Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: https://skepticalscience.com/feed.xml

  1. <?xml version="1.0" encoding="UTF-8" ?>
  2. <rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
  3.  <channel>
  4.   <title>Skeptical Science</title>
  5.   <description>Examining the science of global warming skepticism, clearing up the misconceptions and misleading arguments that populate the climate change debate.</description>
  6.   <link>https://skepticalscience.com/</link>
  7. <atom:link href="https://skepticalscience.com/feed.xml" rel="self" type="application/rss+xml" />
  8. <item>
  9. <title>Climate change strengthened Hurricane Melissa, making the storm’s winds stronger and the damage worse.</title>
  10. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/10/climate-change-strengthened-hurricane-melissa-making-the-storms-winds-stronger-and-the-damage-worse/"&gt;re-post from Yale Climate Connections by Jeff Masters&lt;/a&gt;&lt;/p&gt;
  11. &lt;p&gt;&lt;img class="attachment-newspack-featured-image size-newspack-featured-image wp-post-image" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/10/melissa-vis-455EDT-oct26.jpg?fit=1200%2C675&amp;amp;ssl=1" alt="Satellite image of Hurricane Melissa." width="550" height="309" data-hero-candidate="1" /&gt;&lt;em&gt;Visible satellite image (with lightning) of Hurricane Melissa at 4:55 p.m. EDT Sunday, Oct. 26, when it was a Category 4 storm with 145 mph (230 km/h) winds. (Image credit: NOAA/CIRA)&lt;/em&gt;&lt;/p&gt;
  12. &lt;div class="main-content"&gt;
  13. &lt;div class="entry-content"&gt;
  14. &lt;p class="has-drop-cap"&gt;Human-caused climate change increased Hurricane Melissa&amp;rsquo;s wind speeds by 7% (11 mph, or 18 km/h), leading to a 12% increase in its damages, found researchers at the&amp;nbsp;&lt;a href="http://www.imperial.ac.uk/grantham/research/climate-science/modelling-tropical-cyclones/hurricane-melissa"&gt;Imperial College of London&lt;/a&gt;&amp;nbsp;in a rapid attribution study just released. A&amp;nbsp;&lt;a href="https://www.climatecentral.org/tropical-cyclones/melissa-2025"&gt;separate study by scientists at Climate Central&lt;/a&gt;&amp;nbsp;found that climate change increased Melissa&amp;rsquo;s winds by 10%, and the near-record-warm ocean waters that Melissa traversed &amp;mdash;&amp;nbsp;&lt;span&gt;1.4 degrees Celsius (2.5&amp;deg;F) warmer than average&lt;/span&gt; &amp;mdash; were up to 900 times more likely&amp;nbsp;to be that warm because of human-caused climate change.&lt;/p&gt;
  15. &lt;p&gt;To study Melissa, the Imperial College of London researchers used the&lt;a rel="noreferrer noopener" href="https://www.imperial.ac.uk/grantham/research/climate-science/modelling-tropical-cyclones/the-imperial-college-storm-model-iris/" target="_blank"&gt;&amp;nbsp;Imperial College Storm Model&lt;/a&gt;&amp;nbsp;(IRIS). With the same model last year, the researchers found that climate change increased&amp;nbsp;&lt;a href="https://www.imperial.ac.uk/grantham/research/climate-science/modelling-tropical-cyclones/climate-change-attribution-hurricane-helene/"&gt;Hurricane Helene&amp;rsquo;s&lt;/a&gt;&amp;nbsp;wind speeds at landfall by about 11% (13 mph or 21 km/h), and&amp;nbsp;&lt;a href="https://www.imperial.ac.uk/grantham/research/climate-science/modelling-tropical-cyclones/climate-change-attribution-hurricane-milton/"&gt;Hurricane Milton&amp;rsquo;s&lt;/a&gt;&amp;nbsp;by 10% (11 mph or 18 km/h). These wind speed increases led to an increase in damage of 44% for Helene and 45% for Milton, they said. Melissa&amp;rsquo;s relatively low 12% increase in damage with 7% higher winds was so small, they said, because of hurricane of that intensity causes near-total destruction, and there isn&amp;rsquo;t much more to destroy if the winds increase.&lt;/p&gt;
  16. &lt;p&gt;They added that the analysis &amp;ldquo;likely underestimates the true cost of the hurricanes because it does not capture long-lasting economic impacts such as lost productivity and worsened health outcomes.&amp;rdquo;&lt;/p&gt;
  17. &lt;div class="wp-block-image"&gt;&lt;img class="wp-image-108174 perfmatters-lazy entered pmloaded" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2023/08/823-hurricane-damage-potential.png?resize=264%2C701&amp;amp;ssl=1" alt="table showing the exponential growth in damage as hurricane wind speeds increase" width="264" height="701" data-recalc-dims="1" data-src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2023/08/823-hurricane-damage-potential.png?resize=264%2C701&amp;amp;ssl=1" data-srcset="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2023/08/823-hurricane-damage-potential.png?w=264&amp;amp;ssl=1 264w, https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2023/08/823-hurricane-damage-potential.png?resize=113%2C300&amp;amp;ssl=1 113w, https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2023/08/823-hurricane-damage-potential.png?w=370&amp;amp;ssl=1 370w, https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2023/08/823-hurricane-damage-potential.png?w=400&amp;amp;ssl=1 400w" data-sizes="(max-width: 264px) 100vw, 264px" data-ll-status="loaded" /&gt;&lt;/div&gt;
  18. &lt;div class="wp-block-image"&gt;&lt;em&gt;Figure 1. Damage multiplier for hurricane winds compared to a minimal category 1 hurricane with 75 mph winds. The difference in damage potential between each Saffir-Simpson category is roughly a factor of four. (Image credit:&amp;nbsp;&lt;a href="https://www.noaa.gov/jetstream/tc-potential"&gt;NOAA&lt;/a&gt;)&lt;/em&gt;&lt;/div&gt;
  19. &lt;!--more--&gt;
  20. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Hurricane damage rises exponentially with wind speed&lt;/span&gt;&lt;/h4&gt;
  21. &lt;p&gt;Although a 10% increase in hurricane winds because of climate change may not sound like a big deal, it matters a lot because hurricane damage increases exponentially with wind speed. For example,&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2024/09/four-ways-climate-change-likely-made-hurricane-helene-worse/"&gt;according to NOAA&lt;/a&gt;, a Category 2 hurricane with 100 mph (161 km/h) winds will cause 10 times the damage of a Category 1 hurricane with 75 mph (121 km/h) winds. This includes damage not only from winds but also from storm surge, inland flooding, and tornadoes.&amp;nbsp;&lt;span&gt;Bottom line: A 10% increase in winds yields about a doubling in hurricane damage&lt;/span&gt;&amp;nbsp;(Fig. 1). The exception: once a hurricane&amp;rsquo;s winds far exceed the 156 mph Cat 5 threshold (as Melissa did), additional damage will not increase as rapidly in regions with relatively poorly-built structures, since there will not be much left to destroy.&lt;/p&gt;
  22. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Forecast for Melissa&lt;/span&gt;&lt;/h4&gt;
  23. &lt;p&gt;Hurricane Melissa roared through the southeastern Bahamas on Wednesday afternoon and evening, passing near the southern tip of Long Island near 5 p.m. EDT Oct. 29 as a Category 1 storm with 90 mph (150 km/h) winds and a central pressure of 974 mb. Earlier on Wednesday, at 3:10 a.m. EDT, Melissa made landfall in the eastern Cuban province of Santiago de Cuba, about 40 miles (65 km) west of Santiago de Cuba, as a Category 3 storm with winds of 120 mph (195 km/h) and a central pressure of 952 mb. Melissa&amp;rsquo;s first landfall was in western Jamaica at 1 p.m. EDT Oct. 28, as a Category 5 storm with 185 mph (300 km/h) winds and a central pressure of 892 mb, tying with the 1935 Labor Day Hurricane in the Florida Keys as the strongest landfalling Atlantic hurricane on record.&lt;/p&gt;
  24. &lt;p&gt;As of&amp;nbsp;11 a.m. EDT Thursday, Category 2 Melissa was centered about 515 miles (830 km) southwest of Bermuda, speeding north-northeast at 24 mph (39 km/hr), with top sustained winds of 105 mph (165 km/h) and a central pressure of 965 mb.&amp;nbsp;&lt;a href="https://www.tropicaltidbits.com/sat/satlooper.php?region=13L&amp;amp;product=vis"&gt;Satellite imagery&lt;/a&gt;&amp;nbsp;showed a storm that was steadily reorganizing, with a prominent eye beginning to appear. Melissa&amp;rsquo;s wind field has expanded in size, with hurricane-force winds extending out 60 mi. (95 km) from the center. The hurricane will be able to spread tropical storm conditions and wind gusts approaching 100 mph (160 km/h) to Bermuda late tonight, even though the center of the eye is expected to pass about 120 mi. (195 km) to the northwest around midnight, as a Cat 2. A Hurricane Warning is up for Bermuda.&lt;/p&gt;
  25. &lt;p&gt;Melissa is expected to transition to a powerful extratropical storm on Friday, and pass within 100 miles of southeastern of Newfoundland, Canada, near midnight Friday, with sustained winds of 75 mph (120 km/h). Newfoundland will be on the weaker left side of Melissa&amp;rsquo;s center and will miss the storm&amp;rsquo;s strongest winds, but a flow of moist air in advance of the storm is likely to contribute to heavy rains of 1-3 inches (25-75 mm) over Atlantic Canada on Friday and Saturday, in combination with a separate storm.&lt;/p&gt;
  26. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;One more month of hurricane season to go&lt;/span&gt;&lt;/h4&gt;
  27. &lt;p&gt;There are no new threat areas in the Atlantic to discuss at this time. Typically, about 6% of Atlantic seasonal hurricane activity (as measured by accumulated cyclone energy) occurs in November. The Atlantic hurricane season ends on Nov. 30.&lt;/p&gt;
  28. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Please donate to Hurricane Melissa relief efforts&lt;/span&gt;&lt;/h4&gt;
  29. &lt;p&gt;In the coming days, you&amp;rsquo;ll see a number of appeals for Hurricane Melissa relief; please consider donating to one. Some options include the&amp;nbsp;&lt;a href="https://www.jamaicaredcross.org/"&gt;Jamaica Red Cross&lt;/a&gt;,&amp;nbsp;&lt;a href="https://supportjamaica.gov.jm/"&gt;the Jamaican government&amp;rsquo;s official fundraiser&lt;/a&gt;,&amp;nbsp;&lt;a href="https://www.globalempowermentmission.org/mission/hurricane-melissa/"&gt;the Global Empowerment Missions&amp;rsquo; Hurricane Melissa fund&lt;/a&gt;, the&amp;nbsp;&lt;a rel="noreferrer noopener" href="https://link.mediaoutreach.meltwater.com/ls/click?upn=u001.sxi0gCw9roTfS-2BvtgD9GHVjHMKi0vZ30LSHv-2FLBcykbtFeDQ5hCYGV-2BD85gpo6QHFJ7rk4GEv0VMjx3Sp2fFecyCWvKqVDlsyeZcD8zG000-3DtR6K_p8g7Zo7SPY-2F-2F4FJblcq-2Bmr8k5j29GLPf08WXkN89zCSl8arI-2FOQWDpUrXODUe-2B3lU5hZTBGr5Rafh9BeOLxE5hQ-2Bu0-2FmqdajqPf26GcIyx1LmSmNlz7-2BC5H-2BFMuMx3ybA7UCMAYhN4JA9kt16p819vqUPkMmVd5Ow4xuXw-2Fcsv6hVQGqLXRPVuLe4uD7vUJsFApSN3rd1Rhefq4p7w5zXk6HHYCU7X9E3fXxV8EZGKzO81LvzojWxZB9QT-2BdGxuMVajhG1aeHI-2BfuZgU9QSVs8NnLi1SBjx1mCxZLhKnf9FMZ22nZj-2BoB2pZeRdvxxgwL-2BGROadrOwoSmIsOKosGBs3fMuX2B5OWpewa4SXhaHiDYODlxR242E8bvutbIhO1n3PAh93xx8r-2BIXN3YRAt4g-3D-3D" target="_blank"&gt;GlobalGiving Hurricane Melissa Relief Fund&lt;/a&gt;, and&amp;nbsp;&lt;a href="https://watermission.org/solutions/disaster-response/hurricane-melissa"&gt;Water Mission&lt;/a&gt;.&lt;/p&gt;
  30. &lt;/div&gt;
  31. &lt;/div&gt;</description>
  32. <link>https://skepticalscience.com/strengthened-hurricane-melissa.html</link>
  33. <guid>https://skepticalscience.com/strengthened-hurricane-melissa.html</guid>
  34. <pubDate>Mon, 3 Nov 2025 16:29:45 EST</pubDate>
  35. </item>  <item>
  36. <title>Fact brief - Does cold weather disprove human-caused climate change</title>
  37. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  38. &lt;h3&gt;Does cold weather disprove human-caused climate change&lt;/h3&gt;
  39. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-No-200px.jpg" alt="No" width="200" height="59" /&gt;The planet continues to warm due to human activity; bouts of cold weather don&amp;rsquo;t change this.&amp;nbsp;&lt;/p&gt;
  40. &lt;p&gt;Satellites around the world measure temperatures at different places throughout the year. These are averaged to calculate annual global temperatures.&amp;nbsp;&lt;/p&gt;
  41. &lt;p&gt;The past ten years (2015-2024) have been the ten hottest since modern record-keeping began in 1850, and 2024 was the all-time hottest. The last time Earth had a colder-than-average year was 1976.&amp;nbsp;&lt;/p&gt;
  42. &lt;p&gt;Weather refers to meteorological conditions &amp;mdash;&amp;nbsp; heat, humidity, precipitation, etc. &amp;mdash; in a given moment, while climate represents patterns of weather over time.&lt;/p&gt;
  43. &lt;p&gt;Cold snaps still occur, but they&amp;rsquo;re becoming less common as Earth warms from human emissions of heat-trapping gases.&lt;/p&gt;
  44. &lt;p&gt;&lt;a href="http://sks.to/cold" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/does-cold-weather-disprove-human-caused-climate-change-2/" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  45. &lt;hr /&gt;
  46. &lt;p&gt;This fact brief is responsive to quotes such as &lt;a href="https://bringmethenews.com/minnesota-news/president-trump-tweets-about-midwest-cold-says-we-need-global-warming" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  47. &lt;hr /&gt;
  48. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  49. &lt;p&gt;NOAA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250630193716/https://www.noaa.gov/news/2024-was-worlds-warmest-year-on-record" target="_blank"&gt;2024 was the world&amp;rsquo;s warmest year on record&lt;/a&gt;&lt;/p&gt;
  50. &lt;p&gt;Scientific American&amp;nbsp;&lt;a href="https://www.scientificamerican.com/article/climate-change-fuels-record-summer-heat-killing-thousands/" target="_blank"&gt;The Past Three Summers Were the Three Hottest on Record&lt;/a&gt;&lt;/p&gt;
  51. &lt;p&gt;Yale Climate Connections&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/10/september-2025-earths-3rd-warmest-september-on-record/" target="_blank"&gt;September 2025: Earth&amp;rsquo;s 3rd-warmest September on record&lt;/a&gt;&lt;/p&gt;
  52. &lt;p&gt;NOAA&amp;nbsp;&lt;a href="https://archive.ph/u33ks" target="_blank"&gt;Global Climate Report August 2025&lt;/a&gt;&lt;/p&gt;
  53. &lt;p&gt;Carbon Brief&amp;nbsp;&lt;a href="https://www.carbonbrief.org/state-of-the-climate-2025-on-track-to-be-second-or-third-warmest-year-on-record/" target="_blank"&gt;State of the climate: 2025 on track to be second or third warmest year on record&lt;/a&gt;&lt;/p&gt;
  54. &lt;p class="bluebox"&gt;Please use&amp;nbsp;&lt;a href="https://docs.google.com/forms/d/e/1FAIpQLSfwk64a4VraQwLYfV2HalJXgj_yvV28yP5fsi6te5okFQ9DyQ/viewform?usp=pp_url&amp;amp;entry.386351903=https://skepticalscience.com/fact-brief-agw.html" target="_blank"&gt;this form&lt;/a&gt; to provide feedback about this fact brief. This will help us to better gauge its impact and usability. Thank you!&lt;/p&gt;
  55. &lt;!--more--&gt;
  56. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer "yes/no" answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://sks.to/gfb" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  57. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact Quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  58. <link>https://skepticalscience.com/fact-brief-cold.html</link>
  59. <guid>https://skepticalscience.com/fact-brief-cold.html</guid>
  60. <pubDate>Tue, 4 Nov 2025 10:54:29 EST</pubDate>
  61. </item>  <item>
  62. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #44</title>
  63. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 28 news and opinion articles we found interesting and shared on social media during the past week: Sun, October 26, 2025 thru Sat, November 1, 2025.&lt;/div&gt;
  64. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  65. &lt;p&gt;&lt;strong&gt;Climate Law and Justice (4 articles)&lt;/strong&gt;&lt;/p&gt;
  66. &lt;ul&gt;
  67. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/26102025/trump-republicans-big-oil-climate-liability/" target="_blank"&gt;Trump and Republicans Join Big Oil`s All-Out Push to Shut Down Climate Liability Efforts&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Republican attorneys general, GOP lawmakers, industry groups and the president himself are all maneuvering to foreclose the ability of cities and states to hold the fossil fuel industry liable for damages linked to climate change.&lt;/em&gt; Inside Climate News, Dana Drugmand, Oct 26, 2025.&lt;/li&gt;
  68. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.commondreams.org/news/climate-lawsuit-philippines-typhoon" target="_blank"&gt;Survivors of Philippines `Super Typhoon` Sue Oil Giant for Causing Climate Emergency&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The lawsuit centers on Philippine laws stating that citizens have the right to a healthy environment.&lt;/em&gt; Common Dreams, Brad Reed, Oct 27, 2025.&lt;/li&gt;
  69. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/business/2025/oct/27/exxon-lawsuit-california-climate-emissions" target="_blank"&gt;Exxon sues California over climate laws, alleging free speech violations&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Oil firm asks court to block enforcement of laws that would require disclosure of planet-heating carbon emissions&lt;/em&gt; The Guardian, Dharna Noor, Oct 27, 2025.&lt;/li&gt;
  70. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/climate-change-is-a-crisis-of-intergenerational-justice-its-not-too-late-to-make-it-right-263347" target="_blank"&gt;Climate change is a crisis of intergenerational justice. It's not too late to make it right&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Conversation, Philippa Collin, Judith Bessant, Rob Watts, Oct 28, 2025.&lt;/li&gt;
  71. &lt;/ul&gt;
  72. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (4 articles)&lt;/strong&gt;&lt;/p&gt;
  73. &lt;ul&gt;
  74. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/10/25/climate/endangerment-finding-auto-energy-lawsuits.html?unlocked_article_code=1.wE8.WHXC.O56bdsHhmpY2&amp;amp;smid=url-share" target="_blank"&gt;An E.P.A. Plan to Kill a Major Climate Rule Is Worrying Business Leaders&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Some carmakers and energy executives say the plan would trigger costly litigation and spur individual states to create a patchwork of tighter rules.&lt;/em&gt; New York Times, Karen Zraick and Lisa Friedman, Oct 25, 2025.&lt;/li&gt;
  75. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.latimes.com/environment/story/2025-10-29/how-trump-pressures-the-world-into-burning-more-oil-and-gas" target="_blank"&gt;How Trump pressures the world into burning more oil and gas&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Los Angeles Times, Jennifer A. Dlouhy, Akshat Rathi, Oct 29, 2025.&lt;/li&gt;
  76. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/world/2025/oct/30/resist-trump-attacks-climate-action" target="_blank"&gt;Ex-EPA head urges US to resist Trump attacks on climate action: `We won`t become numb`&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Expanded climate action from cities and states could slash planet-heating pollution despite Trump working against it&lt;/em&gt; The Guardian, Dharna Noor, Oct 30, 2025.&lt;/li&gt;
  77. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/cbs-news-kills-its-climate-unit" target="_blank"&gt;The fall of the CBS News climate team&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;David Ellison, the new pro-Trump chief executive of Paramount Skydance, has dismantled the best climate change reporting team in cable news.&lt;/em&gt; HEATED, Emily Atkin, Oct 31, 2025.&lt;/li&gt;
  78. &lt;/ul&gt;
  79. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (3 articles)&lt;/strong&gt;&lt;/p&gt;
  80. &lt;ul&gt;
  81. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://news.climate.columbia.edu/2025/10/29/discover-climate-live-k12-sessions-for-2025-2026/" target="_blank"&gt;Discover Climate LIVE K12 Sessions for 2025-2026&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; State of the Planet, Lylia Saurel, Oct 29, 2025.&lt;/li&gt;
  82. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://studyfinds.org/visual-power-of-climate-denial/" target="_blank"&gt;How The Visual Power Of Climate Denial Fuels The Spread Of Misinformation&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; StudyFinds, Reviewed by John Anderer, Oct 29, 2025.&lt;/li&gt;
  83. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/4zBoXY5YeVo?si=Yzsr3fWXWMZ8pW_N" target="_blank"&gt;The worst month of climate news in my entire career&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Youtube, Simon Clark, Oct 31, 2025.&lt;/li&gt;
  84. &lt;/ul&gt;
  85. &lt;!--more--&gt;
  86. &lt;p&gt;&lt;strong&gt;Climate Science and Research (3 articles)&lt;/strong&gt;&lt;/p&gt;
  87. &lt;ul&gt;
  88. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://andthentheresphysics.wordpress.com/2025/10/19/a-controversial-methane-metric/" target="_blank"&gt;A "controversial" methane metric?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; ..and then there's Physics, Ken Rice, Oct 19, 2025.&lt;/li&gt;
  89. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://10insightsclimate.science/" target="_blank"&gt;10 New Insights in Climate Science 2025/2026&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; 10 New Insights in Climate Science, Editor Board, Oct 30, 2025.&lt;/li&gt;
  90. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_44.html" target="_blank"&gt;Skeptical Science New Research for Week #43 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Our latest weekly survey of research into matters of human-caused climate change, by academic, NGO and governmental investigators.&lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Oct 30, 2025.&lt;/li&gt;
  91. &lt;/ul&gt;
  92. &lt;p&gt;&lt;strong&gt;Health Aspects of Climate Change (3 articles)&lt;/strong&gt;&lt;/p&gt;
  93. &lt;ul&gt;
  94. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/28102025/millions-of-avoidable-deaths-climate-change-health-harms-reach-unprecedented-levels/" target="_blank"&gt;`Millions of Avoidable Deaths`: Climate Change Health Harms Reach Unprecedented Levels&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Global researchers find that public awareness of climate threats is growing, but governments and companies are reversing climate progress and missing opportunities to save lives.&lt;/em&gt; Inside Climate News, Keerti Gopal, Oct 29, 2025.&lt;/li&gt;
  95. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-10-climate-inaction-linked-millions-deaths.html" target="_blank"&gt;Climate inaction linked to millions of preventable deaths each year, study finds&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Andrew Zinin, Oct 30, 2025.&lt;/li&gt;
  96. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/health/lancet-2025-countdown-health-climate-change-report/" target="_blank"&gt;`A devastating global audit` shows how climate change is undermining the health of millions&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Extreme heat now kills one person every minute, according to a sweeping new report by the British medical journal The Lancet.&lt;/em&gt; Grist, Zoya Teirstein, Oct 31, 2025.&lt;/li&gt;
  97. &lt;/ul&gt;
  98. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (2 articles)&lt;/strong&gt;&lt;/p&gt;
  99. &lt;ul&gt;
  100. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/24102025/marine-mammal-migrations-disrupted-by-climate-change/" target="_blank"&gt;Whale and Dolphin Migrations are Being Disrupted by Climate Change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Rising ocean temperatures, heatwaves and dwindling prey are forcing marine mammals into new and more dangerous waters, scientists warn.&lt;/em&gt; Inside Climate News, Teresa Tomassoni, Oct 24, 2025.&lt;/li&gt;
  101. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/climate/scientists-have-a-dire-new-warning-about-the-state-of-the-planet/" target="_blank"&gt;Scientists have a dire new warning about the state of the planet&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Recent climatic developments "mark the beginning of a grim new chapter for life on Earth," but it's not too late for radical action.&lt;/em&gt; Grist, Matt Simon, Oct 29, 2025.&lt;/li&gt;
  102. &lt;/ul&gt;
  103. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (2 articles)&lt;/strong&gt;&lt;/p&gt;
  104. &lt;ul&gt;
  105. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/AeIXZf7Th34?si=S-XgL5SW4KVKInL_" target="_blank"&gt;Can Solar Halt the Desert?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; ClimateAdam on Youtube, Adam Levy, Oct 25, 2025.&lt;/li&gt;
  106. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thebulletin.org/2025/10/you-cant-reboot-the-planet-if-you-crash-it/" target="_blank"&gt;You can&amp;rsquo;t reboot the planet if you crash it&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Bulletin of the Atomic Scientists, Michael E. Mann, Oct 31, 2025.&lt;/li&gt;
  107. &lt;/ul&gt;
  108. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (2 articles)&lt;/strong&gt;&lt;/p&gt;
  109. &lt;ul&gt;
  110. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://drilled.media/podcasts/drilled/14/s14-ep3?content=episode-details" target="_blank"&gt;Drilled - S14, Ep3 | The Psychology of Misinformation: Why Does It Work So Well?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Drilled podcast, Amy Westervelt, Sept 30, 2025.&lt;/li&gt;
  111. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-evidence.html" target="_blank"&gt;Fact brief - Is there empirical evidence for human-caused global warming?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Yes - There are multiple lines of evidence that our greenhouse gas emissions are warming the planet. &lt;/em&gt; Skeptical Science, Sue Bin Park, Oct 28, 2025.&lt;/li&gt;
  112. &lt;/ul&gt;
  113. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Solutions (2 articles)&lt;/strong&gt;&lt;/p&gt;
  114. &lt;ul&gt;
  115. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/_OBlKRdH6A4?si=hPi21N3i9LCsMWme" target="_blank"&gt;The future of climate denial&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Youtube, Simon Clark, Oct 26, 2025.&lt;/li&gt;
  116. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://euvsdisinfo.eu/weaponising-climate-change-to-undermine-the-west/" target="_blank"&gt;Weaponising climate change to undermine the West&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The pro-Kremlin disinformation machine is seeking to undermine the EU&amp;rsquo;s sanctions policy by attacking its Green Deal.&lt;/em&gt; EUvsDisinfo, EUvsDisinfo, Oct 30, 2025.&lt;/li&gt;
  117. &lt;/ul&gt;
  118. &lt;p&gt;&lt;strong&gt;Miscellaneous (2 articles)&lt;/strong&gt;&lt;/p&gt;
  119. &lt;ul&gt;
  120. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_43.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #43&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, October 19, 2025 thru Sat, October 25, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler &amp;amp; Doug Bostrom, Oct 26, 2025.&lt;/li&gt;
  121. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/oct/29/americas-super-rich-running-down-planet-safe-climate-spaces-oxfam" target="_blank"&gt;America`s super-rich are running down the planet`s safe climate spaces, says Oxfam&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Exclusive: Data shows wealthiest 0.1% of the US burn carbon at 4,000 times the rate of the world&amp;rsquo;s poorest 10%&lt;/em&gt; The Guardian, Jonathan Watts, Oct 29, 2025.&lt;/li&gt;
  122. &lt;/ul&gt;
  123. &lt;p&gt;&lt;strong&gt;International Climate Conferences and Agreements (1 article)&lt;/strong&gt;&lt;/p&gt;
  124. &lt;ul&gt;
  125. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/oct/28/change-course-now-humanity-has-missed-15c-climate-target-says-un-head" target="_blank"&gt;'Change course now': humanity has missed 1.5C climate target, says UN head&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Exclusive: &amp;lsquo;Devastating consequences&amp;rsquo; now inevitable but emissions cuts still vital, says Ant&amp;oacute;nio Guterres in sole interview before Cop30&lt;/em&gt; The Guardian, Jonathan Watts and Waj&amp;atilde; Xipai, Oct 28, 2025.&lt;/li&gt;
  126. &lt;/ul&gt;
  127. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  128. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_44.html</link>
  129. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_44.html</guid>
  130. <pubDate>Sun, 2 Nov 2025 10:31:13 EST</pubDate>
  131. </item>  <item>
  132. <title>Skeptical Science New Research for Week #43 2025</title>
  133. <description>&lt;h3&gt;Open access notables&lt;/h3&gt;
  134. &lt;p&gt;&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="A desk piled high with research reports" width="250" height="139" /&gt;&lt;br /&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2025gl117588" target="_blank"&gt;Hourly Precipitation Intensities at 4-km Resolution Show Statistically Significant Increasing Trends From 1991 to 2022 in the CONUS-404 Hydroclimate Reanalysis&lt;/a&gt;&lt;/strong&gt;, Guilloteau et al.,&amp;nbsp;&lt;em&gt;Geophysical Research Letters&lt;/em&gt;&lt;/p&gt;
