentious-electricity-overhaul-2022-04-17/"&gt;AMLO has expressed a preference for national &amp;lsquo;energy independence,&amp;rsquo;&lt;/a&gt;&amp;nbsp;which tends to favor domestic fossil fuel sources, which are also significant contributors to the federal budget. In fact,&amp;nbsp;&lt;a href="https://www.economist.com/the-americas/2020/05/21/nothing-can-shake-amlos-fossil-fuel-fixation"&gt;his energy ministry published rules&lt;/a&gt;&amp;nbsp;for the national grid that would have prioritized energy security and fuel reserves (fossil fuels) over economic efficiency (cheaper wind and solar power). The&amp;nbsp;&lt;a href="https://apnews.com/article/mexico-power-sales-unconstitutional-060ab7b4918d6af511a610088f167655"&gt;Supreme Court of Mexico recently voided those rules&lt;/a&gt;.&lt;/p&gt;
  1512. &lt;p&gt;That decision leaves Mexico&amp;rsquo;s energy and climate path at an important inflection point with a big election just a few months away.&lt;/p&gt;
  1513. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Mexico&amp;rsquo;s current climate status&lt;/span&gt;&lt;/h4&gt;
  1514. &lt;p&gt;Mexico&amp;rsquo;s climate pollution predominantly comes from three sectors: transportation (30%), power (29%), and industry (27%). The country&amp;rsquo;s power sector emissions have been rising, especially over the past two years as the government has prioritized fossil fuels and drought has reduced its hydroelectricity production. Mexico&amp;rsquo;s share of clean electricity generation&amp;nbsp;&lt;a href="https://www.reuters.com/markets/commodities/mexicos-energy-transition-hits-reverse-2023-2024-02-13/"&gt;fell below 22% in 2023&lt;/a&gt;&amp;nbsp;after peaking at 27% in 2021 and thus will surely fall short of the 35% clean power target by 2024 set in its 2012 climate law. Most of the country&amp;rsquo;s power comes from natural gas, and more than three-quarters is produced by burning fossil fuels. As a result, Mexico&amp;rsquo;s overall climate pollution has risen about 33% above 2000 levels.&lt;/p&gt;
  1515. &lt;p&gt;&lt;img class="perfmatters-lazy entered pmloaded" title="" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2024/04/null.png?w=780&amp;amp;ssl=1" alt="A graph of fossil fuel emission in Mexico, from 1900 to 2024. " width="550" data-recalc-dims="1" data-src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2024/04/null.png?w=780&amp;amp;ssl=1" data-ll-status="loaded" /&gt;&lt;em&gt;Mexican annual fossil fuel greenhouse gas emissions. Created by Dana Nuccitelli with&amp;nbsp;&lt;a href="https://explore.globalcarbonbudgetdata.org/timeseries.html"&gt;data from Global Carbon Budget&lt;/a&gt;.&lt;/em&gt;&lt;/p&gt;
  1516. &lt;p&gt;Climate Action Tracker, an independent project that monitors whether governments&amp;rsquo; actions measure up to the goals outlined in the Paris climate agreement, gave Mexico&amp;rsquo;s climate policies its worst rating of &amp;ldquo;&lt;a href="https://climateactiontracker.org/countries/mexico/"&gt;critically insufficient&lt;/a&gt;&amp;rdquo; due to a lack of ambition and weakening of policies and targets under AMLO&amp;rsquo;s leadership. The project noted, &amp;ldquo;If all countries were to follow Mexico&amp;rsquo;s approach, warming would exceed 4&amp;deg;C&amp;rdquo; &amp;mdash;&amp;nbsp;&lt;a href="https://skepticalscience.com/climate-best-to-worst-case-scenarios.html"&gt;a catastrophic level of global warming&lt;/a&gt;.&lt;/p&gt;
  1517. &lt;p&gt;According to the latest Intergovernmental Panel on Climate Change (IPCC) report, Mexico is also highly vulnerable to climate change impacts,&amp;nbsp;&lt;a href="https://www.ipcc.ch/report/ar6/wg2/chapter/chapter-14/"&gt;especially extreme heat and drought&lt;/a&gt;, which could lead to food and water insecurity. Mexico City, which is the seventh-most populated city in the world with over 21 million residents, is&amp;nbsp;&lt;a href="https://www.cnn.com/2024/02/25/climate/mexico-city-water-crisis-climate-intl/index.html"&gt;already in danger of running out of water&lt;/a&gt;. A&amp;nbsp;&lt;a href="https://www.nature.com/articles/s41558-021-01000-1"&gt;2021 study&lt;/a&gt;&amp;nbsp;estimated that climate change has so far reduced Mexican agricultural productivity by about 25-30%, and a&amp;nbsp;&lt;a href="https://www.pnas.org/doi/10.1073/pnas.1002632107"&gt;2010 paper&lt;/a&gt;&amp;nbsp;suggested that these effects could lead to millions of Mexican climate immigrants coming to the U.S. border by 2080.&lt;/p&gt;