  135. &lt;blockquote&gt;
  136. &lt;p&gt;&lt;em&gt;Trends in hourly and daily precipitation statistics are studied using the CONUS-404 hydroclimate reanalysis at 4-km spatial resolution over the 1991&amp;ndash;2022 period. Only a small fraction of CONUS shows statistically significant trends in the annual precipitation volume, number of wet days and mean wet-day intensity. Significant increasing trends are however found in the mean wet-hour precipitation intensity, with the trends being particularly pronounced in the Midwest. Fourier spectral analysis also attests for changes in the multiscale spatial and temporal organization of precipitation, and reveals that small-scale short-lived precipitation features have intensified at a higher rate than large-scale long-lived features. These results show that, even when no robust trend can be established from low-resolution data, clear trends may emerge at a higher resolution, demonstrating the need for high-resolution precipitation records for climate trend analysis.&lt;/em&gt;&lt;/p&gt;
  137. &lt;/blockquote&gt;
  138. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02847-4" target="_blank"&gt;Aviation passenger carbon footprint calculator with comprehensive emissions, life cycle coverage, and historical adjustment&lt;/a&gt;&lt;/strong&gt;, McFall et al.,&amp;nbsp;&lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  139. &lt;blockquote&gt;
  140. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;em&gt;Passenger aviation carbon footprint calculators often lack breadth, accuracy, transparency, and communication effectiveness, leading to underestimations of environmental impact and mistrust. This study addresses these gaps by developing a comprehensive methodology that broadens scope and improves accuracy. It incorporates nitrogen oxides, water vapour, contrail-induced cloudiness, upstream emissions from in-flight services, and life cycle emissions from aircraft and airports, offering a complete carbon footprint assessment. Accuracy is improved through detailed modelling of flight distance, fuel consumption, and emissions allocation adjusted for passenger class, luggage, and cargo. Historical adjustment factors refine pre-flight estimates by integrating real-world variations. The tool outputs a full emissions breakdown by source, offering unparalleled granularity and clarity. Validated against over 30,000 historical flights, the historical adjustment factor model achieves ~0.5% mean squared percentage error and shows current methods underestimate emissions. This study sets a standard for aviation carbon footprint calculators by enabling transparent, dynamic assessments for industry stakeholders&lt;/em&gt;.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  141. &lt;/blockquote&gt;
  142. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02452-5" target="_blank"&gt;Multi-century global and regional sea-level rise commitments from cumulative greenhouse gas emissions in the coming decades&lt;/a&gt;&lt;/strong&gt;, Nauels et al.,&amp;nbsp;&lt;em&gt;Nature Climate Change&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  143. &lt;blockquote&gt;
  144. &lt;p&gt;&lt;em&gt;Sea levels respond to climate change on timescales from decades to millennia. To isolate the sea-level contribution of historical and near-term GHG emissions, we use a dedicated scenario and modelling framework to quantify global and regional sea-level rise commitments of twenty-first century cumulative emissions. Under current climate policies, emissions until 2050 lock in 0.3&amp;thinsp;m (likely range 0.2&amp;ndash;0.5&amp;thinsp;m) more global mean sea-level rise by 2300 than historical emissions until 2020. This additional commitment would grow to 0.8&amp;thinsp;m (0.5&amp;ndash;1.4&amp;thinsp;m) for emissions until 2090, of which 0.6&amp;thinsp;m (0.4&amp;ndash;1.1&amp;thinsp;m) could be avoided under very stringent mitigation. Resulting regional commitments would be around 10% higher than the global signal for the vulnerable Pacific region, mainly due to higher relative Antarctic contributions. Our work shows that multi-century sea-level rise commitments are strongly controlled by mitigation decisions in coming decades.&lt;/em&gt;&lt;/p&gt;
  145. &lt;/blockquote&gt;
  146. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000737" target="_blank"&gt;More than just facts: Countering climate mis-and-disinformation with critical thinking and empathy&lt;/a&gt;&lt;/strong&gt;, Rabe &amp;amp; Paz,&amp;nbsp;&lt;em&gt;PLOS Climate&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  147. &lt;blockquote&gt;
  148. &lt;p&gt;&lt;em&gt;Simply presenting scientific facts is not enough to help students understand climate change and its complex impacts and solutions. Educators should teach students to critically evaluate climate change information and reflect on how their emotions, experiences, and pre-conceived ideas shape their perspectives. These elements of climate education are essential because students live in an information ecosystem where they may be exposed to mis-and-disinformation about climate change, often produced and disseminated by groups such as the fossil fuel lobby [&lt;a class="ref-tip" href="https://journals.plos.org/climate/article?id=10.1371/journal.pclm.0000737#pclm.0000737.ref001"&gt;1&lt;/a&gt;]. This mis-and-disinformation builds narratives that regularly find a foothold in individuals by connecting with their belief systems [&lt;a class="ref-tip" href="https://journals.plos.org/climate/article?id=10.1371/journal.pclm.0000737#pclm.0000737.ref002"&gt;2&lt;/a&gt;]. This dynamic may manifest itself in students that reject climate change-related instruction because it conflicts with their worldview. To counter the impact of this climate change mis-and-disinformation, we present several variably applicable teaching approaches educators can use when teaching their students about climate change. These approaches employ socioemotional learning, critical thinking exercises, and game-based learning to help students assess the accuracy of climate change information and realize how their lived experiences and values connect to the climate crisis. Each approach is highly adaptable and is meant to provide inspiration for new experimentation in countering or prebunking common climate change disinformation.&lt;/em&gt;&lt;/p&gt;
  149. &lt;/blockquote&gt;
  150. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2025gl117038" target="_blank"&gt;Drying of the Panama Canal in a Warming Climate&lt;/a&gt;&lt;/strong&gt;, Mu&amp;ntilde;oz et al.,&amp;nbsp;&lt;em&gt;Geophysical Research Letters&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  151. &lt;blockquote&gt;
  152. &lt;p&gt;&lt;em&gt;The Panama Canal is essential to global trade, but its operation is vulnerable to drought. Recent droughts have raised concerns about how the reservoir that feeds the canal's locks, Gat&amp;uacute;n Lake, will respond to climate change. Using high-resolution climate projections, we simulate future lake levels and find that disruptive low water conditions become increasingly common under moderately high and high emissions scenarios, but not under low-emissions pathways. These changes are primarily driven by reduced wet-season rainfall, though the magnitude of future drying in Central America is uncertain. Our findings highlight the growing risk to one of the key links in the global supply chain and underscore the need for proactive adaptation or mitigation to maintain canal functionality.&lt;/em&gt;&lt;/p&gt;
  153. &lt;/blockquote&gt;
  154. &lt;h3&gt;From this week's government/NGO &lt;a href="#gov-ngo"&gt;section&lt;/a&gt;:&lt;/h3&gt;
  155. &lt;p&gt;&lt;strong&gt;&lt;a href="https://wid.world/www-site/uploads/2025/10/Climate_Inequality_Report_2025_Final.pdf" target="_blank"&gt;Climate Inequality Report 2025. Climate Change: A Capital Challenge. Why Climate Policy Must Tackle Ownership&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Lucas Chancel and Cornelia Mohren, editors,&amp;nbsp;&lt;strong&gt;World Inequality Lab&lt;/strong&gt;&lt;/p&gt;
  156. &lt;blockquote&gt;Wealthy individuals fuel the climate crisis through their investments, even more than their consumption and lifestyles. At the world level, the top 1% represent 15% of global consumption-based emissions, while they account for 41% of global emissions associated with private capital ownership. Climate change can deepen wealth inequality, while well-designed policies can help reduce it. The top 1% could see their share of world wealth jump from 38% to 46% by 2050 if they own tomorrow&amp;rsquo;s low-carbon assets. To address the dual challenges of the climate crisis and wealth inequality, the authors explore three policies avenues including a global ban on new fossil fuel investments, a financial investment tax on the carbon content of assets, and major public investment in low-carbon infrastructure.&lt;/blockquote&gt;
  157. &lt;p&gt;&lt;strong&gt;&lt;a href="https://oxfamilibrary.openrepository.com/bitstream/handle/10546/621741/bp-climate-plunder-29102025-en.pdf;jsessionid=A29A1B633545357205DB18868C948D67?sequence=2" target="_blank"&gt;Climate Plunder: How a powerful few are locking the world into disaster&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Dabi et al.,&amp;nbsp;&lt;strong&gt;Oxfam International&lt;/strong&gt;&lt;/p&gt;
  158. &lt;blockquote&gt;Ahead of the major international climate conference COP30 in Belem, Brazil, new research finds that the high-carbon lifestyles of the super-rich are blowing through the world&amp;rsquo;s remaining carbon budget - the amount of CO2 that can be emitted while avoiding climate disaster. The research also details how billionaires are using their political and economic influence to keep humanity hooked on fossil fuels to maximize their private profit. The authors present extensive new updated data and analysis which finds that a person from the richest 0.1% produces more carbon pollution in a day than the poorest 50% emit all year. If everyone emitted like the richest 0.1%, the carbon budget would be used up in less than 3 weeks.&lt;/blockquote&gt;
  159. &lt;h3&gt;114 articles in 58 journals by 842 contributing authors&lt;/h3&gt;
  160. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  161. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.10.003" target="_blank"&gt;Is the cloud absorption of solar radiation still underestimated notably by current model-based reanalyses?&lt;/a&gt;, FU et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.10.003" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.10.003&lt;/p&gt;
  162. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd042631" target="_blank"&gt;Linking Atmospheric Waviness to Extreme Temperatures Across the Northern Hemisphere: Comparison of Different Waviness Metrics&lt;/a&gt;, Roocroft et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd042631" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd042631&lt;/p&gt;
  163. &lt;!--more--&gt;
  164. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl118315" target="_blank"&gt;Moist Adiabatic Scaling Explains Mean and Fast Upper-Level Jet Stream Wind Response to Climate Change&lt;/a&gt;, Shaw &amp;amp; Miyawaki Miyawaki Miyawaki, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl118315" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl118315&lt;/p&gt;
  165. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/qj.70061" target="_blank"&gt;North Atlantic fingerprint on severe heatwaves over the Indian region&lt;/a&gt;, Marathe et al., &lt;em&gt;Quarterly Journal of the Royal Meteorological Society&lt;/em&gt; 10.1002/qj.70061&lt;/p&gt;
  166. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd044488" target="_blank"&gt;On the Lifetimes of Persistent Contrails and Contrail Cirrus&lt;/a&gt;, K&amp;auml;rcher &amp;amp; Corcos , &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jd044488" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd044488&lt;/p&gt;
  167. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0466.1" target="_blank"&gt;Quantifying Local Radiative Feedbacks at the Sea Surface&lt;/a&gt;, Liu et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0466.1&lt;/p&gt;
  168. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006006" target="_blank"&gt;Recent Accelerated Decadal Shift in Winter North American Temperature Patterns Under Pacific-Atlantic Decadal Variability&lt;/a&gt;, Luo et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006006" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006006&lt;/p&gt;
  169. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  170. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117871" target="_blank"&gt;Continuously Shrinking Early Autumn Barents&amp;ndash;Kara Sea Ice Hinders East Asian Winter Monsoon Forecasting&lt;/a&gt;, Zhang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117871" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117871&lt;/p&gt;
  171. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-1002" target="_blank"&gt;Escalating typhoon risks in Shanghai amid shifting tracks driven by urbanization and sea surface temperature warming&lt;/a&gt;, Zhuang et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-1002&lt;/p&gt;
  172. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117588" target="_blank"&gt;Hourly Precipitation Intensities at 4-km Resolution Show Statistically Significant Increasing Trends From 1991 to 2022 in the CONUS-404 Hydroclimate Reanalysis&lt;/a&gt;, Guilloteau et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117588" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117588&lt;/p&gt;
  173. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1644772" target="_blank"&gt;Impact of climate change on natural hazard-induced disasters in Latin America and the Caribbean&lt;/a&gt;, Aizaga et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1644772" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1644772&lt;/p&gt;
  174. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.cosust.2025.101584" target="_blank"&gt;The salinization of the Mekong Delta: major drivers, coping strategies, and new hopes from ecosystem-based approaches&lt;/a&gt;, Loc &amp;amp; Park, &lt;em&gt;Current Opinion in Environmental Sustainability&lt;/em&gt; 10.1016/j.cosust.2025.101584&lt;/p&gt;
  175. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  176. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-1070" target="_blank"&gt;Arctic temperature and precipitation extremes in present-day and future storyline-based variable resolution Community Earth System Model simulations&lt;/a&gt;, Wijngaard et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-1070&lt;/p&gt;
  177. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd044403" target="_blank"&gt;Diverse and Weak Simulated Stratospheric Responses to Future Arctic Sea-Ice Loss&lt;/a&gt;, Mudhar et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jd044403" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd044403&lt;/p&gt;
  178. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100818" target="_blank"&gt;Evaluation and Projection of Extreme Rainfall from a Large Ensemble of High&amp;ndash;Resolution Regional Climate Models in Australia&lt;/a&gt;, Jayaweera et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100818" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100818&lt;/p&gt;
  179. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-25-0114.1" target="_blank"&gt;Future Changes in North American Summer Heatwave Variability and Associated Dynamic and Thermodynamic Processes&lt;/a&gt;, Jeong et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-25-0114.1&lt;/p&gt;
  180. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0564.1" target="_blank"&gt;Inland Tropical Cyclone Impacts in a Warming Climate: Semi-Idealized Simulations of Hurricane Fran (1996 and 2096)&lt;/a&gt;, Bell &amp;amp; Lackmann, &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0564.1&lt;/p&gt;
  181. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-3045" target="_blank"&gt;Interactive coupling of a Greenland ice sheet model in NorESM2&lt;/a&gt;, Goelzer et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-3045&lt;/p&gt;
  182. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl118040" target="_blank"&gt;Mitigated Rapid Temperature Variability in the Northern Mid-High Latitudes Under Carbon Neutrality&lt;/a&gt;, Wang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl118040" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl118040&lt;/p&gt;
  183. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102676" target="_blank"&gt;Projection of extreme temperature events in megacity Beijing&lt;/a&gt;, Meng et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102676&lt;/p&gt;
  184. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  185. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-24-0196.1" target="_blank"&gt;A Simplified-Physics Atmosphere General Circulation Model for Idealized Climate Dynamics Studies&lt;/a&gt;, Kirtman et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-24-0196.1&lt;/p&gt;
  186. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  187. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-525" target="_blank"&gt;Estimating return periods for extreme events in climate models through Ensemble Boosting&lt;/a&gt;, Bloin-Wibe et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-525&lt;/p&gt;
  188. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-509" target="_blank"&gt;nextGEMS: entering the era of kilometer-scale Earth system modeling&lt;/a&gt;, Segura et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-509&lt;/p&gt;
  189. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.2307/jj.5993267.14" target="_blank"&gt;Physics or Knob-Tuning? Tropical Anvil Peak Is Captured by GCMs&lt;/a&gt;, , &lt;em&gt;Women Leading&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.2307/jj.5993267.14&lt;/p&gt;
  190. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108594" target="_blank"&gt;Reducing uncertainty in surface solar radiation projections over the Northern Hemisphere using a hierarchical emergent constraint: Insights from CMIP6 and observation reconstruction&lt;/a&gt;, Jiao et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108594&lt;/p&gt;
  191. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-18-7907-2025" target="_blank"&gt;REMO2020: a modernised modular regional climate model&lt;/a&gt;, Pietik&amp;auml;inen et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-18-7907-2025&lt;/p&gt;
  192. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  193. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/tc-19-5157-2025" target="_blank"&gt;Emulating the expansion of Antarctic perennial firn aquifers in the 21st century&lt;/a&gt;, Veldhuijsen et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-19-5157-2025&lt;/p&gt;
  194. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/07055900.2025.2570152" target="_blank"&gt;Modelling the Long-Term Evolution of Ocean Properties in the Last Ice Area (1958&amp;ndash;2021)&lt;/a&gt;, Shore et al., &lt;em&gt;Atmosphere&lt;/em&gt; 10.1080/07055900.2025.2570152&lt;/p&gt;
  195. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09657-w" target="_blank"&gt;Ocean warming threatens the viability of 60% of Antarctic ice shelves&lt;/a&gt;, Burgard et al., &lt;em&gt;Nature&lt;/em&gt; 10.1038/s41586-025-09657-w&lt;/p&gt;
  196. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/os-21-2605-2025" target="_blank"&gt;Thwaites Eastern Ice Shelf cavity observations reveal multiyear sea ice dynamics and deepwater warming in Pine Island Bay, West Antarctica&lt;/a&gt;, Wild et al., &lt;em&gt;Ocean Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/os" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/os-21-2605-2025&lt;/p&gt;
  197. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  198. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64438-3" target="_blank"&gt;Antarctic meltwater alters future projections of climate and sea level&lt;/a&gt;, Sadai et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64438-3&lt;/p&gt;
  199. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02731-1" target="_blank"&gt;Climate information on sea level rise risk influences individuals' migration preferences in Vietnam&lt;/a&gt;, Bakkensen et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02731-1&lt;/p&gt;
  200. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jc022737" target="_blank"&gt;Impact of Dynamical Downscaling on Sea Level Projections in the North-East Atlantic Ocean and Regional Seas&lt;/a&gt;, Irazoqui Apecechea et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a href="https://doi.org/10.1029/2025jc022737" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jc022737&lt;/p&gt;
  201. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02452-5" target="_blank"&gt;Multi-century global and regional sea-level rise commitments from cumulative greenhouse gas emissions in the coming decades&lt;/a&gt;, Nauels et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02452-5&lt;/p&gt;
  202. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  203. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64241-0" target="_blank"&gt;A European monsoon-like climate in a warmhouse world&lt;/a&gt;, Van Horebeek et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64241-0&lt;/p&gt;
  204. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  205. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2524799122" target="_blank"&gt;A yellow warbler is for the climate as a canary is for the coal mine&lt;/a&gt;, Grant, &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2524799122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2524799122&lt;/p&gt;
  206. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1682353" target="_blank"&gt;Anthropogenic and climatic drivers of alpine wetland degradation: a multi-scale perspective&lt;/a&gt;, Zhang et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1682353" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1682353&lt;/p&gt;
  207. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006457" target="_blank"&gt;Climate Refugia Could Disappear From Australia's Marine Protected Areas by 2040&lt;/a&gt;, Pidd et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006457" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006457&lt;/p&gt;
  208. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64580-y" target="_blank"&gt;Conversion from coniferous to broadleaved trees can make European forests more climate-effective&lt;/a&gt;, Yao et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64580-y&lt;/p&gt;
  209. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70562" target="_blank"&gt;Cumulative Extreme Events Threaten Penguin Habitats Across the Southern Hemisphere&lt;/a&gt;, Gimeno et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70562" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70562&lt;/p&gt;
  210. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jg008267" target="_blank"&gt;Divergent Shifts in the Climatic Controls of Phenology Across Great Plains Grasslands&lt;/a&gt;, Meng et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jg008267" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jg008267&lt;/p&gt;
  211. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70563" target="_blank"&gt;Global Cold-Water Coral Biodiversity Redistribution Under Projected Climate Change&lt;/a&gt;, Fragkopoulou et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70563" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70563&lt;/p&gt;
  212. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126427" target="_blank"&gt;Growth of &lt;em&gt;Tamarix ramosissima&lt;/em&gt; Ledeb. is benefitting from the recent climate change at the southern Tarim basin, northwest China&lt;/a&gt;, Keyimu et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; 10.1016/j.dendro.2025.126427&lt;/p&gt;
  213. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adx7825" target="_blank"&gt;Heat-driven functional extinction of Caribbean Acropora corals from Florida&amp;rsquo;s Coral Reef&lt;/a&gt;, Manzello et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adx7825&lt;/p&gt;
  214. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-21597-z" target="_blank"&gt;Impact of climate change driven freshening, warming, and ocean acidification on the cellular metabolism of Atlantic Cod (Gadus morhua)&lt;/a&gt;, Thor &amp;amp; Perry, &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-21597-z&lt;/p&gt;
  215. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110895" target="_blank"&gt;Long-term carbon sequestration and heatwave resilience in an old hemiboreal upland coniferous forest&lt;/a&gt;, Rogozin et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110895" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110895&lt;/p&gt;
  216. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64568-8" target="_blank"&gt;Longer growing seasons will not offset growth loss in drought-prone temperate forests of Central-Southeast Europe&lt;/a&gt;, Tumajer et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64568-8&lt;/p&gt;
  217. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1659630" target="_blank"&gt;Modelling the potential distribution and niche shift of Solenopsis invicta Buren under climate change and invasion process&lt;/a&gt;, Tang et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1659630" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1659630&lt;/p&gt;
  218. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.10.004" target="_blank"&gt;Omics insights into ocean health: Molecular adaptations and ecosystem resilience under climate stress&lt;/a&gt;, THANGARAJ &amp;amp; SUN, &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.10.004" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.10.004&lt;/p&gt;
  219. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107616" target="_blank"&gt;Oxidative stress and histological alterations in coral &lt;em&gt;Briareum violacea&lt;/em&gt; co-exposed to ocean acidification and microplastic stressors&lt;/a&gt;, Hsieh et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107616&lt;/p&gt;
  220. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02464-1" target="_blank"&gt;Polyploidization in diatoms accelerates adaptation to warming&lt;/a&gt;, Li et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02464-1&lt;/p&gt;
  221. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.72388" target="_blank"&gt;Range and Elevational Shifts of Mistletoes Under Future Climate Change Scenarios&lt;/a&gt;, V&amp;aacute;squez?Aguilar et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.72388" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.72388&lt;/p&gt;
  222. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecog.08030" target="_blank"&gt;Spatial and temporal exposure to climatic extremes shape butterfly thermal physiology and vulnerability to recent climate change&lt;/a&gt;, Diamond &amp;amp; Silva, &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecog.08030" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecog.08030&lt;/p&gt;
  223. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rsos.250365" target="_blank"&gt;The Arctic copepod Calanus hyperboreus is more tolerant to marine heatwaves than temperate copepods in the Oslofjord&lt;/a&gt;, Lutier et al., &lt;em&gt;Royal Society Open Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rsos.250365" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rsos.250365&lt;/p&gt;
  224. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70234" target="_blank"&gt;Warming impedes aquatic plant recovery via enhanced herbivory from insect outbreaks&lt;/a&gt;, Zhang et al., &lt;em&gt;Ecology&lt;/em&gt; 10.1002/ecy.70234&lt;/p&gt;
  225. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1652080" target="_blank"&gt;Widespread declining in vegetation climate sensitivity across Central Asia&lt;/a&gt;, Jiang et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://www.frontiersin.org/journals/environmental" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2025.1652080/pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.3389/fenvs.2025.1652080&lt;/p&gt;
  226. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.10.005" target="_blank"&gt;Widespread loss of ecosystem resilience in response of 1.5 &amp;deg;C and 2 &amp;deg;C global warming&lt;/a&gt;, YANG et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.10.005" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.10.005&lt;/p&gt;
  227. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  228. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gb008540" target="_blank"&gt;A System Reanalysis of the Current Greenhouse Gases Budget of Terrestrial Ecosystems in Russia&lt;/a&gt;, Shvidenko et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; 10.1029/2025gb008540&lt;/p&gt;
  229. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gb008449" target="_blank"&gt;Abrupt Loss of Soil Organic Carbon Following Disturbance in Seagrass Ecosystems&lt;/a&gt;, Le Vilain et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gb008449" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gb008449&lt;/p&gt;
  230. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02847-4" target="_blank"&gt;Aviation passenger carbon footprint calculator with comprehensive emissions, life cycle coverage, and historical adjustment&lt;/a&gt;, McFall et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02847-4&lt;/p&gt;
  231. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02840-x" target="_blank"&gt;Carbon footprint of the construction sector is projected to double by 2050 globally&lt;/a&gt;, Li et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02840-x&lt;/p&gt;
  232. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/acp-25-13665-2025" target="_blank"&gt;Effects of different emission inventories on tropospheric ozone and methane lifetime&lt;/a&gt;, Acquah et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/acp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/acp-25-13665-2025&lt;/p&gt;
  233. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02465-0" target="_blank"&gt;Fresher waters in the Southern Ocean trapped CO2 at depth for decades&lt;/a&gt;, , &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02465-0&lt;/p&gt;
  234. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64667-6" target="_blank"&gt;Global estimates of seagrass blue carbon stocks in biomass and net primary production&lt;/a&gt;, Gomis et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64667-6&lt;/p&gt;
  235. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-6057-2025" target="_blank"&gt;Ideas and Perspectives: Potentially large but highly uncertain carbon dioxide emissions resulting from peat erosion&lt;/a&gt;, Parker et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-6057-2025&lt;/p&gt;
  236. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosenv.2025.121594" target="_blank"&gt;Improved monitoring of methane emissions for the oil and gas sector with Sentinel-2 satellite observations&lt;/a&gt;, Zambrano-Luna et al., &lt;em&gt;Atmospheric Environment&lt;/em&gt; 10.1016/j.atmosenv.2025.121594&lt;/p&gt;
  237. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110895" target="_blank"&gt;Long-term carbon sequestration and heatwave resilience in an old hemiboreal upland coniferous forest&lt;/a&gt;, Rogozin et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110895" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110895&lt;/p&gt;
  238. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  239. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64576-8" target="_blank"&gt;The combined impact of fisheries and climate change on future carbon sequestration by oceanic macrofauna&lt;/a&gt;, Mariani et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64576-8&lt;/p&gt;
  240. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  241. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.earscirev.2025.105310" target="_blank"&gt;From sink to strategy: Sediments at the nexus of carbon sequestration and climate action&lt;/a&gt;, Veseli? et al., &lt;em&gt;Earth&lt;/em&gt; 10.1016/j.earscirev.2025.105310&lt;/p&gt;
  242. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.earscirev.2025.105254" target="_blank"&gt;Geomechanical stability for hydrate-based CO&lt;sub&gt;2&lt;/sub&gt; sequestration in marine sediments: A comprehensive review&lt;/a&gt;, Zhang et al., &lt;em&gt;Earth&lt;/em&gt; 10.1016/j.earscirev.2025.105254&lt;/p&gt;
  243. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2557230" target="_blank"&gt;The responsibility of investor-owned carbon majors to contribute to direct air carbon capture and storage investment&lt;/a&gt;, Kellou et al., &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2557230&lt;/p&gt;
  244. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  245. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1665509" target="_blank"&gt;How to scientifically guide expressway construction carbon emission reduction: the establishment and application of a carbon emission accounting and evaluation system&lt;/a&gt;, Xiong et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1665509" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1665509&lt;/p&gt;
  246. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09658-9" target="_blank"&gt;Technological pathways for cost-effective steel decarbonization&lt;/a&gt;, Wu et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09658-9&lt;/p&gt;
  247. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adx5580" target="_blank"&gt;The role of offshore wind and solar PV resources in global low-carbon transition&lt;/a&gt;, Wen et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.adx5580" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.adx5580&lt;/p&gt;
  248. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  249. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02731-1" target="_blank"&gt;Climate information on sea level rise risk influences individuals' migration preferences in Vietnam&lt;/a&gt;, Bakkensen et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02731-1&lt;/p&gt;
  250. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102828" target="_blank"&gt;Climate worry and mental health: the role of pro-environmental behavior and efficacy-based hope as coping strategies&lt;/a&gt;, Nieminen et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102828&lt;/p&gt;
  251. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17565529.2025.2574078" target="_blank"&gt;Exploring discourses of climate delay in energy transition debates in national media&lt;/a&gt;, Edwards, &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2025.2574078&lt;/p&gt;
  252. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000737" target="_blank"&gt;More than just facts: Countering climate mis-and-disinformation with critical thinking and empathy&lt;/a&gt;, Rabe &amp;amp; Paz, &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000737" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000737&lt;/p&gt;
  253. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  254. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1661905" target="_blank"&gt;Assessing the scientific basis and regional applicability of a Chinese agrometeorological proverb in a warming climate&lt;/a&gt;, Chen et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1661905" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1661905&lt;/p&gt;
  255. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10457-025-01370-x" target="_blank"&gt;Assessment of riverine agroforestry for biodiversity enhancement and carbon sequestration in the Upper Awash Basin of Ethiopia&lt;/a&gt;, Demie &amp;amp; Lojka, &lt;em&gt;Agroforestry Systems&lt;/em&gt; 10.1007/s10457-025-01370-x&lt;/p&gt;
  256. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2518373122" target="_blank"&gt;Beyond adoption: The persistence of conservation and climate-smart agricultural practices in the United States&lt;/a&gt;, Ferraro et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2518373122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2518373122&lt;/p&gt;
  257. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09380-6" target="_blank"&gt;Carbon implications of wood harvesting and forest management&lt;/a&gt;, Sohngen et al., &lt;em&gt;Nature&lt;/em&gt; 10.1038/s41586-025-09380-6&lt;/p&gt;
  258. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.10.002" target="_blank"&gt;Climate change-induced northward shifts in double cropping system in China: Implications for crop production potential and water use&lt;/a&gt;, LIU et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.10.002" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.10.002&lt;/p&gt;
  259. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/wcas-d-25-0035.1" target="_blank"&gt;Do the Ends Represent the Means? Assessing Adaptive Capacity Determinants against Proactive and Reactive Adaptive Actions in Vietnam&amp;rsquo;s Coffee Growing Region&lt;/a&gt;, Maskell et al., &lt;em&gt;Weather, Climate, and Society&lt;/em&gt; 10.1175/wcas-d-25-0035.1&lt;/p&gt;
  260. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114921" target="_blank"&gt;Exploring the effects of policy on stakeholder adoption and deployment of agrivoltaics: A case study of Massachusetts&lt;/a&gt;, Pascaris et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114921" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114921&lt;/p&gt;
  261. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  262. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110831" target="_blank"&gt;Modeling grapevine phenology at local scale in the context of climate change: An example in the Bordeaux area&lt;/a&gt;, de Ress&amp;eacute;guier et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110831&lt;/p&gt;
  263. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09381-5" target="_blank"&gt;Reply to: Carbon implications of wood harvesting and forest management&lt;/a&gt;, Searchinger et al., &lt;em&gt;Nature&lt;/em&gt; 10.1038/s41586-025-09381-5&lt;/p&gt;
  264. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.cosust.2025.101571" target="_blank"&gt;Rethinking adaptation interventions in agricultural systems for sustainability&lt;/a&gt;, Vallury et al., &lt;em&gt;Current Opinion in Environmental Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.cosust.2025.101571" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.cosust.2025.101571&lt;/p&gt;
  265. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1646181" target="_blank"&gt;Soil surface properties and implications for soil carbon sequestration in early-stage ecovoltaic grassland restoration&lt;/a&gt;, Krasner et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1646181" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1646181&lt;/p&gt;
  266. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2577690" target="_blank"&gt;Weathering storms and policies: the vulnerable voyage of inner Mongolian herders amidst climate and policy shifts&lt;/a&gt;, Qi, &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2577690&lt;/p&gt;
  267. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  268. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02865-2" target="_blank"&gt;Climate change accelerates the evolution of reorganized river-lake systems on the Tibetan Plateau&lt;/a&gt;, Kuang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02865-2&lt;/p&gt;
  269. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006407" target="_blank"&gt;Dependence of Lowland Water Use on Mountain Runoff Globally: Interannual Variability and Future Changes at Seasonal Scale&lt;/a&gt;, Hanus et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006407" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006407&lt;/p&gt;
  270. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117871" target="_blank"&gt;Continuously Shrinking Early Autumn Barents&amp;ndash;Kara Sea Ice Hinders East Asian Winter Monsoon Forecasting&lt;/a&gt;, Zhang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117871" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117871&lt;/p&gt;
  271. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-1002" target="_blank"&gt;Escalating typhoon risks in Shanghai amid shifting tracks driven by urbanization and sea surface temperature warming&lt;/a&gt;, Zhuang et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-1002&lt;/p&gt;
  272. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100818" target="_blank"&gt;Evaluation and Projection of Extreme Rainfall from a Large Ensemble of High&amp;ndash;Resolution Regional Climate Models in Australia&lt;/a&gt;, Jayaweera et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a href="https://doi.org/10.1016/j.wace.2025.100818" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100818&lt;/p&gt;
  273. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117588" target="_blank"&gt;Hourly Precipitation Intensities at 4-km Resolution Show Statistically Significant Increasing Trends From 1991 to 2022 in the CONUS-404 Hydroclimate Reanalysis&lt;/a&gt;, Guilloteau et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117588" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117588&lt;/p&gt;
  274. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1644772" target="_blank"&gt;Impact of climate change on natural hazard-induced disasters in Latin America and the Caribbean&lt;/a&gt;, Aizaga et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1644772" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1644772&lt;/p&gt;
  275. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.cosust.2025.101584" target="_blank"&gt;The salinization of the Mekong Delta: major drivers, coping strategies, and new hopes from ecosystem-based approaches&lt;/a&gt;, Loc &amp;amp; Park, &lt;em&gt;Current Opinion in Environmental Sustainability&lt;/em&gt; 10.1016/j.cosust.2025.101584&lt;/p&gt;
  276. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102668" target="_blank"&gt;Hydrological response to climate change and urbanization in a semi-arid urban river&lt;/a&gt;, Lyu et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102668&lt;/p&gt;
  277. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  278. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2574858" target="_blank"&gt;Interpreting climate performance indices: implications for equitable and effective policy&lt;/a&gt;, Dhara et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2574858&lt;/p&gt;
  279. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114922" target="_blank"&gt;On-capacity vs. On-grid: Effect of subsidy on the adoption of high-quality energy storage facilities in the renewable energy industry&lt;/a&gt;, Zhou et al., &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2025.114922&lt;/p&gt;
  280. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103075" target="_blank"&gt;The potential negative impact of the UNFCCC: An analysis of sectoral, geographical, and temporal problem shifts from climate policies and measures in 25 industrialized countries&lt;/a&gt;, Adipudi et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103075" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103075&lt;/p&gt;
  281. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104198" target="_blank"&gt;Trade-offs in expanding citizen participation in low-carbon transitions: Seven transition arena experiments&lt;/a&gt;, Lukkarinen et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104198" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104198&lt;/p&gt;
  282. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  283. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1671911" target="_blank"&gt;Influence of relative user satisfaction and critical success factors on sustainability of climate change adaptation practices in Chamwino and Igunga, Tanzania&lt;/a&gt;, Baradyana et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1671911" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1671911&lt;/p&gt;
  284. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100759" target="_blank"&gt;Informing adaptation pathway approaches for vulnerable coastal infrastructure&lt;/a&gt;, Dawson et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100759" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100759&lt;/p&gt;
  285. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  286. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100821" target="_blank"&gt;Asymmetric Heatwave Intensification Under Divergent Climate Change Mitigation Pathways Amplifies Urban&amp;ndash;Rural Exposure Disparities&lt;/a&gt;, Adeyeri et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100821" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100821&lt;/p&gt;
  287. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/cli2.70022" target="_blank"&gt;Climate Change and Impacts on Human Health: An Experience of Coastal Region People in Bangladesh&lt;/a&gt;, Alam et al., &lt;em&gt;Climate Resilience and Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/cli2.70022" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/cli2.70022&lt;/p&gt;
  288. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41415-025-9292-0" target="_blank"&gt;Oral health in a warming world: aligning dentistry with global climate goals &amp;ndash; how are we doing?&lt;/a&gt;, Duane, &lt;em&gt;British Dental Journal&lt;/em&gt; 10.1038/s41415-025-9292-0&lt;/p&gt;
  289. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64840-x" target="_blank"&gt;Spatiotemporal changes in heat stress exposure in India, 1981-2023&lt;/a&gt;, Shah et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64840-x&lt;/p&gt;
  290. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10531-025-03188-6" target="_blank"&gt;The potential effects of climate change on medicinal plants from the Brazilian Cerrado in South America&lt;/a&gt;, Guerra dos Santos et al., &lt;em&gt;Biodiversity and Conservation&lt;/em&gt; 10.1007/s10531-025-03188-6&lt;/p&gt;
  291. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-03404-x" target="_blank"&gt;Wildfire smoke and its harmful effects will worsen with climate change&lt;/a&gt;, , &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-025-03404-x&lt;/p&gt;
  292. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change &amp;amp; geopolitics&lt;/strong&gt;&lt;/p&gt;
  293. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02852-7" target="_blank"&gt;Geopolitical risks impede global shipping decarbonization progress&lt;/a&gt;, Zhao et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02852-7&lt;/p&gt;
  294. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  295. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rsta.2024.0501" target="_blank"&gt;Bridging the gap: a review on the interaction between (micro)plastics and climate change&lt;/a&gt;, Costa, &lt;em&gt;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences&lt;/em&gt; 10.1098/rsta.2024.0501&lt;/p&gt;
  296. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117038" target="_blank"&gt;Drying of the Panama Canal in a Warming Climate&lt;/a&gt;, Mu&amp;ntilde;oz et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117038" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117038&lt;/p&gt;
  297. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117199" target="_blank"&gt;Unprecedented Carbon Accumulation in the Indian Ocean During 2016&amp;ndash;2017&lt;/a&gt;, Zhang &amp;amp; Liao, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117199" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117199&lt;/p&gt;
  298. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  299. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2524799122" target="_blank"&gt;A yellow warbler is for the climate as a canary is for the coal mine&lt;/a&gt;, Grant, &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2524799122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2524799122&lt;/p&gt;
  300. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02919-5" target="_blank"&gt;Germany should accelerate its renewable energy transition&lt;/a&gt;, Schill et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02919-5&lt;/p&gt;
  301. &lt;hr /&gt;
  302. &lt;h3&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  303. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.troutman.com/wp-content/uploads/2025/09/Whats-Next-for-US-Energy-Storage-After-OBBBA.pdf" target="_blank"&gt;What&amp;rsquo;s Next for US Energy Storage After OBBBA and Amid Continued Tariff Risk?&lt;/a&gt;, &lt;/strong&gt;John Leonti and Vaughn Morrison, &lt;strong&gt;Troutman Pepper Locke&lt;/strong&gt;&lt;/p&gt;
  304. &lt;blockquote&gt;The authors evaluate how the value of energy storage was perceived within the context of the One Big Beautiful Bill Act (OBBBA), assess the impact of the OBBBA on the U.S. energy storage sector, with a particular focus on the Foreign Entity of Concern rules, explore the potential impact of the withdrawal of tax credits for solar and wind on energy storage deployment, examine the impact of China&amp;rsquo;s tariff hikes and steps the U.S. storage industry is taking to mitigate the effects, and highlight the most significant emerging opportunities for the U.S. energy storage sector.&lt;/blockquote&gt;
  305. &lt;p&gt;&lt;strong&gt;&lt;a href="https://coffeewatch.org/documents/76/CoffeeReportDesign_v9_10152025_1.pdf" target="_blank"&gt;Wake Up and Smell the Deforestation. Coffee&amp;rsquo;s Destruction of Brazilian Forests and its Future&lt;/a&gt;, &lt;/strong&gt;Baruah et al., &lt;strong&gt;Coffee Watch&lt;/strong&gt;&lt;/p&gt;
  306. &lt;blockquote&gt;From 2001 to 2023, Brazil&amp;rsquo;s coffee heartland lost more than 11 million hectares of forest, a footprint of destruction on the scale of Honduras. Within this vast footprint, at least 312,803 hectares were directly cleared for coffee. This first-ever integrated mapping shows 737,000 hectares of forest loss inside coffee farms, 77% in the Cerrado and 20% in the Atlantic Forest. Historical analysis of pre-2000 data also revealed that coffee was a top driver of Atlantic Forest deforestation, with less than 90% of it remaining today. The authors link forest loss to drying trends across the coffee belt, and the rainfall losses to crop failures.&lt;/blockquote&gt;
  307. &lt;p&gt;&lt;strong&gt;&lt;a href="https://gridlab.org/portfolio-item/gas-tubine-cost-report/" target="_blank"&gt;The New Reality of Power Generation. An Analysis of Increasing Gas Turbine Costs in the U.S&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Gridlab, Energy Futures Group, and Halcyon&lt;/strong&gt;&lt;/p&gt;
  308. &lt;blockquote&gt;The capital costs for new gas combustion turbine (CT) and combined cycle gas turbine (CCGT) power plants in the United States have increased significantly in recent years. While anecdotes of these higher costs are becoming more common, the specific data is often difficult to access. Much of the most current and detailed market information on gas turbine costs is contained within Integrated Resource Plans (IRPs) and Certificates of Public Convenience and Necessity (CPCNs), which are often confidential. Furthermore, widely available public datasets, such as the National Renewable Energy Laboratory&amp;rsquo;s (NREL) Annual Technology Baseline (ATB) or the Energy Information Administration&amp;rsquo;s (EIA) Annual Energy Outlook (AEO), are often not up to date with the most current market information and therefore present an underestimated view of project costs. With these challenges in mind, teh authors have worked to mine and make available market data from IRP and CPCN filings, providing a clearer and more accurate picture for stakeholders.&lt;/blockquote&gt;
  309. &lt;p&gt;&lt;strong&gt;&lt;a href="https://wedocs.unep.org/bitstream/handle/20.500.11822/48664/An-Eye-on-Methane-2025.pdf?sequence=1&amp;amp;isAllowed=y" target="_blank"&gt;An Eye on Methane 2025: From measurement to momentum. Data is driving action &amp;mdash; now the pace must match the promise&lt;/a&gt;, &lt;/strong&gt;Abichou et al., &lt;strong&gt;United Natddasaions Environment Program&lt;/strong&gt;&lt;/p&gt;
  310. &lt;blockquote&gt;Human-caused methane emissions are responsible for roughly a third of the planet&amp;rsquo;s current warming. Reducing these emissions is the fastest, most cost-effective way to slow global warming in the near-term &amp;mdash; and is essential to avert climate tipping points. Cutting methane emissions is the fastest, most cost-effective way to slow near-term warming as broader decarbonization efforts advance. With only 52 months until 2030, achieving the Global Methane Pledge target&amp;mdash;a 30 per cent reduction in global methane emissions by decade&amp;rsquo;s end&amp;mdash;is more urgent than ever. The authors assess progress harnessing a methane data revolution that can accelerate methane reductions at a global scale. The International Methane Emissions Observatory (IMEO) provides open, reliable and actionable data to governments and companies who can use it to reduce emissions. Sources include industry reporting via the Oil and Gas Methane Partnership 2.0 (OGMP 2.0), satellite detections via the Methane Alert and Response System (MARS), IMEO's series of global methane science studies and national emissions inventories.&lt;/blockquote&gt;
  311. &lt;p&gt;&lt;strong&gt;&lt;a href="https://assets.publishing.service.gov.uk/media/68f8d27a0794bb80118bb764/independent-review-of-ggr.pdf" target="_blank"&gt;Greenhouse gas removals (GGRs): independent review&lt;/a&gt;, &lt;/strong&gt;Alan Whitehead, &lt;strong&gt;United Kingdom Government&lt;/strong&gt;&lt;/p&gt;
  312. &lt;blockquote&gt;Greenhouse gas removals (GGRs) have a supplementary but essential role in achieving net zero, both in the United Kingdom (UK) and globally. They will also be crucial in bringing down atmospheric CO2 concentrations to safer levels later in the century. There is a danger that the UK&amp;rsquo;s strategy takes an unbalanced approach to deploying the necessary GGRs. The author assesses the range of GGR options to meet net zero and, while not prescriptive, considers the desirable composition of the GGR portfolio for the UK.&lt;/blockquote&gt;
  313. &lt;p&gt;&lt;strong&gt;&lt;a href="https://permitpower.org/wp-content/uploads/sites/35/2025/10/Cheap-as-our-peers-1.pdf" target="_blank"&gt;As Cheap as Our Peers: How cutting red tape can lower the cost of rooftop solar and offset rising utility bills&lt;/a&gt;, &lt;/strong&gt;Talor Gruenwald, &lt;strong&gt;Permit Power&lt;/strong&gt;&lt;/p&gt;
  314. &lt;blockquote&gt;American families are facing a growing energy affordability crisis. Utility bills have risen faster than inflation since 2022&amp;mdash;and are set to keep climbing as utilities request record rate hikes. Today, one in seven households lives in energy poverty. But it doesn&amp;rsquo;t have to be this way. The author found that by reducing the &amp;ldquo;soft costs&amp;rdquo; of solar installation, families could see their electricity bills drop 61% by 2040&amp;mdash;saving an average of $1,600 a year.&lt;/blockquote&gt;
  315. &lt;p&gt;&lt;strong&gt;&lt;a href="https://institute.global/insights/climate-and-energy/cheaper-power-2030-net-zero-2050-resetting-UK-electricity-strategy" target="_blank"&gt;Cheaper Power 2030, Net Zero 2050: Resetting the UK&amp;rsquo;s Electricity Strategy for the Future&lt;/a&gt;, &lt;/strong&gt;Tone Langengen, &lt;strong&gt;Tony Blair Institute&lt;/strong&gt;&lt;/p&gt;
  316. &lt;blockquote&gt;The UK&amp;rsquo;s commitment to net zero remains firm. Britain led the world in enshrining the Climate Change Act, and that legal duty stands. While some have suggested walking back the country&amp;rsquo;s commitment to the Climate Change Act or to achieving net zero by 2050, that choice would amount to rolling back progress. The question is no longer whether to decarbonize, but how &amp;ndash; how to deliver clean power affordably, securely and with public support. The author sets out how to make that commitment work: a new strategy focused on cheaper, abundant electricity as the foundation for growth and energy security. Delivering this requires politicians to face up to an important reality: Britain&amp;rsquo;s high electricity costs are not accidental. They have been built into the system by decades of policy decisions. Reversing them will not happen overnight, but unless the foundations are fixed now, higher prices will be locked in for a generation.&lt;/blockquote&gt;
  317. &lt;p&gt;&lt;strong&gt;&lt;a href="https://e2.org/wp-content/uploads/2025/10/E2-Clean-Economy-Works-September-2025-Analysis-Memo.pdf" target="_blank"&gt;Clean Economy Works: September 2025 Analysis&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;E2 Economy+Environment&lt;/strong&gt;&lt;/p&gt;
  318. &lt;blockquote&gt;The authors found that private-sector companies canceled, closed, or scaled back nearly $1.6 billion worth of large-scale clean energy projects in September 2025, bringing the total value of abandoned or downsized projects this year to over $24 billion. These cancellations have now erased nearly 21,000 previously announced clean energy jobs nationwide since the start of 2025. The findings come as the U.S. Department of Energy withdrew nearly $8 billion in federal clean energy grants supporting more than 200 projects, compounding losses in both private and public investment across the sector.&lt;/blockquote&gt;
  319. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.des.nh.gov/sites/g/files/ehbemt341/files/documents/ccap-public-notice-2025.pdf" target="_blank"&gt;Notice of Request for Public Comment Draft Measures for New Hampshire&amp;rsquo;s Comprehensive Climate Action Plan October 15, 2025&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;New Hampshire Department of Environmental Services&lt;/strong&gt;&lt;/p&gt;
  320. &lt;blockquote&gt;The New Hampshire Department of Environmental Services (NHDES) issues this Notice of Request for Public Comment for NHDES&amp;rsquo;s draft measures for New Hampshire&amp;rsquo;s Comprehensive Climate Action Plan (CCAP). NHDES invites and would appreciate comments on the draft measures listed in this document by November 15, 2025. The CCAP must touch on all significant greenhouse gas sources and sinks across seven economic sectors in New Hampshire. These economic sectors include Transportation, Buildings, Electricity Generation and Use, Industry, Agriculture, Natural &amp;amp; Working Lands and Waste &amp;amp; Materials Management.&lt;/blockquote&gt;
  321. &lt;p&gt;&lt;strong&gt;&lt;a href="https://energylibrary.tesla.com/docs/Public/Solar/Retrofit/WhitePaper/en/Tesla_Energy_Breaking_the_Cost_Barrier_in_Residential_Energy.pdf" target="_blank"&gt;Tesla Energy: Breaking the Cost Barrier ? in Residential Energy&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Tesla&lt;/strong&gt;&lt;/p&gt;
  322. &lt;blockquote&gt;Lowering the cost of residential energy systems requires a comprehensive reevaluation of the entire value chain&amp;mdash;spanning manufacturing, hardware design, installation practices, permitting processes, customer operations and sales. Current system costs are driven not only by technological limitations, but by inefficiencies throughout the process. There are three major areas for cost reduction including, $0.54/W from simplifying code requirements and approvals processes, $0.57/W from improving customer acquisition and labor costs, and $0.67/W from driving down hardware costs. These levers have the potential to lower the total system price of solar plus storage from $5.06/W to $3.02/W.&lt;/blockquote&gt;
  323. &lt;p&gt;&lt;strong&gt;&lt;a href="https://epic.uchicago.edu/insights/2025-poll-americans-views-on-climate-and-energy-policy/" target="_blank"&gt;2025 Poll: Americans&amp;rsquo; Views on Climate and Energy Policy&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;The Associated Press-NORC Center for Public Affairs Research With funding from the Energy Policy Institute at the University of Chicago&lt;/strong&gt;&lt;/p&gt;
  324. &lt;blockquote&gt;The authors explored Americans' attitudes on climate change, their views on key climate and energy policies, how they feel about electric vehicles and the policies to encourage them, and their concerns around the environmental impacts of AI. Healthcare and the economy rank the top issues Americans consider very important of the policies asked about on the poll. But energy policy and climate policy are nearly aligned with immigration in terms of importance to Americans. About half consider the three issues to be very important. There are large partisan divides on these three issues. Republicans are about twice as likely to consider immigration important (65 percent) as they are to consider climate change policy important (28 percent), while Democrats consider energy policy (60 percent) and climate change policy (69 percent) to be more important than immigration (48 percent).&lt;/blockquote&gt;
  325. &lt;p&gt;&lt;strong&gt;&lt;a href="https://static1.squarespace.com/static/66fa5c9696c4073ff217b52f/t/68fb3e971399ce2d45eacf6b/1761296023036/Derailment+risk+report+v6.pdf" target="_blank"&gt;Derailment Risk. Why climate strategies might fail &amp;ndash; and how to fix them&lt;/a&gt;, &lt;/strong&gt;Laybourn et al., &lt;strong&gt;The University College London's CL Climate Action Unit, with input from the University of Exeter and the Institute for Public Policy Research&lt;/strong&gt;&lt;/p&gt;
  326. &lt;blockquote&gt;Two trends characterize the climate change predicament: accelerating progress, including a green technology revolution; and accelerating impacts and risks, which have been persistently underestimated. It is hoped that the former will prevail over the latter: that escalating climate impacts will reinforce action. But the opposite can also occur: climate consequences can distract from climate action. This will lead to more consequences and more distractions: a vicious cycle. This is &amp;lsquo;derailment risk&amp;rsquo;. The report summarizes the findings of a project that explored how climate consequences can undermine climate action in a vicious cycle, the first systematic attempt to theorize this dynamic. It included 20 workshops to map risks to climate action and explore potential mitigations, engaging hundreds of experts and practitioners globally.&lt;/blockquote&gt;
  327. &lt;p&gt;&lt;strong&gt;&lt;a href="https://oxfamilibrary.openrepository.com/bitstream/handle/10546/621741/bp-climate-plunder-29102025-en.pdf;jsessionid=A29A1B633545357205DB18868C948D67?sequence=2" target="_blank"&gt;Climate Plunder: How a powerful few are locking the world into disaster&lt;/a&gt;, &lt;/strong&gt;Dabi et al., &lt;strong&gt;Oxfam International&lt;/strong&gt;&lt;/p&gt;
  328. &lt;blockquote&gt;Ahead of the major international climate conference COP30 in Belem, Brazil, new research finds that the high-carbon lifestyles of the super-rich are blowing through the world&amp;rsquo;s remaining carbon budget - the amount of CO2 that can be emitted while avoiding climate disaster. The research also details how billionaires are using their political and economic influence to keep humanity hooked on fossil fuels to maximize their private profit. The authors present extensive new updated data and analysis which finds that a person from the richest 0.1% produces more carbon pollution in a day than the poorest 50% emit all year. If everyone emitted like the richest 0.1%, the carbon budget would be used up in less than 3 weeks.&lt;/blockquote&gt;
  329. &lt;p&gt;&lt;strong&gt;&lt;a href="https://fminus.org/wp-content/uploads/2025/10/FminusCanadaClimateReport_10.24.pdf" target="_blank"&gt;Canada&amp;rsquo;s Climate Conflicted Lobbyists&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;F minus, Environmental Defence, and Regeneration&lt;/strong&gt;&lt;/p&gt;
  330. &lt;blockquote&gt;Canadian fossil fuel lobbyists operate with an extraordinary degree of secrecy compared to fossil fuel lobbyists in the US and EU, as Canada does not require lobbyists to disclose their compensation and does not enforce a requirement to disclose bill numbers. A review of 2025 disclosures by the 17 fossil fuel companies represented by the four lobbying firms profiled in the report finds zero instances of these firms disclosing the numbers of current bills lobbied upon. Public interest and non-profit groups who use lobby firms to increase their capacity to engage with government officials may not be aware that the firms they hire are also lobbying for fossil fuel companies because this information is not readily accessible in Canada&amp;rsquo;s lobbyist disclosure system.&lt;/blockquote&gt;
  331. &lt;p&gt;&lt;strong&gt;&lt;a href="https://wid.world/www-site/uploads/2025/10/Climate_Inequality_Report_2025_Final.pdf" target="_blank"&gt;Climate Inequality Report 2025. Climate Change: A Capital Challenge. Why Climate Policy Must Tackle Ownership&lt;/a&gt;, &lt;/strong&gt;Lucas Chancel and Cornelia Mohren, editors, &lt;strong&gt;World Inequality Lab&lt;/strong&gt;&lt;/p&gt;
  332. &lt;blockquote&gt;Wealthy individuals fuel the climate crisis through their investments, even more than their consumption and lifestyles. At the world level, the top 1% represent 15% of global consumption-based emissions, while they account for 41% of global emissions associated with private capital ownership. Climate change can deepen wealth inequality, while well-designed policies can help reduce it. The top 1% could see their share of world wealth jump from 38% to 46% by 2050 if they own tomorrow&amp;rsquo;s low-carbon assets. To address the dual challenges of the climate crisis and wealth inequality, the authors explore three policies avenues including a global ban on new fossil fuel investments, a financial investment tax on the carbon content of assets, and major public investment in low-carbon infrastructure.&lt;/blockquote&gt;
  333. &lt;hr /&gt;
  334. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  335. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  336. &lt;h3&gt;Suggestions&lt;/h3&gt;
  337. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  338. &lt;h3&gt;Previous edition&lt;/h3&gt;
  339. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_43.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  340. <link>https://skepticalscience.com/new_research_2025_44.html</link>
  341. <guid>https://skepticalscience.com/new_research_2025_44.html</guid>
  342. <pubDate>Thu, 30 Oct 2025 14:56:51 EST</pubDate>
  343. </item>  <item>
  344. <title>Fact brief - Is there empirical evidence for human-caused global warming?</title>
  345. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  346. &lt;h3&gt;Is there empirical evidence for human-caused global warming?&lt;/h3&gt;
  347. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Yes-200px.jpg" alt="Yes" width="200" height="59" /&gt;There are multiple lines of evidence that our greenhouse gas emissions are warming the planet.&amp;nbsp;&lt;/p&gt;
  348. &lt;p&gt;The greenhouse effect is the process whereby &amp;ldquo;greenhouse&amp;rdquo; gases such as carbon dioxide create a kind of atmospheric blanket, absorbing outgoing heat energy and re-radiating a portion of it back down to Earth.&lt;/p&gt;
  349. &lt;p&gt;CO&lt;sub&gt;2&lt;/sub&gt; levels surged after humans began burning fossil fuels such as coal and oil. Today, we&amp;rsquo;re over 420 parts per million &amp;mdash; up 50% from pre-industrial times and higher than for millions of years.&lt;/p&gt;
  350. &lt;p&gt;We know this increase is from burning fossil fuels, which produce a form of CO&lt;sub&gt;2&lt;/sub&gt; with extremely low levels of the carbon-14 isotope. The drop of carbon-14 in the atmosphere following the Industrial Revolution is a fossil fuel &amp;ldquo;fingerprint&amp;rdquo; of the CO&lt;sub&gt;2&lt;/sub&gt; spike.&lt;/p&gt;
  351. &lt;p&gt;Satellite measurements confirm a decrease in heat energy radiated out into space and an increase in heat energy re-radiated back down to Earth&amp;rsquo;s surface.&lt;/p&gt;
  352. &lt;p&gt;&lt;a href="http://sks.to/evidence" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/is-there-empirical-evidence-for-human-caused-global-warming-2/" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  353. &lt;hr /&gt;
  354. &lt;p&gt;This fact brief is responsive to quotes such as &lt;a href="https://archive.ph/VyCG3" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  355. &lt;hr /&gt;
  356. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  357. &lt;p&gt;American Institute of Physics&amp;nbsp;&lt;a href="https://history.aip.org/climate/co2.htm" target="_blank"&gt;The Carbon Dioxide Greenhouse Effect&lt;/a&gt;&lt;/p&gt;
  358. &lt;p&gt;Columbia University Climate School&amp;nbsp;&lt;a href="https://blogs.ei.columbia.edu/2021/02/25/carbon-dioxide-cause-global-warming/" target="_blank"&gt;How Exactly Does Carbon Dioxide Cause Global Warming?&lt;/a&gt;&lt;/p&gt;
  359. &lt;p&gt;NOAA&amp;nbsp;&lt;a href="https://www.esrl.noaa.gov/gmd/education/isotopes/" target="_blank"&gt;The Basics: Isotopic Fingerprints&lt;/a&gt;&lt;/p&gt;
  360. &lt;p&gt;UC San Diego&amp;nbsp;&lt;a href="https://keelingcurve.ucsd.edu/" target="_blank"&gt;The Keeling Curve&lt;/a&gt;&lt;/p&gt;
  361. &lt;p class="bluebox"&gt;Please use&amp;nbsp;&lt;a href="https://docs.google.com/forms/d/e/1FAIpQLSfwk64a4VraQwLYfV2HalJXgj_yvV28yP5fsi6te5okFQ9DyQ/viewform?usp=pp_url&amp;amp;entry.386351903=https://skepticalscience.com/fact-brief-agw.html" target="_blank"&gt;this form&lt;/a&gt; to provide feedback about this fact brief. This will help us to better gauge its impact and usability. Thank you!&lt;/p&gt;
  362. &lt;!--more--&gt;
  363. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer "yes/no" answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://sks.to/gfb" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  364. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact Quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  365. <link>https://skepticalscience.com/fact-brief-evidence.html</link>
  366. <guid>https://skepticalscience.com/fact-brief-evidence.html</guid>
  367. <pubDate>Tue, 28 Oct 2025 10:37:42 EST</pubDate>
  368. </item>  <item>
  369. <title>A “controversial” methane metric?</title>
  370. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://andthentheresphysics.wordpress.com/2025/10/19/a-controversial-methane-metric/"&gt;re-post from And Then There's Physics&lt;/a&gt;&lt;/p&gt;
  371. &lt;p&gt;There&amp;rsquo;s a recent Carbon Brief article about a supposedly&amp;nbsp;&lt;a href="https://www.carbonbrief.org/qa-what-the-controversial-gwp-methane-metric-means-for-farming-emissions/?utm_content=buffer6a4ff&amp;amp;utm_medium=social&amp;amp;utm_source=twitter.com&amp;amp;utm_campaign=buffer"&gt;&lt;em&gt;controversial&lt;/em&gt;&amp;nbsp;methane metric&lt;/a&gt;. The metric in question is GWP*, which I&amp;rsquo;ve actually written about&amp;nbsp;&lt;a href="https://andthentheresphysics.wordpress.com/2019/11/23/methane/"&gt;before&lt;/a&gt;. Methane emissions are typically compared to CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;using a metric known as Global Warming Potential (GWP). These are often measured over periods of 20 years (GWP20) or 100 years (GWP100). For methane GWP20 has a value of about 80, while GWP100 has a value of about 30.&lt;/p&gt;
  372. &lt;p&gt;As the Carbon Brief article says, these are often interpreted as suggesting that&lt;/p&gt;
  373. &lt;blockquote class="wp-block-quote is-layout-flow wp-block-quote-is-layout-flow"&gt;
  374. &lt;p&gt;one tonne of methane causes the same amount of warming as around 80 tonnes of CO2, when measured over a period of 20 years&amp;hellip;&amp;hellip;.. When calculated over 100 years, methane&amp;rsquo;s shorter lifetime means it causes around 30 times more warming than CO2.&amp;nbsp;&lt;/p&gt;
  375. &lt;/blockquote&gt;
  376. &lt;p&gt;These metrics highlight that methane is a potent greenhouse gas that can contribute substantially to global warming. The problem is that the interpretation of these metrics is not actually correct. These metrics are computed by integrating the radiative forcing of a pulse of emissions over the relevant time period. However, this doesn&amp;rsquo;t necessarily correctly represent the warming due to this pulse of emission.&lt;/p&gt;
  377. &lt;div class="wp-block-image"&gt;&lt;a href="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/allen_etal_1.jpg"&gt;&lt;img class="wp-image-21483" src="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/allen_etal_1.jpg?w=1024" alt="" width="550" height="476" data-attachment-id="21483" data-permalink="https://andthentheresphysics.wordpress.com/2025/10/19/a-controversial-methane-metric/allen_etal_1-2/" data-orig-file="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/allen_etal_1.jpg" data-orig-size="2728,2364" data-comments-opened="1" data-image-meta="{&amp;quot;aperture&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;credit&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;camera&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;caption&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;created_timestamp&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;copyright&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;focal_length&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;iso&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;shutter_speed&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;title&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;orientation&amp;quot;:&amp;quot;0&amp;quot;}" data-image-title="Allen_etal_1" data-image-description="" data-image-caption="" data-medium-file="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/allen_etal_1.jpg?w=300" data-large-file="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/allen_etal_1.jpg?w=640" /&gt;&lt;/a&gt;&lt;em&gt;Credit: Allen et al. (2016)&lt;/em&gt;&lt;/div&gt;
  378. &lt;!--more--&gt;
  379. &lt;p&gt;Unlike CO&lt;span&gt;2&lt;/span&gt;, methane has an atmospheric lifetime of about 10 years. This means that half of a pulse of methane will be gone after 10 years, three-quarters after 20 years, and only a few percent will be left after 50 years. Hence, it&amp;rsquo;s really not correct to suggest that over 100 years, methane will&amp;nbsp;&lt;em&gt;cause around 30 times more warming than CO&lt;span&gt;2&lt;/span&gt;.&lt;/em&gt;&lt;/p&gt;
  380. &lt;p&gt;The figure on the right (from&amp;nbsp;&lt;a href="https://www.nature.com/articles/nclimate2998"&gt;Allen et al. 2016&lt;/a&gt;) illustrates it very nicely. It shows the warming due to equivalent pulses of different greenhouse gases, using GWP100 to determine the equivalence. It&amp;rsquo;s certainly the case that an equivalent pulse of methane will cause more warming than CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;initially, but after about 40 years the warming is about the same. The warming due to a pulse of CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;levels off after about 20 years and persists well beyond 100 years, at which point there is virtually no warming from the equivalent pulse of methane.&lt;/p&gt;
  381. &lt;p&gt;The GWP* metric was introduced to more accurately represent methane-driven warming, and it does a pretty good job. It accounts for key differences between warming due to long-lived greenhouse gases (CO&lt;span&gt;2&lt;/span&gt;) and short-lived greenhouse gases, like methane. Stopping CO&lt;span&gt;2&lt;/span&gt;-driven warming requires getting CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;emissions to (net) zero. This isn&amp;rsquo;t the case for methane. As&amp;nbsp;&lt;a href="https://www.nature.com/articles/nclimate2998"&gt;this Carbon Brief article&lt;/a&gt;&amp;nbsp;highlights, methane-driven warming will actually stabilise if methane emissions stabilise and will actually fall if methane emissions are reduced.&lt;/p&gt;
  382. &lt;div class="wp-block-image"&gt;&lt;a href="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/ipcc_ar6_wgi_figure_7_22.png"&gt;&lt;img class="wp-image-21489" src="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/ipcc_ar6_wgi_figure_7_22.png?w=1024" alt="" width="550" height="275" data-attachment-id="21489" data-permalink="https://andthentheresphysics.wordpress.com/2025/10/19/a-controversial-methane-metric/ipcc_ar6_wgi_figure_7_22/" data-orig-file="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/ipcc_ar6_wgi_figure_7_22.png" data-orig-size="2126,1063" data-comments-opened="1" data-image-meta="{&amp;quot;aperture&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;credit&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;camera&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;caption&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;created_timestamp&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;copyright&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;focal_length&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;iso&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;shutter_speed&amp;quot;:&amp;quot;0&amp;quot;,&amp;quot;title&amp;quot;:&amp;quot;&amp;quot;,&amp;quot;orientation&amp;quot;:&amp;quot;0&amp;quot;}" data-image-title="IPCC_AR6_WGI_Figure_7_22" data-image-description="" data-image-caption="" data-medium-file="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/ipcc_ar6_wgi_figure_7_22.png?w=300" data-large-file="https://andthentheresphysics.wordpress.com/wp-content/uploads/2025/10/ipcc_ar6_wgi_figure_7_22.png?w=640" /&gt;&lt;/a&gt;&lt;em&gt;Figure 7.22 from the IPCC AR6 WGI report.&lt;/em&gt;&lt;/div&gt;
  383. &lt;p&gt;The Figure on the left also compares GWP100, GWP20 and GWP* in two different emission scenarios. GWP20 (light blue) almost always, over-estimates the warming. GWP100 (purple) does pretty well when emissions are increasing, but starts to diverge when emissions start to decrease. GWP* (dark green) follows the actual warming (black line) in both emission scenarios.&lt;/p&gt;
  384. &lt;p&gt;The reason GWP* is seen as controversial is because some may use GWP* to argue that we don&amp;rsquo;t need to reduce methane emissions, or don&amp;rsquo;t need to reduce them as much as might be suggested if using GWP20, or GWP100. I think this is a valid concern, but I don&amp;rsquo;t think it&amp;rsquo;s a good reason to keep using metrics that don&amp;rsquo;t actually represent what many think they do, over one that does.&lt;/p&gt;
  385. &lt;p&gt;One key point to make is that GWP20, GWP100 and GWP* are just metrics that are used to link methane emissions with warming. None of them actually tells us what we should do. Those are policy decisions policy makers make based on information provided.&lt;/p&gt;
  386. &lt;p&gt;One advantage of reducing methane emissions is that it will actually reverse some past warming, which is not the case when it comes to reducing CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;emissions. I think there are perfectly good reasons for doing this, but I do think we should be clear about this and use a metric that properly represents this, rather than ones that will suggest we need to do this or else methane-driven warming will continue.&lt;/p&gt;
  387. &lt;p&gt;We also have to be careful of thinking that we can offset some CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;emissions through reductions in methane emssions. This is simply not the case, as illustrated by this 2010 Realclimate post called&amp;nbsp;&lt;a href="https://www.realclimate.org/index.php/archives/2010/12/losing-time-not-buying-time/"&gt;Losing time, not buying time&lt;/a&gt;. I think it&amp;rsquo;s really important to not treat methane and CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;as equivalent, so it seems odd to characterise a metric that does this as being&amp;nbsp;&lt;em&gt;controversial&lt;/em&gt;. I&amp;rsquo;ll stop there and will put some links below to other posts that might be worth reading.&lt;/p&gt;
  388. &lt;p&gt;&lt;strong&gt;Links:&lt;/strong&gt;&lt;br /&gt;&lt;a href="https://www.carbonbrief.org/qa-what-the-controversial-gwp-methane-metric-means-for-farming-emissions/?utm_content=buffer6a4ff&amp;amp;utm_medium=social&amp;amp;utm_source=twitter.com&amp;amp;utm_campaign=buffer"&gt;What the &amp;lsquo;controversial&amp;rsquo; GWP* methane metric means for farming emissions&lt;/a&gt;&amp;nbsp;&amp;ndash; Carbon Brief article that motivated this post.&lt;br /&gt;&lt;a href="https://andthentheresphysics.wordpress.com/2019/11/23/methane/"&gt;Methane&lt;/a&gt;&amp;nbsp;&amp;ndash; one of my earlier posts about methane emissions and GWP*.&lt;br /&gt;&lt;a href="https://andthentheresphysics.wordpress.com/2023/03/09/methane-again/"&gt;Methae, again&lt;/a&gt;&amp;nbsp;&amp;ndash; another of my posts about methane.&lt;br /&gt;&lt;a href="https://www.realclimate.org/index.php/archives/2010/12/losing-time-not-buying-time/"&gt;Losing time, not buying time&lt;/a&gt;&amp;nbsp;&amp;ndash; 2010 Realclimate post about why it&amp;rsquo;s important to not treat methane and CO&lt;span&gt;2&lt;/span&gt;&amp;nbsp;as equivalent.&lt;br /&gt;&lt;a href="https://andthentheresphysics.wordpress.com/2020/09/26/understanding-methane/"&gt;Understanding methane&lt;/a&gt;&amp;nbsp;&amp;ndash; another post by me about understanding methane emissions.&lt;br /&gt;&lt;a href="https://www.carbonbrief.org/guest-post-a-new-way-to-assess-global-warming-potential-of-short-lived-pollutants/"&gt;A new way to assess &amp;lsquo;global warming potential&amp;rsquo; of short-lived pollutants&lt;/a&gt;&amp;nbsp;&amp;ndash; Carbon Brief article by Michelle Cain introducing GWP*.&lt;br /&gt;&lt;a href="https://andthentheresphysics.wordpress.com/2021/02/07/agricultural-emissions/"&gt;Agricultural emissions&lt;/a&gt;&amp;nbsp;&amp;ndash; a post by my about emissions from agriculture.&lt;br /&gt;&lt;a href="https://www.realclimate.org/index.php/archives/2021/09/the-definitive-co2-ch4-comparison-post/"&gt;The definitive CO&lt;span&gt;2&lt;/span&gt;/CH&lt;span&gt;4&lt;/span&gt;&amp;nbsp;comparison post&lt;/a&gt;&amp;nbsp;&amp;ndash; Realclimate post comparing methane and CO&lt;span&gt;2&lt;/span&gt;.&lt;/p&gt;</description>
  389. <link>https://skepticalscience.com/controversial-methane-metric.html</link>
  390. <guid>https://skepticalscience.com/controversial-methane-metric.html</guid>
  391. <pubDate>Mon, 27 Oct 2025 14:21:43 EST</pubDate>
  392. </item>  <item>
  393. <title>Climate Adam - Can Solar Halt the Desert?</title>
  394. <description>&lt;p class="greenbox"&gt;This video includes personal musings and conclusions of the creator climate scientist&amp;nbsp;&lt;a href="https://www.climateadam.co.uk/" target="_blank"&gt;Dr. Adam Levy&lt;/a&gt;. It is presented to our readers as an informed perspective. Please see video description for references (if any).&lt;/p&gt;
  395. &lt;h3&gt;Video description&lt;/h3&gt;
  396. &lt;p&gt;Solar power has become ridiculously cheap. And unbelievably powerful at tackling climate change. Today I discuss two of the most absolutely overpowered places we can build solar photovoltaics: reservoirs (floatovoltaics) and deserts. But the future of solar is so bright, that it's worth building even in less-than-ideal locations. Let's take a look at the sunny story of today's solar PV, and what that means for our climate!&lt;/p&gt;
  397. &lt;p&gt;Support ClimateAdam on patreon: &lt;a href="https://patreon.com/climateadam/" target="_blank"&gt;https://patreon.com/climateadam&lt;/a&gt;&lt;/p&gt;
  398. &lt;p&gt;&lt;a href="https://www.youtube.com/watch?v=AeIXZf7Th34" target="_blank"&gt;&lt;img src="https://i.ytimg.com/vi/AeIXZf7Th34/hqdefault.jpg" data-pre-sourced="yes" data-sourced="yes" id="image1" data-original="https://i.ytimg.com/vi/AeIXZf7Th34/hqdefault.jpg" data-src="https://i.ytimg.com/vi/AeIXZf7Th34/hqdefault.jpg" alt="YouTube Video" "="" class="" style="max-width: 580px;"&gt;&lt;/a&gt;&lt;/p&gt;
  399. &lt;!--more--&gt;</description>
  400. <link>https://skepticalscience.com/ClimateAdam-can-solar-halt-the-desert.html</link>
  401. <guid>https://skepticalscience.com/ClimateAdam-can-solar-halt-the-desert.html</guid>
  402. <pubDate>Wed, 29 Oct 2025 10:33:36 EST</pubDate>
  403. </item>  <item>
  404. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #43</title>
  405. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, October 19, 2025 thru Sat, October 25, 2025.&lt;/div&gt;
  406. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  407. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (8 articles)&lt;/strong&gt;&lt;/p&gt;
  408. &lt;ul&gt;
  409. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/debriefed-earths-first-tipping-point-climate-adviser-interview-how-warming-affects-childrens-health/" target="_blank"&gt;DeBriefed: Earth`s first `tipping point`; Climate adviser interview; How warming affects children`s health&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;For those interested in keeping up with policy details of our climate blunder and how we're going to deal with it, we recommend Carbon Brief's weekly "Debrief" feature.&lt;/em&gt; Carbon Brief, Emma Hancox, Oct 17, 2025.&lt;/li&gt;
  410. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.climatechangenews.com/2025/10/17/us-led-alliance-delay-year-adoption-green-shipping-deal-nzf-imo-un/" target="_blank"&gt;US-led alliance wins a year`s delay in adoption of green shipping deal&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A landmark deal to clean up the global shipping industry&amp;rsquo;s emissions has been postponed for at least a year, after a successful campaign by the US and Saudi Arabia to delay its adoption.&lt;/em&gt; Climate Home News, Joe Lo, Oct 17, 2025.&lt;/li&gt;
  411. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://blogs.law.columbia.edu/climatechange/2025/10/20/corporate-climate-disclosures-in-the-us-and-eu-an-expanding-regulatory-landscape-amidst-resistance/" target="_blank"&gt;Corporate Climate Disclosures in the US and EU: An Expanding Regulatory Landscape Amidst Resistance&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Climate Law Blog, Pedro Aranguez Diaz, Oct 20, 2025.&lt;/li&gt;
  412. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/21102025/livestock-industry-methane-emissions/" target="_blank"&gt;Climate-Warming Methane Emissions from the World`s Biggest Livestock Companies Are Bigger Than From Major Oil and Gas Companies&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Ahead of the United Nations climate talks in Brazil, advocacy groups are pushing for companies and governments to set meaningful emissions targets to lower emissions from livestock.&lt;/em&gt; Inside Climate News, Georgina Gustin, Oct 21, 2025.&lt;/li&gt;
  413. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.abc57.com/news/with-climate-change-data-disappearing-former-noaa-scientists-strike-back" target="_blank"&gt;With climate change data disappearing, former NOAA scientists strike back&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; ABC News, David Caulfield, Oct 21, 2025.&lt;/li&gt;
  414. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/transportation/shipping-carbon-tax-international-maritime-organization-trump/" target="_blank"&gt;The entire world was ready to reduce shipping emissions. Then Trump stepped in.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;After the Trump administration threatened countries with tariffs and visa restrictions, a first-ever global carbon tax is left to an uncertain future.&lt;/em&gt; Grist, Naveena Sadasivam, Oct 23, 2025.&lt;/li&gt;
  415. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/opinion/energy-environment/5569961-greenland-rare-earth-mining/" target="_blank"&gt;Trump knows climate change is real - that's why he wants to mine Greenland&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;"Not only does Trump know climate change is real, he&amp;rsquo;s banking on it."&lt;/em&gt; TheHill, Allison Agsten, Oct 24, 2025.&lt;/li&gt;
  416. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/opinion/energy-environment/5570969-jacobs-noaa-budget-cuts/" target="_blank"&gt;We led NOAA - we expect Neil Jacobs to defend it&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; TheHill, Jane Lubchenco, Kathryn Sullivan and Richard Spinrad, opinion contributors, Oct 24, 2025.&lt;/li&gt;
  417. &lt;/ul&gt;
  418. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (7 articles)&lt;/strong&gt;&lt;/p&gt;
  419. &lt;ul&gt;
  420. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/oct/17/worlds-oceans-losing-their-greenness-through-global-heating-study-finds" target="_blank"&gt;World`s oceans losing their greenness through global heating, study finds&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Researchers say decline in phytoplankton suggests weakened planetary capacity to absorb carbon dioxide&lt;/em&gt; The Guardian, Jonathan Watts, Oct 17, 2025.&lt;/li&gt;
  421. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/europes-climate-is-changing-fast-heres-how-its-affecting-people-and-the-economy-266399" target="_blank"&gt;Europe's climate is changing fast: How it's affecting people and the economy&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Conversation, Rosemary Anthony , Oct 20, 2025.&lt;/li&gt;
  422. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/oct/22/climate-disasters-2025-cost" target="_blank"&gt;Climate disasters in first half of 2025 costliest ever on record, research shows&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;LA wildfires and storms this year cost $101bn, new study by non-profit resurrecting work axed by Trump says&lt;/em&gt; The Guardian, Oliver Milman, and graphics by Andrew Witherspoon, Oct 22, 2025.&lt;/li&gt;
  423. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/p9S_IKwwyeM?si=oPOa1YJhBFb9bTLg" target="_blank"&gt;This is a dangerous new climate reality&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Dr Gilbz on Youtube, Ella Gilbert, Oct 22, 2025.&lt;/li&gt;
  424. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-10-urgent-cumulative-effects-extreme-climate.html" target="_blank"&gt;Researchers warn of the urgent need to include the cumulative effects of extreme climate events in penguin conservation&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Spanish National Research Council, Oct 23, 2025.&lt;/li&gt;
  425. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://reportearth.substack.com/p/dont-bet-against-physics" target="_blank"&gt;Don't bet against physics&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Don't be surprised by short term fluctuations in Earth systems as the planet warms. In the long term, heat is hard to overcome.&lt;/em&gt; ReportEarth, Chris Mooney, Oct 23, 2025.&lt;/li&gt;
  426. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.science.org/content/article/can-deadliest-catch-crab-fishery-survive-warming-seas" target="_blank"&gt;Can the Deadliest Catch crab fishery survive warming seas?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Warmer waters in the Bering Sea caused snow crabs to crash. Now, scientists are racing to predict the future of the lucrative fishery&lt;/em&gt; Science, Warren Cornwall, Oct 23, 2025.&lt;/li&gt;
  427. &lt;/ul&gt;
  428. &lt;!--more--&gt;
  429. &lt;p&gt;&lt;strong&gt;Climate Science and Research (4 articles)&lt;/strong&gt;&lt;/p&gt;
  430. &lt;ul&gt;
  431. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.livescience.com/planet-earth/science-news-this-week-revived-permafrost-microbes-spew-co2-scientists-image-object-moving-at-99-9-percent-the-speed-of-light-and-james-webb-telescope-spots-something-exciting-blasting-from-black-hole-m87" target="_blank"&gt;Science news this week: Revived permafrost microbes spew CO2, scientists image object 'moving' at 99.9% the speed of light, and James Webb telescope spots something exciting blasting from black hole M87*&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Microbes reactivated after lying frozen in the Alaskan permafrost for up to 40,000 years commence to churning out carbon dioxide.&lt;/em&gt; Live Science, Ben Turner, Oct 18, 2025.&lt;/li&gt;
  432. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-10-catastrophic-loss-florida-staghorn-elkhorn.html" target="_blank"&gt;Catastrophic loss of Florida's staghorn and elkhorn corals highlights accelerating climate pressures for reefs worldwide&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists report ''functional extinction'' of critically endangered corals, following a record-setting marine heat wave in 2023 that marked the ninth mass bleaching event for the region.&lt;/em&gt; Phys.org, Institute for Basic Science (adapted press release), Oct 23, 2025.&lt;/li&gt;
  433. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_43.html" target="_blank"&gt;Skeptical Science New Research for Week #43 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Our latest weekly climate science research roundup includes 145 academic, government and NGO reports&amp;mdash; but leads with a commentary in AAAS Science on the twisted concept of the Trump administration's "Gold Standard" for scientific investigations, authored by cognitive scientist and Skeptical Science collaborator Steven Lewandowsky. &lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Oct 23, 2025.&lt;/li&gt;
  434. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.sciencedaily.com/releases/2025/10/251024041753.htm" target="_blank"&gt;El Ni&amp;ntilde;o could soon turn deadly predictable, scientists warn&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists have discovered that El Ni&amp;ntilde;o and La Ni&amp;ntilde;a could become far more powerful and predictable as the planet warms.&lt;/em&gt; Science Daily, Institute for Basic Science (adapted press release), Oct 24, 2025.&lt;/li&gt;
  435. &lt;/ul&gt;
  436. &lt;p&gt;&lt;strong&gt;International Climate Conferences and Agreements (3 articles)&lt;/strong&gt;&lt;/p&gt;
  437. &lt;ul&gt;
  438. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://cleantechnica.com/2025/10/20/paris-climate-protocols-have-limited-global-heating-to-just-2-6-degrees-c/" target="_blank"&gt;Paris Climate Protocols Have Limited Global Heating To "Just" 2.6 Degrees C&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; CleanTechnica, Steve Hanley, Oct 20, 2025.&lt;/li&gt;
  439. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/revealed-only-a-third-of-national-climate-pledges-support-transition-away-from-fossil-fuels/" target="_blank"&gt;Revealed: Only a third of national climate pledges support `transition away from fossil fuels`&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Only around a third of the latest country climate pledges submitted to the UN express support for the &amp;ldquo;transition away from fossil fuels&amp;rdquo;, according to Carbon Brief analysis.&lt;/em&gt; Carbon Brief, Daisy Dunne, Oct 22, 2025.&lt;/li&gt;
  440. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/accountability/fossil-fuel-companies-renewable-energy-report/" target="_blank"&gt;Fossil fuel companies say they support the energy transition. New numbers suggest otherwise.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A new report shows that legacy fossil fuel companies own less than 2 percent of renewable energy projects worldwide yet have a seat at the table for shaping our energy cleanup and modernization. &lt;/em&gt; Grist, Rebecca Egan McCarthy, Oct 24, 2025.&lt;/li&gt;
  441. &lt;/ul&gt;
  442. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (2 articles)&lt;/strong&gt;&lt;/p&gt;
  443. &lt;ul&gt;
  444. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-10-individual-climate-action-distract-big.html" target="_blank"&gt;Does individual climate action distract from the big picture? New research has answers&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Elva Darnell, Oct 19, 2025.&lt;/li&gt;
  445. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/rapid-emissions-cuts-would-avoid-64cm-of-locked-in-sea-level-rise-by-2300/" target="_blank"&gt;Rapid emissions cuts would avoid 64cm of `locked in` sea level rise by 2300&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Cutting emissions in line with the 1.5C warming limit, rather than following current climate policies, could curb long-term sea level rise by 64cm, a new study says.&lt;/em&gt; Carbon Brief, Ayesha Tandon, Oct 24, 2025.&lt;/li&gt;
  446. &lt;/ul&gt;
  447. &lt;p&gt;&lt;strong&gt;Miscellaneous (2 articles)&lt;/strong&gt;&lt;/p&gt;
  448. &lt;ul&gt;
  449. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_42.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #42&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 27 news and opinion articles we found interesting and shared on social media during the past week: Sun, October 12, 2025 thru Sat, October 18, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler and Doug Bostrom, Oct 19, 2025.&lt;/li&gt;
  450. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.bbc.com/sport/football/articles/c2314ve7d7jo?at_medium=RSS" target="_blank"&gt;World Cup sends 'dangerous message' on climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;In eight months' time the 2026 World Cup will make history as the biggest single sporting event. But not everyone is celebrating.&lt;/em&gt; BBC News, Katie Gornall, Oct 22, 2025.&lt;/li&gt;
  451. &lt;/ul&gt;
  452. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (1 article)&lt;/strong&gt;&lt;/p&gt;
  453. &lt;ul&gt;
  454. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://news.mit.edu/2025/over-1000-mit-students-inspired-work-toward-climate-solutions-1021" target="_blank"&gt;Over 1,000 MIT students inspired to work toward climate solutions&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Incoming students tested the climate simulation tool En-ROADS with the goal of creating &amp;ldquo;a healthier, safer, more prosperous, and more sustainable world.&amp;rdquo; &lt;/em&gt; MIT News, Tracey Palmer, Oct 21, 2025.&lt;/li&gt;
  455. &lt;/ul&gt;
  456. &lt;p&gt;&lt;strong&gt;Geoengineering (1 article)&lt;/strong&gt;&lt;/p&gt;
  457. &lt;ul&gt;
  458. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://news.climate.columbia.edu/2025/10/21/how-hard-is-it-to-dim-the-sun/" target="_blank"&gt;How Hard Is It to Dim the Sun?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; State of the Planet, Columbia Climate School, Oct 21, 2025.&lt;/li&gt;
  459. &lt;/ul&gt;
  460. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (1 article)&lt;/strong&gt;&lt;/p&gt;
  461. &lt;ul&gt;
  462. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/50-fact-briefs-published-with-gigafact.html" target="_blank"&gt;50 fact briefs published in collaboration with Gigafact!&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;We recently passed a milestone of 50 fact briefs published in collaboration with Gigafact!&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler, Oct 21, 2025.&lt;/li&gt;
  463. &lt;/ul&gt;
  464. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  465. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_43.html</link>
  466. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_43.html</guid>
  467. <pubDate>Sun, 26 Oct 2025 05:12:44 EST</pubDate>
  468. </item>  <item>
  469. <title>Skeptical Science New Research for Week #43 2025</title>
  470. <description>&lt;h3&gt;Open access notables&lt;/h3&gt;
  471. &lt;p&gt;&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="A desk piled high with research reports" width="250" height="139" /&gt;&lt;/p&gt;
  472. &lt;div&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1126/science.aeb9857" target="_blank"&gt;Trojan gold: New US &amp;ldquo;standard&amp;rdquo; is another veiled attack on science&lt;/a&gt;&lt;/strong&gt;, Lewandowsky,&amp;nbsp;&lt;em&gt;Science&amp;nbsp;&lt;/em&gt;[Commentary on a novel hazard threatening scientific integrity]&lt;/div&gt;
  473. &lt;blockquote&gt;
  474. &lt;div&gt;&lt;em&gt;Transparency, reproducibility, and acknowledging uncertainty are meritorious attributes of science that differentiate it from other human endeavors, such as politics. But they can also be&amp;nbsp;&lt;a href="https://doi.org/10.1038/529459a"&gt;subverted&lt;/a&gt;. In the United States, an executive order from the Trump administration called&amp;nbsp;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/05/restoring-gold-standard-science/"&gt;Restoring Gold Standard Science&lt;/a&gt;&amp;nbsp;illustrates how this can be achieved despite it being cloaked in language that most of the scientific community would enthusiastically support. The order seeks to &amp;ldquo;to ensure that federally funded research is transparent, rigorous, and impactful, and that Federal decisions are informed by the most credible, reliable, and impartial scientific evidence available,&amp;rdquo; and it has already informed the Environmental Protection Agency&amp;rsquo;s (EPA) revised procedures&amp;nbsp;&lt;a href="https://www.epa.gov/newsreleases/epa-releases-proposal-increase-efficiency-better-protect-health-and-environment"&gt;for conducting risk evaluations for chemicals already in commerce&lt;/a&gt;.&lt;/em&gt;&lt;/div&gt;
  475. &lt;/blockquote&gt;
  476. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02793-1" target="_blank"&gt;Equatorial Atlantic mid-depth warming indicates Atlantic meridional overturning circulation slowdown&lt;/a&gt;&lt;/strong&gt;, Ren et al.,&amp;nbsp;&lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  477. &lt;blockquote&gt;
  478. &lt;p&gt;&lt;em&gt;Based on ocean general circulation model (OGCM) experiments, we identify the mid-depth warming of 1000&amp;ndash;2000&amp;thinsp;m in the equatorial Atlantic as a fingerprint of AMOC slowdown under anthropogenic warming. Subsurface downwelling signals of the declined AMOC propagate along the western boundary and across the equator as baroclinic Kelvin waves within one decade. Compared to surface proxies, the mid-depth equatorial temperature is a more reliable indicator for the AMOC intensity on decadal and longer timescales. The mid-depth warming in the equatorial Atlantic is also robustly detected in historical in situ observations, indicating that the AMOC already slowed down in the late 20th century.&lt;/em&gt;&lt;br /&gt;&lt;a href="https://doi.org/10.1029/2024ef005810" target="_blank"&gt;&lt;/a&gt;&lt;/p&gt;
  479. &lt;/blockquote&gt;
  480. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2024ef005810" target="_blank"&gt;A Risk-Risk Assessment of Climate Extremes: Comparing Greenhouse Gas Warming and Stratospheric Aerosol Injection in UKESM1&lt;/a&gt;&lt;/strong&gt;, Wells &amp;amp; Haywood,&amp;nbsp;&lt;em&gt;Earth's Future&lt;/em&gt;&lt;/p&gt;
  481. &lt;blockquote&gt;
  482. &lt;p&gt;&lt;em&gt;This study investigates the potential of Stratospheric Aerosol Injection (SAI), a solar climate intervention strategy, to mitigate climate extremes driven by greenhouse gas (GHG) emissions, comparing its effects to those of GHG-induced warming under the SSP5-8.5 scenario. Using the UKESM1 climate model and the GeoMIP G6controller scenario, we examine extreme temperature, precipitation, and fire risk indices in a risk-risk framework. The multi-latitude G6controller strategy, an improvement on the equatorial injection strategy G6sulfur, reduces global mean temperature from SSP5-8.5 to SSP2-4.5, significantly reducing temperature and precipitation extremes. Results show that G6controller effectively reduces temperature extremes relative to SSP5-8.5, especially in populated areas like Europe and South America, and reduces fire risk in high-risk areas, such as South America and southern Africa. While both scenarios project broad precipitation increases, G6controller moderates these without introducing new drying relative to SSP5-8.5, particularly in Southeast Asia. This study highlights G6controller's potential to lessen the magnitude of extreme climate events, offering insights into SAI's regional efficacy and highlighting the trade-offs between GHG warming with and without solar climate intervention.&lt;/em&gt;&lt;/p&gt;
  483. &lt;/blockquote&gt;
  484. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1599405" target="_blank"&gt;Africa&amp;rsquo;s regional and local climate response to stratospheric aerosol injection characteristics&lt;/a&gt;&lt;/strong&gt;, Kumi et al.,&amp;nbsp;&lt;em&gt;Frontiers in Climate&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  485. &lt;blockquote&gt;
  486. &lt;p&gt;&lt;em&gt;Using climate simulations, this study assesses the potential impact of stratospheric aerosol injection (SAI) on projected mean and extreme temperature and precipitation across the continent. We analysed data from the Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project, which simulates a set of SAI experiments under RCP8.5 emission scenarios with SO&lt;sub&gt;2&lt;/sub&gt;&amp;nbsp;injection into the tropical stratosphere at 22.8&amp;ndash;25?km altitude (GLENS) and around 1?km above the tropopause (GLENS_low) and near the equator at around 20&amp;ndash;25?km above ground (GLENS_eq). The results show that all SAI experiments (GLENS, GLENS_eq, and GLENS_low) exhibit substantial cooling effects, with GLENS_eq emerging as the most effective in reducing temperature extremes, particularly over Central and Southern Africa. However, despite successfully offsetting much of the RCP8.5-induced warming, the effectiveness of SAI varies across regions, leaving some regions, such as the Sahel and North Africa, with residual warming. In addition to its cooling effects, SAI could significantly alter precipitation patterns, introducing widespread drying and thereby reducing flood risks across the continent. While SAI could offset the projected increase in extreme precipitation under RCP8.5, it could simultaneously exacerbate drying trends over Central, Southern, and Northern Africa. These findings highlight critical trade-offs associated with SAI deployment, particularly for regions where agriculture and water resources depend heavily on rainfall, underscoring the need for regionally optimised geoengineering strategies that balance temperature moderation with hydrological stability. This study provides the first comparative analysis of tropical, equatorial, and low-altitude SAI impacts on the climate, revealing critical trade-offs for precipitation-dependent regions. The findings presented here are, however, specific to the SAI scenarios analysed (GLENS experiments), as a different SAI deployment scenario would lead to different conclusions.&lt;/em&gt;&lt;/p&gt;
  487. &lt;/blockquote&gt;
  488. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102793" target="_blank"&gt;Subtraction neglect in perceptions of climate action strategies&lt;/a&gt;&lt;/strong&gt;, Suter et al.,&amp;nbsp;&lt;em&gt;Journal of Environmental Psychology&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  489. &lt;blockquote&gt;
  490. &lt;p&gt;&lt;em&gt;Research suggests that individuals often overlook beneficial subtractive strategies when solving problems. Subtractive strategies, which include reducing demand for goods and services (e.g., reducing car use), have a high climate mitigation potential. Yet, these may be systematically overlooked in favor of additive strategies like adopting new technologies (e.g., buying an electric car). This Registered Report investigates subtraction neglect in the context of personal climate action. When asked to think of the most effective personal climate mitigation actions, does priming people to think about additive and subtractive strategies increase the likelihood that they suggest subtractive climate actions? We investigate this research question via an online experiment conducted in the United Kingdom. Participants who received a brief prompt introducing both strategy types proposed significantly more subtractive actions than those who were not made aware of additive and subtractive strategies. The findings suggest that raising awareness of subtractive strategies can shift attention toward underused yet impactful climate actions.&lt;/em&gt;&lt;/p&gt;
  491. &lt;/blockquote&gt;
  492. &lt;h3&gt;From this week's government/NGO &lt;a href="#gov-ngo"&gt;section&lt;/a&gt;:&lt;/h3&gt;
  493. &lt;p&gt;&lt;strong&gt;&lt;a href="https://wmo.int/sites/default/files/2025-10/GHG-21_en.pdf" target="_blank"&gt;Greenhouse Gas Bulletin - No. 21&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;&lt;strong&gt;World Meteorological Organization&lt;/strong&gt;&lt;/p&gt;
  494. &lt;blockquote&gt;The levels of the three most abundant long-lived greenhouse gases (LLGHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), reached new records in 2024. From 2023 to 2024, CO2 in the global surface atmosphere increased by 3.5 ppm,(1) the largest one-year increase since modern measurements began in 1957. This increase was driven by continued fossil CO2 emissions, enhanced fire emissions and reduced terrestrial/ocean sinks in 2024, which could signal a climate feedback. Given the dominant role of increasing atmospheric CO2 in global climate change, achieving net-zero anthropogenic CO2 emissions must be the focus of climate action. Sustaining and expanding greenhouse gas monitoring is critical to supporting such efforts.&lt;/blockquote&gt;
  495. &lt;p&gt;&lt;strong&gt;&lt;a href="https://files.wri.org/d8/s3fs-public/2025-10/state-of-climate-action-2025.pdf?VersionId=D6.3.Ysnl4DlrZVXaxTBvIptfV8PSHfq" target="_blank"&gt;State of Climate Action 2025&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Schumer et al.,&amp;nbsp;&lt;strong&gt;World Resources Institute&lt;/strong&gt;&lt;/p&gt;
  496. &lt;blockquote&gt;Published ahead of COP30, the authors translates the Paris Agreement temperature goal into actionable targets for 2030, 2035 and 2050 across the world&amp;rsquo;s highest-emitting sectors &amp;ndash; power, buildings, industry, transport, forests and land, and food and agriculture &amp;ndash; as well as specifies how quickly technological carbon dioxide and climate finance must scale up. The authors then assess recent progress made towards these global benchmarks, highlighting where &amp;ndash; and by how much &amp;ndash; efforts must accelerate this decade. The authors found that, while the 10 years following the adoption of the Paris Agreement have seen the transition to net-zero emissions take off, there&amp;rsquo;s still a long way to go. Across every single sector, climate action has failed to materialize at the pace and scale required to achieve the Paris Agreement&amp;rsquo;s temperature goal. None of the 45 indicators assessed are on track to reach their 1.5&amp;deg;C-aligned targets by the end of this decade.&lt;/blockquote&gt;
  497. &lt;h3&gt;125 articles in 54 journals by 755 contributing authors&lt;/h3&gt;
  498. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  499. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02793-1" target="_blank"&gt;Equatorial Atlantic mid-depth warming indicates Atlantic meridional overturning circulation slowdown&lt;/a&gt;, Ren et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02793-1&lt;/p&gt;
  500. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-25-0104.1" target="_blank"&gt;Impact of Cold Wakes on Tropical Cyclone Rainfall under Global Warming&lt;/a&gt;, Chen et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-25-0104.1&lt;/p&gt;
  501. &lt;!--more--&gt;
  502. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/os-21-2463-2025" target="_blank"&gt;Leading dynamical processes of global marine heatwaves in an ocean state estimate&lt;/a&gt;, Sala et al., &lt;em&gt;Ocean Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/os" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/os-21-2463-2025&lt;/p&gt;
  503. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70157" target="_blank"&gt;Rapid 21st Century Warming in the Southern Subtropical Indian Ocean Driven by Altered Inter-Basin Connections&lt;/a&gt;, Sajidh et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70157&lt;/p&gt;
  504. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09338-8" target="_blank"&gt;Reply to: Uncertain climate effects of anthropogenic reactive nitrogen&lt;/a&gt;, Gong et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09338-8&lt;/p&gt;
  505. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09337-9" target="_blank"&gt;Uncertain climate effects of anthropogenic reactive nitrogen&lt;/a&gt;, Hodnebrog et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09337-9&lt;/p&gt;
  506. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  507. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/os-21-2505-2025" target="_blank"&gt;Amplified warming and marine heatwaves in the North Sea under a warming climate and their impacts&lt;/a&gt;, Mohamed et al., &lt;em&gt;Ocean Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/os" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/os-21-2505-2025&lt;/p&gt;
  508. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gb008630" target="_blank"&gt;Compound Marine Heatwaves and Acidity Extremes in the Southern Ocean&lt;/a&gt;, Wong et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gb008630" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gb008630&lt;/p&gt;
  509. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006104" target="_blank"&gt;Concurrent Heatwaves and Droughts in Canada: Spatio-Temporal Changes, Climate Drivers, and Persistence Properties&lt;/a&gt;, Sinha et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006104" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006104&lt;/p&gt;
  510. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.09.002" target="_blank"&gt;Contrasting trends of extreme rainfall and snowfall in the Northern Hemisphere&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.09.002" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.09.002&lt;/p&gt;
  511. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gb008649" target="_blank"&gt;Increased Start-to-Peak Vegetation Growth is Associated With Spring Phenology Across the Northern Hemisphere&lt;/a&gt;, Wei et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; 10.1029/2025gb008649&lt;/p&gt;
  512. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-611" target="_blank"&gt;More than a century of oceanic hydrography observations reveals profound climate-related changes in the Northwest Atlantic and Eastern Arctic&lt;/a&gt;, Coyne et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-611&lt;/p&gt;
  513. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64330-0" target="_blank"&gt;Rapid retreat of Berry Glacier, West Antarctica, linked to seawater intrusions revealed by radar interferometry&lt;/a&gt;, Chen et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64330-0&lt;/p&gt;
  514. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-596" target="_blank"&gt;Rapidly Changing Lake-Terminating Glaciers in High Mountain Asia: A Dataset from 1990 to 2022&lt;/a&gt;, Luo et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-596&lt;/p&gt;
  515. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-1701" target="_blank"&gt;Sea ice in the Baltic Sea during 1993/94&amp;ndash;2020/21 ice seasons from satellite observations and model reanalysis&lt;/a&gt;, Singh et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://tc.copernicus.org/articles/19/4741/2025/tc" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://tc.copernicus.org/articles/19/4741/2025/tc-19-4741-2025.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/egusphere-2024-1701&lt;/p&gt;
  516. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43017-025-00724-4" target="_blank"&gt;Weather and climate extremes in a changing Arctic&lt;/a&gt;, Zhang et al., &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43017-025-00724-4&lt;/p&gt;
  517. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  518. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100801" target="_blank"&gt;Drought attribution of climate drivers using machine learning techniques&lt;/a&gt;, Speer &amp;amp; Leslie, &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; 10.1016/j.wace.2025.100801&lt;/p&gt;
  519. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2024-420" target="_blank"&gt;Global ocean surface heat fluxes revisited: A new dataset from maximum entropy production framework with heat storage and Bowen ratio optimizations&lt;/a&gt;, Yang et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2024-420&lt;/p&gt;
  520. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/cp-21-1801-2025" target="_blank"&gt;Observation error estimation in climate proxies with data assimilation and innovation statistics&lt;/a&gt;, Okazaki et al., &lt;em&gt;Climate of the Past&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/cp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/cp-21-1801-2025&lt;/p&gt;
  521. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jc022575" target="_blank"&gt;On the Measurement of Ocean Acidity With Ambient Sound&lt;/a&gt;, Uzhansky et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jc022575" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jc022575&lt;/p&gt;
  522. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.rse.2025.115082" target="_blank"&gt;Relevance of earth observations of essential climate variables in wildfire adaptation&lt;/a&gt;, Seitzinger et al., &lt;em&gt;Remote Sensing of Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.rse.2025.115082" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.rse.2025.115082&lt;/p&gt;
  523. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-63026-9" target="_blank"&gt;Towards annual updating of forced warming to date and constrained climate projections&lt;/a&gt;, Ribes et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-63026-9&lt;/p&gt;
  524. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  525. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005810" target="_blank"&gt;A Risk-Risk Assessment of Climate Extremes: Comparing Greenhouse Gas Warming and Stratospheric Aerosol Injection in UKESM1&lt;/a&gt;, Wells &amp;amp; Haywood, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005810" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005810&lt;/p&gt;
  526. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02780-6" target="_blank"&gt;Atmospheric rivers emerge as future freshwater reserves and heat stocks&lt;/a&gt;, Lu et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02780-6&lt;/p&gt;
  527. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006374" target="_blank"&gt;Constrained Estimates of Externally Forced Past and Future Warming for Canada&lt;/a&gt;, Li et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006374" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006374&lt;/p&gt;
  528. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025av001700" target="_blank"&gt;Southern Ocean Heat Burp in a Cooling World&lt;/a&gt;, Frenger et al., &lt;em&gt;AGU Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025av001700" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025av001700&lt;/p&gt;
  529. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64268-3" target="_blank"&gt;Southern Ocean influence on Atlantic Meridional Overturning Circulation across climate states&lt;/a&gt;, Song et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64268-3&lt;/p&gt;
  530. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  531. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108486" target="_blank"&gt;Advancing convection-permitting regional climate modeling for monsoon extremes in data-scarce, topographically complex regions of South Asia&lt;/a&gt;, Hassan et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108486&lt;/p&gt;
  532. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  533. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-25-0103.1" target="_blank"&gt;Drivers of Model Spread in Snowpack Changes across the American Mountain West&lt;/a&gt;, Aerenson et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-25-0103.1&lt;/p&gt;
  534. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-525" target="_blank"&gt;Estimating return periods for extreme events in climate models through Ensemble Boosting&lt;/a&gt;, Bloin-Wibe et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-525&lt;/p&gt;
  535. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gb008633" target="_blank"&gt;Faster Soil Carbon Aging With Depth at Higher Elevations in a Subtropical Forest&lt;/a&gt;, Li et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; 10.1029/2025gb008633&lt;/p&gt;
  536. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1671320" target="_blank"&gt;Integrating statistical distributions with machine learning to model IDF curve shifts under future climate pathways&lt;/a&gt;, Bakheit Taha et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1671320" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1671320&lt;/p&gt;
  537. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  538. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02445-4" target="_blank"&gt;Accelerated soil phosphorus cycling upon abrupt permafrost thaw&lt;/a&gt;, Li et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02445-4&lt;/p&gt;
  539. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02453-4" target="_blank"&gt;Damage development on Antarctic ice shelves sensitive to climate warming&lt;/a&gt;, Izeboud et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02453-4&lt;/p&gt;
  540. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-3194" target="_blank"&gt;Modeling the impacts of climate trends and lake formation on the retreat of a tropical Andean glacier (1962&amp;ndash;2020)&lt;/a&gt;, Shutkin et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-3194&lt;/p&gt;
  541. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64330-0" target="_blank"&gt;Rapid retreat of Berry Glacier, West Antarctica, linked to seawater intrusions revealed by radar interferometry&lt;/a&gt;, Chen et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64330-0&lt;/p&gt;
  542. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-596" target="_blank"&gt;Rapidly Changing Lake-Terminating Glaciers in High Mountain Asia: A Dataset from 1990 to 2022&lt;/a&gt;, Luo et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-596&lt;/p&gt;
  543. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-1701" target="_blank"&gt;Sea ice in the Baltic Sea during 1993/94&amp;ndash;2020/21 ice seasons from satellite observations and model reanalysis&lt;/a&gt;, Singh et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://tc.copernicus.org/articles/19/4741/2025/tc" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://tc.copernicus.org/articles/19/4741/2025/tc-19-4741-2025.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/egusphere-2024-1701&lt;/p&gt;
  544. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-267" target="_blank"&gt;Spatio-temporal melt and basal channel evolution on Pine Island Glacier ice shelf from CryoSat-2&lt;/a&gt;, Lowery et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-267&lt;/p&gt;
  545. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006367" target="_blank"&gt;The Critical Role of Snowmelt Onset-Driven Vapor Pressure Deficit Variations in Wildfire Dynamics of Northern Latitudes&lt;/a&gt;, Xu et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006367" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006367&lt;/p&gt;
  546. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  547. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-17-5507-2025" target="_blank"&gt;Reconstructing sea level rise from global 945 tide gauges since 1900&lt;/a&gt;, Mu et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-17-5507-2025&lt;/p&gt;
  548. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  549. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rsbl.2025.0284" target="_blank"&gt;A heat-sensitive songbird&amp;rsquo;s risk of lethal hyperthermia increases with humidity&lt;/a&gt;, Liddle et al., &lt;em&gt;Biology Letters&lt;/em&gt; 10.1098/rsbl.2025.0284&lt;/p&gt;
  550. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10531-025-03161-3" target="_blank"&gt;A thorny future for sea urchins in the tropical Western Atlantic&lt;/a&gt;, Principe et al., &lt;em&gt;Biodiversity and Conservation&lt;/em&gt; 10.1007/s10531-025-03161-3&lt;/p&gt;
  551. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000715" target="_blank"&gt;Climate change impacts the non-market value of nature: A case study of birding cultural ecosystem services in South Africa&lt;/a&gt;, Manley et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000715" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000715&lt;/p&gt;
  552. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64453-4" target="_blank"&gt;Climate change is predicted to reduce global belowground ecosystem multifunctionality&lt;/a&gt;, Zhou et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64453-4&lt;/p&gt;
  553. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1101/2025.05.27.656478" target="_blank"&gt;Climate Change, Fisheries Management, and Increases in Demersal Fish Distribution in a Southern Ocean Biodiversity Hotspot&lt;/a&gt;, Williams et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1101/2025.05.27.656478" target="_blank"&gt; Open Access&lt;/a&gt; 10.1101/2025.05.27.656478&lt;/p&gt;
  554. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.72288" target="_blank"&gt;Decades of Change in Vascular Plant Composition in High-Latitude Ecosystems: Shifting Prevalence of Pollination Strategies&lt;/a&gt;, Kiilunen et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.72288" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.72288&lt;/p&gt;
  555. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adx4857" target="_blank"&gt;Declining ocean greenness and phytoplankton blooms in low to mid-latitudes under a warming climate&lt;/a&gt;, Hong et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.adx4857" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.adx4857&lt;/p&gt;
  556. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41612-025-01223-5" target="_blank"&gt;Differential vegetation drought adaptability in global karst areas&lt;/a&gt;, He et al., &lt;em&gt;npj Climate and Atmospheric Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41612" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41612-025-01223-5&lt;/p&gt;
  557. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107573" target="_blank"&gt;Effects of heat stress on the pectoral skeletal muscle of the Antarctic icefish &lt;em&gt;Chionodraco hamatus&lt;/em&gt; and the red-blooded &lt;em&gt;Trematomus bernacchii&lt;/em&gt;&lt;/a&gt;, Garofalo et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107573&lt;/p&gt;
  558. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126423" target="_blank"&gt;Establishing ring width and cell chronologies for predicting future growth of &lt;em&gt;Thuja koraiensis&lt;/em&gt; under climate change&lt;/a&gt;, Park et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; 10.1016/j.dendro.2025.126423&lt;/p&gt;
  559. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-03362-4" target="_blank"&gt;Evolutionary history of stony corals suggests that some could be resilient to climate change&lt;/a&gt;, , &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-025-03362-4&lt;/p&gt;
  560. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70548" target="_blank"&gt;Global Warming and the Spread of the Introduced Jellyfish Cassiopea andromeda: Thermal Niche and Habitat Suitability in the Mediterranean Sea&lt;/a&gt;, Fumarola et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70548" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70548&lt;/p&gt;
  561. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02790-4" target="_blank"&gt;Inevitable global coral reef decline under climate change-induced thermal stresses&lt;/a&gt;, Zeng et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02790-4&lt;/p&gt;
  562. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ddi.70097" target="_blank"&gt;Integrating Adaptive Capacity Alters Outcomes When Modelling Effects of Warming on a Cold-Water Fish in a Sub-Arctic Ecosystem&lt;/a&gt;, Mochnacz et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/ddi.70097" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/ddi.70097&lt;/p&gt;
  563. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70559" target="_blank"&gt;Long-Term Incubation Duration Decline Indicates Climate-Change Driven Feminization of Three Sea Turtle Species in Florida, USA&lt;/a&gt;, Ceriani &amp;amp; Casale, &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70559" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70559&lt;/p&gt;
  564. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jg009198" target="_blank"&gt;Modeling Mycorrhizal Carbon Costs in Temperate Forests: The Impacts of Functional Diversity and Global Change Factors&lt;/a&gt;, Shao et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; 10.1029/2025jg009198&lt;/p&gt;
  565. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107547" target="_blank"&gt;Understanding the effects of recent atmospheric heatwaves on seagrass-inhabited intertidal shellfish beds: a mesocosm experiment&lt;/a&gt;, Rom&amp;aacute;n et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107547&lt;/p&gt;
  566. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ddi.70104" target="_blank"&gt;Vulnerability to Climate Changes of Tropical Forests Across Africa&lt;/a&gt;, Madingou et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/ddi.70104" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/ddi.70104&lt;/p&gt;
  567. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64300-6" target="_blank"&gt;Weather drivers of reproductive variability in perennial plants and their implications for climate change risks&lt;/a&gt;, Journ&amp;eacute; et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64300-6&lt;/p&gt;
  568. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  569. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/acp-25-13327-2025" target="_blank"&gt;Application of PRIM for understanding patterns in carbon dioxide model-observation differences&lt;/a&gt;, Gerken et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/acp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/acp-25-13327-2025&lt;/p&gt;
  570. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.22541/essoar.174886116.60567818/v1" target="_blank"&gt;From Sink to Source: Salinity and Water Level Fluctuations Between Years Drive Large Differences in CO2 Exchange in a Temperate Salt Marsh&lt;/a&gt;, Lu et al., &lt;em&gt;&lt;/em&gt; 10.22541/essoar.174886116.60567818/v1&lt;/p&gt;
  571. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64619-0" target="_blank"&gt;Global climate mode resonance due to rapidly intensifying El Ni&amp;ntilde;o-Southern Oscillation&lt;/a&gt;, Stuecker et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64619-0&lt;/p&gt;
  572. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jg008572" target="_blank"&gt;Greenhouse Gas Emissions From a Large and Shallow Tropical African Lake: Contribution of Different Gases and Emission Pathways&lt;/a&gt;, Ague et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jg008572" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jg008572&lt;/p&gt;
  573. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70561" target="_blank"&gt;Increased Belowground Carbon Allocation Reduces Soil Carbon Losses Under Long-Term Warming&lt;/a&gt;, Schindlbacher et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70561" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70561&lt;/p&gt;
  574. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.105104" target="_blank"&gt;Increasing soil organic carbon stock of alpine wetlands on the Tibetan Plateau: Results of future scenarios&lt;/a&gt;, Jiang et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.105104&lt;/p&gt;
  575. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2508773122" target="_blank"&gt;Microbial oxidation significantly reduces methane export from global groundwaters&lt;/a&gt;, Heinze et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2508773122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2508773122&lt;/p&gt;
  576. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02446-3" target="_blank"&gt;Southern Ocean freshening stalls deep ocean CO2 release in a changing climate&lt;/a&gt;, Olivier &amp;amp; Haumann Haumann, &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02446-3&lt;/p&gt;
  577. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  578. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  579. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02788-y" target="_blank"&gt;Carbon storing in United States cities through biogenic storage and concrete carbonation in the built environment&lt;/a&gt;, Hu &amp;amp; Ghorbany, &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02788-y&lt;/p&gt;
  580. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-5723-2025" target="_blank"&gt;Impulse response functions as a framework for quantifying ocean-based carbon dioxide removal&lt;/a&gt;, Yankovsky et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-5723-2025&lt;/p&gt;
  581. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1648094" target="_blank"&gt;Pine afforestation on degraded lands: a global review of carbon sequestration potential&lt;/a&gt;, Tudor et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1648094" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1648094&lt;/p&gt;
  582. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02775-3" target="_blank"&gt;Stakeholders have knowledge priorities beyond local impacts for responsible marine-based carbon dioxide removal in Tasmania&lt;/a&gt;, Malakar et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02775-3&lt;/p&gt;
  583. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101866" target="_blank"&gt;Toward green steel: Role of pilot-scale carbon capture and utilization technologies&lt;/a&gt;, Rathore, &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101866&lt;/p&gt;
  584. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  585. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02729-9" target="_blank"&gt;Closed-loop geothermal system is a potential source of low-carbon renewable energy&lt;/a&gt;, Zargartalebi et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02729-9&lt;/p&gt;
  586. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64090-x" target="_blank"&gt;Global hidden material flows triggered by China&amp;rsquo;s vehicle supply chain far exceed eventual material use&lt;/a&gt;, Wang et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64090-x&lt;/p&gt;
  587. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104384" target="_blank"&gt;Let's meet at the (climate) club: The contributions of the Global Bioenergy Partnership (GBEP) to sustainable bioenergy governance&lt;/a&gt;, Afionis, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104384" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104384&lt;/p&gt;
  588. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  589. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005810" target="_blank"&gt;A Risk-Risk Assessment of Climate Extremes: Comparing Greenhouse Gas Warming and Stratospheric Aerosol Injection in UKESM1&lt;/a&gt;, Wells &amp;amp; Haywood, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005810" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005810&lt;/p&gt;
  590. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1599405" target="_blank"&gt;Africa&amp;rsquo;s regional and local climate response to stratospheric aerosol injection characteristics&lt;/a&gt;, Kumi et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1599405" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1599405&lt;/p&gt;
  591. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-20672-9" target="_blank"&gt;Effect of stratospheric aerosol injection on marine heatwave events off the coast of South Africa&lt;/a&gt;, Dimoune et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-20672-9&lt;/p&gt;
  592. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006212" target="_blank"&gt;Simulated Climate and Carbon Cycle Response to Arctic Ocean Albedo Modification&lt;/a&gt;, Jiang et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006212" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006212&lt;/p&gt;
  593. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  594. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104345" target="_blank"&gt;Energy narratives in Europe: Exploring the link between online news and renewable energy production&lt;/a&gt;, Vestrelli et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104345" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104345&lt;/p&gt;
  595. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102796" target="_blank"&gt;From consensus gap to common ground: Causes knowledge as a crucial predictor of climate change perceptions across divides&lt;/a&gt;, Leoniak &amp;amp; Korniluk, &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102796&lt;/p&gt;
  596. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1657851" target="_blank"&gt;Mind the gap: bringing adolescents and young adults and emotional resilience into climate action&lt;/a&gt;, Kohli et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1657851" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1657851&lt;/p&gt;
  597. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104402" target="_blank"&gt;Social media discourse as a window into energy transition: Analyzing public perception of electric vehicles on YouTube&lt;/a&gt;, Li &amp;amp; Ullah, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2025.104402&lt;/p&gt;
  598. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102793" target="_blank"&gt;Subtraction neglect in perceptions of climate action strategies&lt;/a&gt;, Suter et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2025.102793" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102793&lt;/p&gt;
  599. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102810" target="_blank"&gt;The Climate's Nuanced Truth: Why Past Disasters Fail to Ignite Action&lt;/a&gt;, Adolfo, &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102810&lt;/p&gt;
  600. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104401" target="_blank"&gt;The populist roadblock: The Alternative for Germany (AfD), climate denial, and electric vehicle adoption in Germany&lt;/a&gt;, Stefes &amp;amp; Gabehart, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2025.104401&lt;/p&gt;
  601. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1186/s40991-025-00124-3" target="_blank"&gt;What is greenwashing- a scoping review of greenwashing definitions and development of the need-for- balance model&lt;/a&gt;, Koch &amp;amp; Denner, &lt;em&gt;Journal of Sustainable Business&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1186/s40991" target="_blank"&gt; Open Access&lt;/a&gt; 10.1186/s40991-025-00124-3&lt;/p&gt;
  602. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  603. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101870" target="_blank"&gt;Global overview of agrivoltaic system: The future security for food and energy&lt;/a&gt;, Patel &amp;amp; Chakraborty, &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101870&lt;/p&gt;
  604. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  605. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s00704-025-05838-9" target="_blank"&gt;Modeling climate-resilient crop suitability in central India using machine learning and species distribution approaches&lt;/a&gt;, Moharana et al., &lt;em&gt;Theoretical and Applied Climatology&lt;/em&gt; 10.1007/s00704-025-05838-9&lt;/p&gt;
  606. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  607. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005757" target="_blank"&gt;A Meta-Analysis to Disentangle the Impacts of Climate and Land Use Changes on Streamflow&lt;/a&gt;, Soundharajan et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005757" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005757&lt;/p&gt;
  608. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02780-6" target="_blank"&gt;Atmospheric rivers emerge as future freshwater reserves and heat stocks&lt;/a&gt;, Lu et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02780-6&lt;/p&gt;
  609. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.09.002" target="_blank"&gt;Contrasting trends of extreme rainfall and snowfall in the Northern Hemisphere&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.09.002" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.09.002&lt;/p&gt;
  610. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/os-21-2505-2025" target="_blank"&gt;Amplified warming and marine heatwaves in the North Sea under a warming climate and their impacts&lt;/a&gt;, Mohamed et al., &lt;em&gt;Ocean Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/os" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/os-21-2505-2025&lt;/p&gt;
  611. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gb008630" target="_blank"&gt;Compound Marine Heatwaves and Acidity Extremes in the Southern Ocean&lt;/a&gt;, Wong et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gb008630" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gb008630&lt;/p&gt;
  612. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006104" target="_blank"&gt;Concurrent Heatwaves and Droughts in Canada: Spatio-Temporal Changes, Climate Drivers, and Persistence Properties&lt;/a&gt;, Sinha et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006104" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006104&lt;/p&gt;
  613. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.09.002" target="_blank"&gt;Contrasting trends of extreme rainfall and snowfall in the Northern Hemisphere&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.09.002" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.09.002&lt;/p&gt;
  614. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gb008649" target="_blank"&gt;Increased Start-to-Peak Vegetation Growth is Associated With Spring Phenology Across the Northern Hemisphere&lt;/a&gt;, Wei et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; 10.1029/2025gb008649&lt;/p&gt;
  615. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-611" target="_blank"&gt;More than a century of oceanic hydrography observations reveals profound climate-related changes in the Northwest Atlantic and Eastern Arctic&lt;/a&gt;, Coyne et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-611&lt;/p&gt;
  616. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64330-0" target="_blank"&gt;Rapid retreat of Berry Glacier, West Antarctica, linked to seawater intrusions revealed by radar interferometry&lt;/a&gt;, Chen et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64330-0&lt;/p&gt;
  617. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-596" target="_blank"&gt;Rapidly Changing Lake-Terminating Glaciers in High Mountain Asia: A Dataset from 1990 to 2022&lt;/a&gt;, Luo et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-596&lt;/p&gt;
  618. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-1701" target="_blank"&gt;Sea ice in the Baltic Sea during 1993/94&amp;ndash;2020/21 ice seasons from satellite observations and model reanalysis&lt;/a&gt;, Singh et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://tc.copernicus.org/articles/19/4741/2025/tc" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://tc.copernicus.org/articles/19/4741/2025/tc-19-4741-2025.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.5194/egusphere-2024-1701&lt;/p&gt;
  619. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43017-025-00724-4" target="_blank"&gt;Weather and climate extremes in a changing Arctic&lt;/a&gt;, Zhang et al., &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43017-025-00724-4&lt;/p&gt;
  620. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000739" target="_blank"&gt;Modeling snowmelt-driven streamflow dynamics in a Himalayan Basin under climate warming scenarios&lt;/a&gt;, Jamshed et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000739" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000739&lt;/p&gt;
  621. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100817" target="_blank"&gt;Two sides of the same coin? Hydrometeorological uncertainties in impact-based flood warning systems and climate change sensitivity of floodplains&lt;/a&gt;, Mosimann et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100817" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100817&lt;/p&gt;
  622. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  623. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101789" target="_blank"&gt;Decoupling carbon emissions, economic growth, and health costs toward carbon neutrality in China's regions&lt;/a&gt;, Huang et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101789&lt;/p&gt;
  624. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02743-x" target="_blank"&gt;Mitigation efforts to reduce carbon dioxide emissions and meet the Paris Agreement have been offset by economic growth&lt;/a&gt;, Jiang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02743-x&lt;/p&gt;
  625. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  626. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100739" target="_blank"&gt;Beyond individual barriers: a systems approach to understanding and addressing nature-based solutions implementation challenges&lt;/a&gt;, Han et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100739" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100739&lt;/p&gt;
  627. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102758" target="_blank"&gt;Driving carbon offset donations: Evaluating the effectiveness of nudging, framing, and Nudge+ techniques&lt;/a&gt;, Effendy et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102758&lt;/p&gt;
  628. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-22022-1" target="_blank"&gt;Enhancing carbon emission reduction strategies using OCO and ICOS data&lt;/a&gt;, &amp;Aring;str&amp;ouml;m et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-22022-1&lt;/p&gt;
  629. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41893-025-01658-x" target="_blank"&gt;Housing exchange framework to reduce carbon emissions from commuting&lt;/a&gt;, Zhao et al., &lt;em&gt;Nature Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41893" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41893-025-01658-x&lt;/p&gt;
  630. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104256" target="_blank"&gt;Lifestyle change modelling for climate change mitigation: Complementary strengths, policy support, and research avenues&lt;/a&gt;, Scherer et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104256" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104256&lt;/p&gt;
  631. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104344" target="_blank"&gt;Smart thermostats, washing machines, and electric vehicle charging: Determinants of preferences among German and Spanish consumers&lt;/a&gt;, Amaris et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104344" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104344&lt;/p&gt;
  632. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102793" target="_blank"&gt;Subtraction neglect in perceptions of climate action strategies&lt;/a&gt;, Suter et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2025.102793" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102793&lt;/p&gt;
  633. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1622148" target="_blank"&gt;The climate mitigation effect of legal institutions: environmental courts and urban carbon balance&lt;/a&gt;, Long et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1622148" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1622148&lt;/p&gt;
  634. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114889" target="_blank"&gt;The fuel of the future law and the Brazilian sugarcane energy sector&lt;/a&gt;, Lisbinski et al., &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2025.114889&lt;/p&gt;
  635. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2571400" target="_blank"&gt;The impact of wealth inequality on carbon emissions and climate policy&lt;/a&gt;, Morrison et al., &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2571400&lt;/p&gt;
  636. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  637. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2570741" target="_blank"&gt;A framework-based assessment of climate adaptation readiness in Romanian cities&lt;/a&gt;, Falcescu et al., &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2570741&lt;/p&gt;
  638. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104234" target="_blank"&gt;Accessibility analysis and optimization strategies of green spaces for enhancing climate resilience: Equity-oriented insights from megacities&lt;/a&gt;, Zhang et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; 10.1016/j.envsci.2025.104234&lt;/p&gt;
  639. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102620" target="_blank"&gt;An intersectional analysis of climate risk and susceptibility among urban schools across 20 major U.S. cities&lt;/a&gt;, Rahai et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102620&lt;/p&gt;
  640. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102654" target="_blank"&gt;Co-producing climate services for urban adaptation: what shapes perspectives of success?&lt;/a&gt;, Boon &amp;amp; Biesbroek, &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2025.102654" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2025.102654&lt;/p&gt;
  641. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02779-z" target="_blank"&gt;Comprehensive portfolio of adaptation measures to safeguard against evolving flood risks in a changing climate&lt;/a&gt;, Azhar et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://www.nature.com/articles/s43247" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.nature.com/articles/s43247-025-02779-z.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s43247-025-02779-z&lt;/p&gt;
  642. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02455-2" target="_blank"&gt;Critical intervention points for European adaptation to cascading climate change impacts&lt;/a&gt;, Auer et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02455-2&lt;/p&gt;
  643. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1608176" target="_blank"&gt;Framework for assessing the climate vulnerability of unpaved roads in Sierra Leone&lt;/a&gt;, Kamara et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1608176" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1608176&lt;/p&gt;
  644. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02456-1" target="_blank"&gt;Identifying critical intervention points for the prevention of cascading climate impacts&lt;/a&gt;, , &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02456-1&lt;/p&gt;
  645. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103071" target="_blank"&gt;Mapping the solution space for local adaptation under global change: A test of concept for the Vietnamese Mekong delta&lt;/a&gt;, Dunn et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103071" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103071&lt;/p&gt;
  646. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17565529.2025.2575472" target="_blank"&gt;The ambiguity of &amp;ldquo;climate change adaptation&amp;rdquo; and financing decisions in public budgets: insights from Tanzania&lt;/a&gt;, Pauline et al., &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2025.2575472&lt;/p&gt;
  647. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  648. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1665070" target="_blank"&gt;Climate change, marriage and health&lt;/a&gt;, Chuang &amp;amp; Capellan , &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1665070" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1665070&lt;/p&gt;
  649. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1101/2025.03.25.644544" target="_blank"&gt;Climate-Driven Increase in Transmission of a Wildlife Malaria Parasite Over the Last Quarter Century&lt;/a&gt;, Theodosopoulos et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1101/2025.03.25.644544" target="_blank"&gt; Open Access&lt;/a&gt; 10.1101/2025.03.25.644544&lt;/p&gt;
  650. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102587" target="_blank"&gt;Long-term trends in extreme heat exposure equity for children and elderly: A case study of Shandong Peninsula urban agglomeration&lt;/a&gt;, Li et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102587&lt;/p&gt;
  651. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102659" target="_blank"&gt;Urban heat risks reimagined: A framework for global physical hazard assessment&lt;/a&gt;, Hung et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102659&lt;/p&gt;
  652. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human culture&lt;/strong&gt;&lt;/p&gt;
  653. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2363" target="_blank"&gt;Sustainable Strategies for Optimizing the Reduction of GHG Emissions in Qatar's Football Stadiums&lt;/a&gt;, Alaoui &amp;amp; Zarraa, &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; 10.1002/ghg.2363&lt;/p&gt;
  654. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  655. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1651147" target="_blank"&gt;Climate philanthropy as a catalyst for advancing the renewable energy transition and climate resilience in Africa&lt;/a&gt;, Kwanhi et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1651147" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1651147&lt;/p&gt;
  656. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104238" target="_blank"&gt;Key challenges in forest restoration and adaptation in Spain: Expert-based solutions for a resilient future&lt;/a&gt;, Erdozain et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104238" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104238&lt;/p&gt;
  657. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43017-025-00737-z" target="_blank"&gt;Stakeholder asset-mapping of climate technology infrastructures&lt;/a&gt;, Koch, &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; 10.1038/s43017-025-00737-z&lt;/p&gt;
  658. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  659. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.aeb9857" target="_blank"&gt;Trojan gold: New US &amp;ldquo;standard&amp;rdquo; is another veiled attack on science&lt;/a&gt;, Lewandowsky, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.aeb9857&lt;/p&gt;
  660. &lt;hr /&gt;
  661. &lt;h3&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  662. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2025/Oct/IRENA_COP30_GRA_Tracking_the_UAE_Consensus_2025.pdf" target="_blank"&gt;Delivering on the UAE Consensus: Tracking progress toward tripling renewable energy capacity and doubling energy efficiency by 2030&lt;/a&gt;, &lt;/strong&gt;Xiao et al., &lt;strong&gt;International Renewable Energy Agency, COP30 Presidency, Global Renewables Alliance, Abu Dhabi&lt;/strong&gt;&lt;/p&gt;
  663. &lt;blockquote&gt;The authors found that the UAE Consensus target to reach 11.2 TW of installed renewable power capacity by 2030 remains within reach, thanks to record-breaking capacity additions for a third consecutive year in 2024. Yet, imbalances in the technologies installed and their geographic deployment continue to threaten an effective, just and inclusive transition.&lt;/blockquote&gt;
  664. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.ajg.com/gallagherre/-/media/files/gallagher/gallagherre/news-and-insights/2025/october/natural-catastrophe-and-climate-report-q3-2025.pdf" target="_blank"&gt;Gallagher Re Natural Catastrophe and Climate Report: Q3 2025&lt;/a&gt;, &lt;/strong&gt;Bowen et al., &lt;strong&gt;Gallagher Re&lt;/strong&gt;&lt;/p&gt;
  665. &lt;blockquote&gt;The authors summarize preliminary global loss totals and major catastrophe events that occurred during the first three quarters of 2025. Global natural catastrophe activity remained relatively mild during the third quarter of 2025. The abnormally low frequency of high-cost events has, thus far, left the year within annual catastrophe budgets for governments and the insurance industry. The minimum USD $214 billion in economic losses from all natural perils was notably below the 10-year average (USD $338 billion). The portion covered by the insurance market or public insurance entities was at least USD $105 billion, or 8% lower than the decadal average (USD $114 billion). The below average loss totals are largely due to quieter-than-expected tropical cyclone activity in the Atlantic and Pacific oceans.&lt;/blockquote&gt;
  666. &lt;p&gt;&lt;strong&gt;&lt;a href="https://law.ucla.edu/sites/default/files/PDFs/Publications/Emmett%20Institute/Costs%26Carbon%20FINAL.pdf" target="_blank"&gt;The Cost &amp;amp; Carbon of Competing Utility Models&lt;/a&gt;, &lt;/strong&gt;Denise Grab, &lt;strong&gt;Emmett Institute on Climate Change and the Environment, University of California, Los Angeles&lt;/strong&gt;&lt;/p&gt;
  667. &lt;blockquote&gt;The author presents a case study of two specific utilities in the same geographic region: the Los Angeles Department of Water &amp;amp; Power (LADWP) and Southern California Edison (SCE). What do the outcomes in Los Angeles tell us about how the two types of utility models can achieve clean energy goals? What about cost? The author examines climate metrics, residential rates, percentage of Renewable Portfolio Standard (RPS)-eligible generation, and carbon intensity of the overall generation mix, among other measures. Overall, LADWP and SCE appear to be converging on both climate and cost outcomes, but there are notable differences between the two models which the author explores.&lt;/blockquote&gt;
  668. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.transportenvironment.org/uploads/files/2025_10_PHEV_smoke_screen_report.pdf" target="_blank"&gt;Smoke screen: the growing PHEV emissions scandal. Long-range PHEVs and EREVs are a diversion on the road to zero emissions&lt;/a&gt;, &lt;/strong&gt;Sof&amp;iacute;a Navas Gohlke and Yoann Gimbert, &lt;strong&gt;Transport &amp;amp; Environment&lt;/strong&gt;&lt;/p&gt;
  669. &lt;blockquote&gt;In 2026, the European Commission (EC) will review the car CO? emission standards - EU&amp;rsquo;s flagship automotive climate and industrial policy. While the EC prepares for the review, the automotive industry is calling to weaken the regulation, notably by calling to prolong the sales of plug-in hybrid electric vehicles (PHEVs) beyond 2035 and to reverse the correction of the official PHEV emissions based on utility factors. A specific variant of PHEV, extended-range electric vehicles (EREVs), which are becoming increasingly popular in China, have also entered the debate. The authors shed light on the risks posed by PHEVs, highlighting the crucial importance of upholding the planned utility factor corrections and shows that PHEVs are not future-proof options for European drivers and the European automotive industry. The real-world CO? emissions of PHEV models registered in 2023 are nearly five times the official emissions. This real-world gap has been widening over the years from 3.5 in 2021 to 4.9 in 2023 based on official data transmitted from on-board fuel consumption meters (OBFCM). The gap is mostly caused by flawed assumptions on the share of electric driving mode (the &amp;lsquo;utility factor&amp;rsquo;, UF) which leads to a drastic underestimate of official PHEV emissions. The UF overestimated the electric driving share, assuming 84% over 2021-2023, whereas real-world data shows this to be just 27%.&lt;/blockquote&gt;
  670. &lt;p&gt;&lt;strong&gt;&lt;a href="https://wmo.int/sites/default/files/2025-10/GHG-21_en.pdf" target="_blank"&gt;Greenhouse Gas Bulletin - No. 21&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;World Meteorological Organization&lt;/strong&gt;&lt;/p&gt;
  671. &lt;blockquote&gt;The levels of the three most abundant long-lived greenhouse gases (LLGHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), reached new records in 2024. From 2023 to 2024, CO2 in the global surface atmosphere increased by 3.5 ppm,(1) the largest one-year increase since modern measurements began in 1957. This increase was driven by continued fossil CO2 emissions, enhanced fire emissions and reduced terrestrial/ocean sinks in 2024, which could signal a climate feedback. Given the dominant role of increasing atmospheric CO2 in global climate change, achieving net-zero anthropogenic CO2 emissions must be the focus of climate action. Sustaining and expanding greenhouse gas monitoring is critical to supporting such efforts.&lt;/blockquote&gt;
  672. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.mwcog.org/assets/1/6/Draft_COG_CCAP_for_Public_Comments_October_2025.pdf" target="_blank"&gt;Comprehensive Climate Action Plan. Washington-Arlington-Alexandria DC-VA-MD-WV Metropolitan Statistical Area&lt;/a&gt;, &lt;/strong&gt;Metropolitan Washington Council of Governments, &lt;strong&gt;Washington DC Department of Energy and Environment&lt;/strong&gt;&lt;/p&gt;
  673. &lt;blockquote&gt;The authors present 10 vital measures to reduce air pollution and greenhouse gas emissions in the Metropolitan Statistical Area (MSA). These measures were developed through a collaborative and iterative process with the many government offices and committees within the MSA and the states it crosses, as well as other stakeholders such as community-based organizations, private sector actors, utilities, planning boards and committees, and more. These are practical and achievable strategies spanning buildings and clean energy, transportation, waste, and land-use sectors.&lt;/blockquote&gt;
  674. &lt;p&gt;&lt;strong&gt;&lt;a href="https://helda.helsinki.fi/items/9442db48-3053-4cf2-badf-fcccfab884d6" target="_blank"&gt;Effect of no-till on carbon balance and greenhouse gas emissions in boreal mineral and peat soils&lt;/a&gt;, &lt;/strong&gt;Henri Honkanen, &lt;strong&gt;University of Helsinki&lt;/strong&gt;&lt;/p&gt;
  675. &lt;blockquote&gt;Intensive cultivation of soils has increased greenhouse gas (GHG) emissions and soil organic carbon (SOC) losses from arable soils. In particular, peat soils are a major GHG emission source even though their share of total agricultural area is small. The widely adopted no-tillage (NT) method has many benefits, such as reduced workload and erosion. However, the benefits of NT for climate change mitigation remain unclear. This thesis focused on increasing understanding of carbon cycling and the formation of GHG emissions and elucidated the potential of NT in climate change mitigation in boreal climate conditions.&lt;/blockquote&gt;
  676. &lt;p&gt;&lt;strong&gt;&lt;a href="https://carbonremoval.ca/wp-content/uploads/2025/10/DataSheet-Public_FINAL.pdf" target="_blank"&gt;Canadians Back Carbon Removal&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Carbon Removal Canada&lt;/strong&gt;&lt;/p&gt;
  677. &lt;blockquote&gt;The authors show that there is significant public support for carbon removal. Nearly two-thirds of Canadians (64%) support carbon removal initiatives, while four in five (81%) consider removals essential to building a strong future for the country. The results coincide with federal and provincial efforts to advance carbon removal through tax credits, procurement, and innovation policy. Polling finds Canadians are ready for more of this kind of leadership. This support cuts across traditional political divides, with 77% of Liberal voters, 76% of NDP voters, and 51% of Conservative voters endorsing carbon removal. Regionally, Quebec (74%) and Ontario (68%) lead in support. Provincial motivations vary strategically&amp;mdash;from innovation leadership resonating in British Columbia to agricultural co-benefits appealing to Saskatchewan and Manitoba, and climate resilience driving support in Atlantic Canada. More than half of Canadians (54%) report familiarity with durable carbon removal methods. Carbon removal support has also evolved beyond environmental policy into a leadership litmus test. Nearly two-thirds (62%) of Canadians say they are more likely to vote for candidates supporting these technologies, while 56% view companies more favorably when they invest in carbon removal.&lt;/blockquote&gt;
  678. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.oxfordenergy.org/wpcms/wp-content/uploads/2025/10/Insight-170-From-Principles-to-Practice-Operationalization-of-a-Global-Carbon-Market-under-Article-6.pdf" target="_blank"&gt;From Principles to Practice: Operationalization of a Global Carbon Market under Article 6&lt;/a&gt;, &lt;/strong&gt;Hauman et al., &lt;strong&gt;The Oxford Institute for Energy Studies&lt;/strong&gt;&lt;/p&gt;
  679. &lt;blockquote&gt;While Article 6 and emerging regulatory standards have laid the structural groundwork for integrity of carbon markets, the real challenge now is operationalizing that framework. In the coming five years, project-based carbon credit markets are expected to undergo a decisive shift from voluntary and fragmented activity to large-scale, compliance-driven demand. Conservative projections indicate that annual demand for regulatory credits including for compliance use domestically and internationally will increase over fivefold between 2024 and 2030, underpinned by substantial sovereign commitments and new domestic legislation. This transition is constructive but not without its challenges. To support this market growth and beyond, it requires a step-change in project pipelines, transparent registries, coherent legal frameworks and bankable finance to convert commitments into deliverable supply. Without timely coordination and capacity building, project-based carbon credit markets risk mismatches between regulated demand and available supply, limiting the overall potential growth of these markets and therefore the opportunity for trade to enable quicker and more cost-effective decarbonization. The authors preview both the substantial progress already made since an earlier update alongside the future challenges to scale, setting out the practical areas in which policy, market and financial actors must align to enable a truly liquid, global regulated carbon market by 2030.&lt;/blockquote&gt;
  680. &lt;p&gt;&lt;strong&gt;&lt;a href="https://climateandcommunity.org/wp-content/uploads/2025/10/Building-Community-Power-report.pdf" target="_blank"&gt;Building Community Power. Community Benefits Agreements Across the Global Energy Supply Chain&lt;/a&gt;, &lt;/strong&gt;Blair et al., &lt;strong&gt;The Climate and Community Institute&lt;/strong&gt;&lt;/p&gt;
  681. &lt;blockquote&gt;The authors conducted research spanning the globe on Community benefit Agreement (CBA) best practices, interviewed communities actively involved in CBA negotiations, and consulted preeminent scholars and practitioners of CBAs and the energy transition on policy design. The researchers found that when they strategically employ CBAs, communities can shape how burdens and benefits are distributed, how projects are designed and governed, and even whether or not a project moves forward at all. In fact, the entire supply chain of the energy transition&amp;mdash;from extraction to processing, manufacturing, and transportation, as well as electric power generation, storage, and transmission&amp;mdash;offers opportunities for cross-sectoral organizing and equitable governance.&lt;/blockquote&gt;
  682. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ophi.org.uk/sites/default/files/2025-10/GMPI_2025_Overlapping.pdf" target="_blank"&gt;Global Multidimensional Poverty Index 2025 &amp;ndash; Overlapping Hardships: Poverty and Climate Hazards&lt;/a&gt;, &lt;/strong&gt;Alkire et al., &lt;strong&gt;United Nations Development Program and Oxford Poverty and Human Development Institute&lt;/strong&gt;&lt;/p&gt;
  683. &lt;blockquote&gt;The climate crisis is fundamentally changing global poverty. It has left more people than ever at risk of poverty and less likely to escape it. Inequalities have worsened while prospects for sustainable development recede. Climate shocks continue to grow in frequency and intensity, leaving a lengthening trail of human suffering and deprivation. Climate-related disasters pushed around 32 million people from their homes and communities in 2022 alone. Poverty, once seen as mainly a standalone socioeconomic concern, is now inextricably linked with planetary pressures. Without ambitious efforts to mitigate climate fallout, the number of people in extreme monetary poverty could nearly double by 2050. Poverty and climate shocks create a double burden. Poverty drives exposure to climate hazards. These, in turn, reinforce and prolong poverty. This interconnectedness is a defining characteristic of the Anthropocene, an era in which human activity has so fundamentally altered the Earth&amp;rsquo;s systems that environmental and social problems can only be resolved together. The authors, for the first time, overlay data on climate hazards and multidimensional poverty to assess how exposed poor people are to climate shocks.&lt;/blockquote&gt;
  684. &lt;p&gt;&lt;strong&gt;&lt;a href="https://spiral.imperial.ac.uk/server/api/core/bitstreams/acfc5628-9585-4e2b-8571-c891a969960e/content" target="_blank"&gt;Ten Years of the Paris Agreement: The Present and Future of Extreme Heat&lt;/a&gt;, &lt;/strong&gt;Arrighi et al., &lt;strong&gt;World Weather Attribution&lt;/strong&gt;&lt;/p&gt;
  685. &lt;blockquote&gt;The Paris Agreement provides an important legal and political framework toward a safer and fairer world. Projected warming this century has dropped from about 4&amp;deg;C in 2015 to 2.6&amp;deg;C today &amp;mdash; if current emissions reduction pledges are fully implemented. However, 2.6&amp;deg;C of warming would still lead to a dangerously hot planet. Every fraction of a degree of warming results in more frequent and intense heat. The world now experiences an average of 11 more hot days per year with the additional 0.3&amp;deg;C of warming since 2015. In a 2.6&amp;deg;C world, that increases to 57 extra hot days per year compared to now; at 4&amp;deg;C, that rises to an additional 114 hot days per year. Case studies in the report confirm that extreme heat waves have already become more likely since 2015. Three of the six events studied would have been nearly impossible without climate change, and two of those are now about 10 times more likely to occur in 2025 than in 2015. Since 2015, heat early warning systems and action plans have expanded worldwide, but progress is insufficient and is slowed by limited financing for heat adaptation at the local level. The costs of inaction on extreme heat are rising faster than adaptation. Health, labor, and infrastructure are under strain, adaptation finance is insufficient, and the most vulnerable risk being left behind unprepared. The expected warming this century is still far above the Paris goals of keeping warming to 1.5&amp;deg;C and well below 2&amp;deg;C. The highest possible ambition as set out in the Paris Agreement to achieve deep, rapid, and sustained emissions reductions is urgently needed.&lt;/blockquote&gt;
  686. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.systemiq.earth/wp-content/uploads/2025/10/FINAL-REPORT-Returns-on-resilience_2025.pdf" target="_blank"&gt;Returns on Resilience: Investing in Adaptation to Drive Prosperity, Growth and Competitiveness&lt;/a&gt;, &lt;/strong&gt;Schmidt-Traub et al., &lt;strong&gt;Africa Europe Foundation et al&lt;/strong&gt;&lt;/p&gt;
  687. &lt;blockquote&gt;Investing in climate and nature resilience could generate over 280 million jobs across emerging markets and developing economies by 2035, while boosting GDP and unlocking a trillion dollar market opportunity. THE authors present the strongest evidence to date that adaptation is not just a moral imperative, but a strategic investment in sustainable growth. Investments in adaptation deliver four times more benefits than costs, with an average annual return rate of 25%. Beyond avoided losses, resilience-building investments drive growth and competitiveness. Scaling interventions could create more than 280 million jobs by 2035. The adaptation and resilience market could reach up to $1.3 trillion annually by 2030. In some vulnerable economies, adaptation could increase GDP by up to 15% by 2050, while strengthening fiscal stability and reducing debt risk.&lt;/blockquote&gt;
  688. &lt;p&gt;&lt;strong&gt;&lt;a href="https://drive.google.com/file/d/1vzyKJvaFjljacKHg-Okm9x7Jnvz_YWyD/view?pli=1" target="_blank"&gt;Evaluation and Assessment of Local Government Processes for the Siting of Commercial Clean Energy and Energy Transmission Projects&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Colorado Energy Office and Department of Natural Resources&lt;/strong&gt;&lt;/p&gt;
  689. &lt;blockquote&gt;The authors identify key challenges and best practices in siting and permitting new clean energy infrastructure. By identifying barriers as directed by SB24-212, the authors pave the way for further action to improve siting and permitting of clean energy projects to deliver affordable energy resources and meet increasing electricity demand.&lt;/blockquote&gt;
  690. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.amnesty.org/en/documents/asa05/0343/2025/en/" target="_blank"&gt;Navigating injustice&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Amnesty International&lt;/strong&gt;&lt;/p&gt;
  691. &lt;blockquote&gt;As human-induced climate change threatens the human rights of people living in the Pacific, many seek opportunities to migrate to Aotearoa New Zealand. Sea level rise constitutes an existential threat for low-lying island countries projected to increasingly lose land to the encroaching ocean, such as Tuvalu and Kiribati. Coastal erosion, king tides, floods, extreme heat, droughts, and cyclones threaten Pacific Peoples&amp;rsquo; rights to life, health, an adequate standard of living, and a clean, healthy and sustainable environment. The authors document how Aotearoa New Zealand&amp;rsquo;s immigration policy framework fails to reflect the needs of climate-affected Pacific peoples. The international community&amp;rsquo;s failure to act on climate change, coupled with states&amp;rsquo; increasingly restrictive approaches to international migration, subjects people displaced in the context of the climate crisis to a double injustice. Aotearoa New Zealand &amp;ndash; and the international community &amp;ndash; must act now to protect the rights and dignity of Pacific peoples in the face of the climate crisis, both at home and in their country of destination.&lt;/blockquote&gt;
  692. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.frameworksinstitute.org/app/uploads/2025/09/Connecting-Early-Childhood-Development-to-Climate-Change.pdf" target="_blank"&gt;Connecting Early Childhood Development to Climate Change&lt;/a&gt;, &lt;/strong&gt;Lyew et al., &lt;strong&gt;Frameworks, the Harvard Center on the Developing Child and Harvard Chan C-CHANGE&lt;/strong&gt;&lt;/p&gt;
  693. &lt;blockquote&gt;Climate change is typically framed as a future problem, but it is already reshaping the environments where children live, grow, play, and learn. Despite that reality, public attention is rarely focused on how climate change affects children&amp;rsquo;s development&amp;mdash;or what we can do about it. The authors' offer practical guidance for advocates, researchers, organizers, and other communicators who can help shape conversations about climate change and child development. It includes an examination of how people currently think about these issues, an analysis of communication challenges, and recommendations for framing messages to build public understanding of the impacts of climate change on early childhood development.&lt;/blockquote&gt;
  694. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.hrpdcva.gov/DocumentCenter/View/15028/Hampton-Roads-CCAP-Draft-Public-Comment---Updated-PDF" target="_blank"&gt;Draft Comprehensive Climate Action Plan (Hampton Roads, Virginia)&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;The Hampton Roads Planning District Commission&lt;/strong&gt;&lt;/p&gt;
  695. &lt;blockquote&gt;This draft plan provides a roadmap for local governments, industry, and communities to work together toward net zero greenhouse gas (GHG) emissions by 2050. Climate action is not only about cutting carbon. The CCAP also aims to improve air quality and health by reducing co-pollutants, boost the clean energy economy and workforce development, protect vulnerable communities from flooding, heat, and rising energy costs, and preserve natural lands and waterways critical to Hampton Roads&amp;rsquo; identity and safety.&lt;/blockquote&gt;
  696. &lt;p&gt;&lt;strong&gt;&lt;a href="https://foodrise.org.uk/wp-content/uploads/2025/10/Roasting-The-Planet-Report-FINAL-16_10_25.pdf" target="_blank"&gt;Roasting the Planet. Big Meat and Dairy&amp;rsquo;s Big Emissions&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Greenpeace Nordic, Foodrise, Friends of the Earth and Institute for Agricultural and Trade Policy&lt;/strong&gt;&lt;/p&gt;
  697. &lt;blockquote&gt;The authors present the latest global assessment of the meat and dairy industry&amp;rsquo;s outsized climate impact, estimating the greenhouse gas (GHG) emissions generated by 45 of the world&amp;rsquo;s major meat and dairy processing companies in 2023. These 45 meat and dairy companies together emitted an estimated 1.02 billion tons CO2eq of GHG emissions in 2023. If they were a country, they would be the world&amp;rsquo;s ninth highest GHG-emitting nation. In fact, the companies&amp;rsquo; combined emissions are estimated to be more than those reported for Saudi Arabia, reportedly the second largest oil producer in the world. The methane emissions from these 45 companies combined are estimated to be more than the reported methane of all the EU27 countries and UK combined in 2023. The top five emitters combined&amp;mdash;JBS, Marfrig, Tyson, Minerva and Cargill&amp;mdash;emitted an estimated 480 MtCO2eq of GHG emissions in 2023, more than reported for Chevron, Shell or BP27. The estimated emissions of these five companies combined account for nearly half (47%) of the estimated GHG emissions from the total of 45 meat and dairy companies analyzed.&lt;/blockquote&gt;
  698. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cast.ac.uk/wp-content/uploads/2025/10/the-centre-for-climate-change-and-social-transformations-cast-briefing-42-accelerating-sustainability-in-professional-sport-insights-from-rugby-union.pdf" target="_blank"&gt;Accelerating sustainability in professional sport: Insights from rugby union&lt;/a&gt;, &lt;/strong&gt;Wilson et al., &lt;strong&gt;Center for Climate Change and Social Transformations&lt;/strong&gt;&lt;/p&gt;
  699. &lt;blockquote&gt;Professional rugby union clubs in South Wales and South West England continue to work on reducing their carbon footprint and enhancing sustainable operations. Knowledge exchange forums provide an opportunity for clubs to share expertise, exchange best practices, and build networks that support collective action. Engaging rugby club staff, players, fans, and the local rugby community on climate and sustainability actions can foster a sense of partnership and shared identity. This should be supported by clear messaging on how these actions align with the club&amp;rsquo;s sustainability vision and strategy. Leveraging teamwork, commitment, and competitiveness among clubs and their fans can drive positive change. Drawing on the example of &amp;lsquo;green clubs&amp;rsquo; in the English Football League, introducing a formal sustainability accreditation scheme could enable clubs to showcase their achievements and foster greater fan engagement. Clubs can collaborate to establish minimum sustainability standards in procurement, energy, and transport. Engaging key partners, such as league governing bodies, is crucial; however, the drive for systemic change can also come from clubs and their communities.&lt;/blockquote&gt;
  700. &lt;p&gt;&lt;strong&gt;&lt;a href="https://files.wri.org/d8/s3fs-public/2025-10/state-of-climate-action-2025.pdf?VersionId=D6.3.Ysnl4DlrZVXaxTBvIptfV8PSHfq" target="_blank"&gt;State of Climate Action 2025&lt;/a&gt;, &lt;/strong&gt;Schumer et al., &lt;strong&gt;World Resources Institute&lt;/strong&gt;&lt;/p&gt;
  701. &lt;blockquote&gt;Published ahead of COP30, the authors translates the Paris Agreement temperature goal into actionable targets for 2030, 2035 and 2050 across the world&amp;rsquo;s highest-emitting sectors &amp;ndash; power, buildings, industry, transport, forests and land, and food and agriculture &amp;ndash; as well as specifies how quickly technological carbon dioxide and climate finance must scale up. The authors then assess recent progress made towards these global benchmarks, highlighting where &amp;ndash; and by how much &amp;ndash; efforts must accelerate this decade. The authors found that, while the 10 years following the adoption of the Paris Agreement have seen the transition to net-zero emissions take off, there&amp;rsquo;s still a long way to go. Across every single sector, climate action has failed to materialize at the pace and scale required to achieve the Paris Agreement&amp;rsquo;s temperature goal. None of the 45 indicators assessed are on track to reach their 1.5&amp;deg;C-aligned targets by the end of this decade.&lt;/blockquote&gt;
  702. &lt;hr /&gt;
  703. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  704. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  705. &lt;h3&gt;Suggestions&lt;/h3&gt;
  706. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  707. &lt;h3&gt;Previous edition&lt;/h3&gt;
  708. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_42.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  709. <link>https://skepticalscience.com/new_research_2025_43.html</link>
  710. <guid>https://skepticalscience.com/new_research_2025_43.html</guid>
  711. <pubDate>Thu, 23 Oct 2025 14:52:49 EST</pubDate>
  712. </item>  <item>
  713. <title>India’s power-sector CO2 falls for only second time in half a century</title>
  714. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://www.carbonbrief.org/analysis-indias-power-sector-co2-falls-for-only-second-time-in-half-a-century/"&gt;re-post from Carbon Brief&lt;/a&gt;&lt;/p&gt;
  715. &lt;p&gt;India&amp;rsquo;s carbon dioxide (CO2) emissions from its power sector fell by 1% year-on-year in the first half of 2025 and by 0.2% over the past 12 months, only the second drop in almost half a century.&lt;/p&gt;
  716. &lt;p&gt;As a result, India&amp;rsquo;s CO2 emissions from fossil fuels and cement grew at their slowest rate in the first half of the year since 2001&amp;nbsp;&amp;ndash; excluding Covid&amp;nbsp;&amp;ndash; according to new analysis for Carbon Brief.&lt;/p&gt;
  717. &lt;p&gt;The analysis is the first of a regular new series covering India&amp;rsquo;s CO2 emissions, based on monthly data for fuel use, industrial production and power output, compiled from numerous official sources.&lt;/p&gt;
  718. &lt;p&gt;(See the&amp;nbsp;&lt;a href="https://www.carbonbrief.org/author/laurimyllyvirta/"&gt;regular series&lt;/a&gt;&amp;nbsp;on China&amp;rsquo;s CO2 emissions, which&amp;nbsp;&lt;a href="https://www.carbonbrief.org/guest-post-why-chinas-co2-emissions-grew-4-during-first-half-of-2019/"&gt;began in 2019&lt;/a&gt;.)&lt;/p&gt;
  719. &lt;p&gt;Other key findings on India for the first six months of 2025 include:&lt;/p&gt;
  720. &lt;ul class="wp-block-list"&gt;
  721. &lt;li&gt;The growth in clean-energy capacity reached a record 25.1 gigawatts (GW), up 69% year-on-year from what had, itself, been a record figure.&lt;/li&gt;
  722. &lt;li&gt;This new clean-energy capacity is expected to generate nearly 50 terawatt hours (TWh) of electricity per year, nearly sufficient to meet the average increase in demand overall.&lt;/li&gt;
  723. &lt;li&gt;&lt;a href="https://www.livemint.com/economy/indias-gdp-growth-slows-to-6-5-in-fy25-january-march-quarter-growth-at-7-4-below-fy24-levels-11748601667248.html"&gt;Slower&lt;/a&gt;&amp;nbsp;economic expansion meant there was zero growth in demand for oil products, a marked fall from annual rates of 6% in 2023 and 4% in 2024.&lt;/li&gt;
  724. &lt;li&gt;Government infrastructure spending helped accelerate CO2 emissions growth from steel and cement production, by 7% and 10%, respectively.&amp;nbsp;&lt;/li&gt;
  725. &lt;/ul&gt;
  726. &lt;div class="listing pull-right"&gt;
  727. &lt;div class="listingTitle"&gt;China&amp;rsquo;s CO2 emissions series&lt;/div&gt;
  728. &lt;ul&gt;
  729. &lt;li&gt;&lt;a href="https://www.carbonbrief.org/analysis-record-solar-growth-keeps-chinas-co2-falling-in-first-half-of-2025/"&gt;Analysis: Record solar growth keeps China&amp;rsquo;s CO2 falling in first half of 2025&lt;/a&gt;&lt;/li&gt;
  730. &lt;li&gt;&lt;a href="https://www.carbonbrief.org/analysis-clean-energy-just-put-chinas-co2-emissions-into-reverse-for-first-time/"&gt;Analysis: Clean energy just put China&amp;rsquo;s CO2 emissions into reverse for first time&lt;/a&gt;&lt;/li&gt;
  731. &lt;li&gt;&lt;a href="https://www.carbonbrief.org/analysis-clean-energy-contributed-a-record-10-of-chinas-gdp-in-2024/"&gt;Analysis: Clean energy contributed a record 10% of China&amp;rsquo;s GDP in 2024&lt;/a&gt;&lt;/li&gt;
  732. &lt;li&gt;&lt;a href="https://www.carbonbrief.org/analysis-record-surge-of-clean-energy-in-2024-halts-chinas-co2-rise/"&gt;Analysis: Record surge of clean energy in 2024 halts China&amp;rsquo;s CO2 rise&lt;/a&gt;&lt;/li&gt;
  733. &lt;/ul&gt;
  734. &lt;/div&gt;
  735. &lt;p&gt;The analysis&amp;nbsp;also shows that emissions from India&amp;rsquo;s power sector could peak before 2030, if clean-energy capacity and electricity demand grow as expected.&lt;/p&gt;
  736. &lt;p&gt;The future of CO2 emissions in&amp;nbsp;&lt;a href="https://www.carbonbrief.org/the-carbon-brief-profile-india/"&gt;India&lt;/a&gt;&amp;nbsp;is a key indicator for the world, with the country &amp;ndash; the world&amp;rsquo;s most populous &amp;ndash; having contributed nearly two-fifths of the rise in global energy-sector emissions growth since 2019.&lt;/p&gt;
  737. &lt;h2 class="wp-block-heading"&gt;India&amp;rsquo;s surging emissions slow down&lt;/h2&gt;
  738. &lt;p&gt;In 2024, India was&amp;nbsp;&lt;a href="https://www.energyinst.org/statistical-review/resources-and-data-downloads"&gt;responsible&lt;/a&gt;&amp;nbsp;for 8% of global energy-sector CO2 emissions, despite being home to 18% of the world&amp;rsquo;s population, as its&amp;nbsp;&lt;a href="https://www.carbonbrief.org/revealed-how-colonial-rule-radically-shifts-historical-responsibility-for-climate-change/"&gt;per-capita output&lt;/a&gt;&amp;nbsp;is&amp;nbsp;&lt;a href="https://ourworldindata.org/grapher/co-emissions-per-capita"&gt;far below&lt;/a&gt;&amp;nbsp;the world average.&lt;/p&gt;
  739. &lt;p&gt;However, emissions have been growing rapidly,&amp;nbsp;as shown in the figure below.&lt;/p&gt;
  740. &lt;p&gt;The country&amp;nbsp;&lt;a href="https://www.energyinst.org/statistical-review/resources-and-data-downloads"&gt;contributed&lt;/a&gt;&amp;nbsp;31% of global energy-sector emissions growth in the decade to 2024, rising to 37% in the past five years, due to a surge in the three-year period from 2021-23.&lt;/p&gt;
  741. &lt;p&gt;&lt;img class="wp-image-59041" src="https://www.carbonbrief.org/wp-content/uploads/2025/09/india-accounts-for-nearly-two-fifths.png" alt="Chart showing that India accounts for nearly two-fifths of global CO2 emissions growth since 2019" width="550" height="359" /&gt;&lt;em&gt;India&amp;rsquo;s CO2 emissions from fossil fuels and cement, million tonnes of CO2, rolling 12-month totals. Source: Analysis for Carbon Brief by CREA. (See:&amp;nbsp;&lt;a rel="nofollow" href="https://www.carbonbrief.org/analysis-indias-power-sector-co2-falls-for-only-second-time-in-half-a-century/#data"&gt;About the data&lt;/a&gt;.)&lt;/em&gt;&lt;/p&gt;
  742. &lt;!--more--&gt;
  743. &lt;p&gt;&lt;a href="https://www.iea.org/countries/india/emissions"&gt;More than half&lt;/a&gt;&amp;nbsp;of India&amp;rsquo;s CO2 output comes from coal used for electricity and heat generation, making this sector the most important by far for the country&amp;rsquo;s emissions.&lt;/p&gt;
  744. &lt;p&gt;The second-largest sector is fossil fuel use in industry, which&amp;nbsp;&lt;a href="https://www.iea.org/countries/india/emissions"&gt;accounts&lt;/a&gt;&amp;nbsp;for another quarter of the total, while oil use for transport makes up a further eighth of India&amp;rsquo;s emissions.&amp;nbsp;&lt;/p&gt;
  745. &lt;p&gt;India&amp;rsquo;s CO2 emissions from fossil fuels and cement grew by 8% per year from 2019 to 2023, quickly rebounding from a 7% drop in 2020 due to Covid.&lt;/p&gt;
  746. &lt;p&gt;Before the Covid pandemic, emissions growth had averaged 4% per year from 2010 to 2019, but emissions in 2023 and 2024 rose above the pre-pandemic trendline.&lt;/p&gt;
  747. &lt;p&gt;This was despite a slower average&amp;nbsp;&lt;a href="https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=IN"&gt;GDP growth rate&lt;/a&gt;&amp;nbsp;from 2019 to 2024 than in the preceding decade, indicating that the economy became more energy- and carbon-intensive. (For example, growth in steel and cement&amp;nbsp;&lt;a href="https://eaindustry.nic.in/eight_core_infra/Eight_Infra.pdf"&gt;outpaced&lt;/a&gt;&amp;nbsp;the overall rate of economic growth.)&lt;/p&gt;
  748. &lt;p&gt;A turnaround came in the second half of 2024, when emissions only increased by 2% year-on-year, slowing down to 1% in the first half of 2025, as seen in the figure below.&lt;/p&gt;
  749. &lt;p&gt;&lt;img class="wp-image-59042" src="https://www.carbonbrief.org/wp-content/uploads/2025/09/india-co2-emissions-growth.png" alt="Bar chart showing that India's CO2 emissions growth has slowed sharply since 2024" width="550" height="348" /&gt;&lt;em&gt;Year-on-year change in India&amp;rsquo;s half-yearly CO2 emissions from fossil fuels and cement, %. Source: Analysis for Carbon Brief by CREA. (See:&amp;nbsp;&lt;a rel="nofollow" href="https://www.carbonbrief.org/analysis-indias-power-sector-co2-falls-for-only-second-time-in-half-a-century/#data"&gt;About the data&lt;/a&gt;.)&lt;/em&gt;&lt;/p&gt;
  750. &lt;p&gt;The largest contributor to the slowdown was the power sector, which was responsible for 60% of the drop in emissions growth rates, when comparing the first half of 2025 with the years 2021-23.&lt;/p&gt;
  751. &lt;p&gt;Oil demand growth slowed sharply as well, contributing 20% of the slowdown. The only sectors to keep growing their emissions in the first half of 2025 were steel and cement production.&lt;/p&gt;
  752. &lt;p&gt;Another 20% of the slowdown was due to a reduction in coal and gas use outside the power, steel and cement sectors. This&amp;nbsp;&lt;a href="https://mospi.gov.in/sites/default/files/publication_reports/Energy_Statistics_2025/Energy%20Statistics%20India%202025_27032025.pdf"&gt;comprises&lt;/a&gt;&amp;nbsp;construction, industries such as paper, fertilisers, chemicals, brick kilns and textiles, as well as&amp;nbsp;&lt;a href="https://www.iea.org/data-and-statistics/data-product/world-energy-balances"&gt;residential and commercial&lt;/a&gt;&amp;nbsp;cooking, heating and hot water.&lt;/p&gt;
  753. &lt;p&gt;This is all shown in the figure below, which compares year-on-year changes in emissions during the second half of 2024 and the first half of 2025, with the average for 2021-23.&lt;/p&gt;
  754. &lt;p&gt;&lt;img class="wp-image-59093" src="https://www.carbonbrief.org/wp-content/uploads/2025/09/india-power-sector-drives-marked-slowdown-in-CO2-growth.png" alt="Bar chart showing that India's power sector drives marked slowdown in CO2 growth" width="550" height="397" /&gt;&lt;em&gt;Year-on-year change in India&amp;rsquo;s half-yearly CO2 emissions from fossil fuels and cement, million tonnes of CO2. Bars show the half-yearly average for 2021-23 along with the periods July-December 2024 and January-June 2025. Source: Analysis for Carbon Brief by CREA. (See:&amp;nbsp;&lt;a rel="nofollow" href="https://www.carbonbrief.org/analysis-indias-power-sector-co2-falls-for-only-second-time-in-half-a-century/#data"&gt;About the data&lt;/a&gt;.)&lt;/em&gt;&lt;/p&gt;
  755. &lt;p&gt;Power sector emissions fell by 1% in the first half of 2025, after growing 10% per year during 2021-23 and adding more than 50m tonnes of CO2 (MtCO2) to India&amp;rsquo;s total every six months.&lt;/p&gt;
  756. &lt;p&gt;Oil product use saw zero growth in the first half of 2025, after rising 6% per year in 2021-23.&lt;/p&gt;
  757. &lt;p&gt;In contrast, emissions from coal burning for cement and steel production rose by 10% and 7%, respectively, while coal use outside of these sectors fell 2%.&lt;/p&gt;
  758. &lt;p&gt;Gas consumption fell 7% year-on-year, with reductions across the power and industrial sectors as well as other users. This was a sharp reversal of the 5% average annual growth in 2021-23.&lt;/p&gt;
  759. &lt;h2 class="wp-block-heading"&gt;Power-sector emissions pause&lt;/h2&gt;
  760. &lt;p&gt;The most striking shift in India&amp;rsquo;s sectoral emissions trends has come in the power sector, where coal consumption and CO2 emissions fell 0.2% in the 12 months to June and 1% in the first half of 2025, marking just the second drop in half a century, as shown in the figure below.&lt;/p&gt;
  761. &lt;p&gt;The reduction in coal use comes after more than a decade of break-neck growth, starting in the early 2010s and only interrupted by Covid in 2020. It also comes even as the country plans&amp;nbsp;&lt;a href="https://www.carbonbrief.org/guest-post-china-and-india-account-for-87-of-new-coal-power-capacity-so-far-in-2025/"&gt;large amounts&lt;/a&gt;&amp;nbsp;of new coal-fired generating capacity.&lt;/p&gt;
  762. &lt;p&gt;&lt;img class="wp-image-59055" src="https://www.carbonbrief.org/wp-content/uploads/2025/09/india-power-sector-CO2-1.png" alt="Chart showing that India's power sector CO2 just fell for only second time in half a century" width="550" height="345" /&gt;&lt;em&gt;Electricity generation from coal, terawatt hours per year. Source:&amp;nbsp;&lt;a href="https://iced.niti.gov.in/energy/electricity/generation/power-generation"&gt;NITI data portal&lt;/a&gt;.&lt;/em&gt;&lt;/p&gt;
  763. &lt;p&gt;In the first half of 2025, total power generation increased by 9 terawatt hours (TWh) year-on-year, but fossil power generation fell by 29TWh, as output from solar grew 17TWh, from wind 9TWh, from hydropower by 9TWh and from nuclear by 3TWh.&lt;/p&gt;
  764. &lt;p&gt;Analysis of&amp;nbsp;&lt;a href="https://iced.niti.gov.in/energy/electricity/generation/power-generation"&gt;government data&lt;/a&gt;&amp;nbsp;shows that 65% of the fall in fossil-fuel generation can be attributed to lower electricity demand growth, 20% to faster growth in non-hydro clean power and the remaining 15% to higher output at existing hydropower plants.&lt;/p&gt;
  765. &lt;p&gt;Slower growth in electricity usage was&amp;nbsp;&lt;a href="https://energy.economictimes.indiatimes.com/news/power/india-sees-1-5-drop-in-q1-power-supply-first-decline-in-nearly-a-decade/122194349"&gt;largely due&lt;/a&gt;&amp;nbsp;to&amp;nbsp;&lt;a href="https://www.timesnownews.com/india/indias-unusual-may-2025-highest-average-rainfall-in-124-years-coldest-in-108-years-reasons-explained-article-151786096"&gt;relatively mild&lt;/a&gt;&amp;nbsp;temperatures and&amp;nbsp;&lt;a href="https://sandrp.in/2025/06/03/district-wise-rainfall-in-pre-monsoon-2025-season-in-india/"&gt;high rainfall&lt;/a&gt;, in contrast to the&amp;nbsp;&lt;a href="https://www.downtoearth.org.in/climate-change/seeing-red-india-had-over-700-heat-deaths-in-2024-much-higher-than-official-toll-claim-scientists"&gt;heatwaves&lt;/a&gt;&amp;nbsp;of 2024. A&amp;nbsp;&lt;a href="https://www.thehindu.com/business/Economy/industrial-growth-pulled-down-to-10-month-low-of-15-in-june/article69865226.ece"&gt;slowdown&lt;/a&gt;&amp;nbsp;in industrial sectors in the second quarter of the year also contributed.&lt;/p&gt;
  766. &lt;p&gt;In addition, increased rainfall drove the jump in hydropower generation. India received&amp;nbsp;&lt;a href="https://sandrp.in/2025/06/03/district-wise-rainfall-in-pre-monsoon-2025-season-in-india/"&gt;42% above-normal rainfall&lt;/a&gt;&amp;nbsp;from March to May 2025. (In early 2024, India&amp;rsquo;s hydro output had&amp;nbsp;&lt;a href="https://www.reuters.com/business/energy/india-hydropower-output-records-steepest-fall-nearly-four-decades-2024-04-01/"&gt;fallen steeply&lt;/a&gt;&amp;nbsp;as a result of &amp;ldquo;&lt;a href="https://www.reuters.com/business/energy/india-hydropower-output-records-steepest-fall-nearly-four-decades-2024-04-01/"&gt;erratic rainfall&lt;/a&gt;&amp;rdquo;.)&lt;/p&gt;
  767. &lt;p&gt;Lower temperatures and this abundant rainfall reduced the need for air conditioning, which is responsible for&amp;nbsp;&lt;a href="https://www.iea.org/reports/energy-efficiency-2023/can-efficient-cooling-help-manage-fast-rising-electricity-demand-in-india-and-achieve-thermal-comfort-for-all"&gt;around 10%&lt;/a&gt;&amp;nbsp;of the country&amp;rsquo;s total power demand. In the same period in 2024, demand&amp;nbsp;&lt;a href="https://energy.economictimes.indiatimes.com/news/renewable/severe-heatwaves-drive-indias-power-demand-to-all-time-high-of-156-bu-in-may/110923976"&gt;surged&lt;/a&gt;&amp;nbsp;due to record heatwaves and higher temperatures across the country.&amp;nbsp;&lt;/p&gt;
  768. &lt;p&gt;The growth in clean-power generation was buoyed by the&amp;nbsp;&lt;a href="https://iced.niti.gov.in/energy/electricity/generation/capacity"&gt;addition&lt;/a&gt;&amp;nbsp;of a record 25.1GW of non-fossil capacity in the first half of 2025. This was a 69% increase compared with the previous period in 2024, which had also set a record.&lt;/p&gt;
  769. &lt;p&gt;Solar continues to&amp;nbsp;&lt;a href="https://jmkresearch.com/india-adds-record-21-9-gw-of-solar-and-wind-capacity-in-h1-2025/"&gt;dominate&lt;/a&gt;&amp;nbsp;new installations, with&amp;nbsp;&lt;a href="https://jmkresearch.com/india-adds-record-21-9-gw-of-solar-and-wind-capacity-in-h1-2025/"&gt;14.3GW&lt;/a&gt;&amp;nbsp;of capacity added in the first half of the year coming from large scale solar projects and&amp;nbsp;&lt;a href="https://jmkresearch.com/india-adds-record-21-9-gw-of-solar-and-wind-capacity-in-h1-2025/"&gt;3.2GW&lt;/a&gt;&amp;nbsp;from solar rooftops.&lt;/p&gt;
  770. &lt;p&gt;Solar is also adding the majority of new clean-power output. Taking into account the average&amp;nbsp;&lt;a href="https://www.carbonbrief.org/analysis-uks-solar-power-surges-42-after-sunniest-spring-on-record/"&gt;capacity factor&lt;/a&gt;&amp;nbsp;of each technology, solar power delivered 62% of the additional annual generation, hydropower 16%, wind 13% and nuclear power 8%.&lt;/p&gt;
  771. &lt;p&gt;The new clean-energy capacity added in the first half of 2025 will generate record amounts of clean power. As shown in the figure below, the 50TWh per year from this new clean capacity is approaching the average growth of total power generation.&lt;/p&gt;
  772. &lt;p&gt;(When clean-energy growth exceeds total demand growth, generation from fossil fuels declines.)&lt;/p&gt;
  773. &lt;p&gt;&lt;img class="wp-image-59089" src="https://www.carbonbrief.org/wp-content/uploads/2025/09/clean-energy-expansion-close-to-matching-demand.png" alt="Bar chart showing that clean-energy expansion is close to matching demand growth overall" width="550" height="341" /&gt;&lt;em&gt;Columns: Six-monthly growth in clean-energy generation, by source, TWh. Dashed line: Average growth in electricity demand, 2021-2024, TWh. Source: CREA analysis of figures from the&amp;nbsp;&lt;a href="https://iced.niti.gov.in/energy/electricity/generation/power-generation"&gt;NITI data portal&lt;/a&gt;, with added capacity converted to expected annual generation based on average capacity factors calculated from monthly capacity and generation data.&lt;/em&gt;&lt;/p&gt;
  774. &lt;p&gt;India is&amp;nbsp;&lt;a href="https://jmkresearch.com/india-adds-record-21-9-gw-of-solar-and-wind-capacity-in-h1-2025/"&gt;expected&lt;/a&gt;&amp;nbsp;to add another 16-17GW of solar and wind in the second half of 2025. Beyond this year, strong continued clean-energy growth is expected, towards India&amp;rsquo;s target for 500GW of non-fossil fuel capacity by 2030 (see below).&lt;/p&gt;
  775. &lt;h2 class="wp-block-heading"&gt;Slowing oil demand growth&lt;/h2&gt;
  776. &lt;p&gt;The first half of 2025 also saw a significant slowdown in India&amp;rsquo;s oil demand growth. After rising by 6% a year in the three years to 2023, it slowed to 4% in 2024 and zero in the first half of 2025.&lt;/p&gt;
  777. &lt;p&gt;The slowdown in oil consumption overall was predominantly due to slower growth in demand for diesel and &amp;ldquo;other oil products&amp;rdquo;, which includes bitumen.&lt;/p&gt;
  778. &lt;p&gt;In the first quarter of 2025, diesel demand actually fell, due to a&amp;nbsp;&lt;a href="https://www.hindustantimes.com/car-bike/indias-fuel-demand-hits-a-low-in-january-after-9-month-peak-in-december-101675915320597.html"&gt;decline&lt;/a&gt;&amp;nbsp;in industrial activity, limited weather-related mobility and &amp;ndash;&amp;nbsp;&lt;a href="https://auto.hindustantimes.com/auto/news/petrol-sales-decline-to-a-12-month-low-diesel-consumption-at-a-5-month-low-amid-rise-of-alternative-fuels-41743044613862.html"&gt;reportedly&lt;/a&gt;&amp;nbsp;&amp;ndash; higher uptake of vehicles that run on compressed natural gas (CNG), as well as electricity (EVs).&lt;/p&gt;
  779. &lt;p&gt;Diesel demand growth increased in March to May, but again declined in June because of early and&amp;nbsp;&lt;a href="https://www.bbc.co.uk/news/articles/c9wdr08wq2zo"&gt;unusually severe&lt;/a&gt;&amp;nbsp;monsoon rains in India, leading to a&amp;nbsp;&lt;a href="https://www.freepressjournal.in/business/indias-industrial-growth-slows-to-10-month-low-of