  1518. &lt;h4 class="wp-block-heading"&gt;A potential 2024 inflection&lt;/h4&gt;
  1519. &lt;p&gt;Mexico has made little progress toward reducing emissions from its transportation sector, and electric vehicles account for just 0.26% of new car sales. But that could change relatively soon, as Chinese electric vehicle maker BYD has announced&amp;nbsp;&lt;a href="https://www.reuters.com/business/autos-transportation/chinese-carmaker-byd-launches-low-cost-dolphin-mini-ev-mexico-2024-02-28/"&gt;plans to build a factory in Mexico&lt;/a&gt;. The&amp;nbsp;&lt;a href="https://en.wikipedia.org/wiki/Median_income"&gt;median income&lt;/a&gt;&amp;nbsp;in Mexico is only about $6,000, which is about five to 10 times lower than that in the United States depending on how it&amp;rsquo;s measured, and so bringing BYD&amp;rsquo;s relatively cheap cars to the Mexico market could significantly increase electric vehicle adoption in the country. Mexico&amp;rsquo;s energy regulator will also have to&amp;nbsp;&lt;a href="https://www.bnamericas.com/en/features/mexico-unable-to-move-on-ev-charging-stations-despite-manufacturer-requests"&gt;issue guidelines&lt;/a&gt;&amp;nbsp;to allow for the installation of more charging stations.&lt;/p&gt;
  1520. &lt;p&gt;A&amp;nbsp;&lt;a href="https://www.nature.com/articles/s41467-019-14048-7"&gt;2020 paper published in Nature&lt;/a&gt;&amp;nbsp;found that Mexico&amp;rsquo;s climate policies have tended to follow its National Development Plans. These are plans published during the first year of the new government to specify the national objectives, strategy, and priorities for Mexico&amp;rsquo;s development. The 2006 National Development Plan was the first to characterize climate change as an unequivocal environmental problem and to include targeted actions, and the Calder&amp;oacute;n government followed suit. The 2012 National Development Plan somewhat de-emphasized climate change, and the Pe&amp;ntilde;a Nieto government had a more mixed climate record. The 2019 plan included a section about rescuing the CFE from an onslaught of private energy investments, which became a focus of AMLO&amp;rsquo;s government to the detriment of clean energy production.&lt;/p&gt;
  1521. &lt;p&gt;&amp;ldquo;Right now, nongovernmental actors are creating a proposal for the&amp;nbsp;&lt;a href="https://www.mexicoresiliente.org/"&gt;Plan Nacional de Descarbonizaci&amp;oacute;n y Resiliencia Clim&amp;aacute;tica 2024-2030&lt;/a&gt;&amp;nbsp;[National Decarbonization and Climate Resilience Plan],&amp;rdquo; the 2020 Nature study&amp;rsquo;s lead author Arturo Balderas Torres wrote in an email. &amp;ldquo;Ideally any candidate who wins the election should commit to this proposal that is being generated in an unprecedented participatory way and include its proposals in the new NDP.&amp;rdquo;&lt;/p&gt;
  1522. &lt;p&gt;In short, Mexico is a highly climate-vulnerable country with a very climate-concerned population. Its leadership has thus far taken insufficient steps toward addressing the climate crisis, but 2024 could change the trajectory of Mexico&amp;rsquo;s climate policies and clean technology solutions.&lt;/p&gt;</description>
  1523. <link>https://skepticalscience.com/what-is-mexico-doing.html</link>
  1524. <guid>https://skepticalscience.com/what-is-mexico-doing.html</guid>
  1525. <pubDate>Mon, 15 Apr 2024 13:36:01 EST</pubDate>
  1526. </item> </channel> </rss>

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=https%3A//skepticalscience.com/feed.xml

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda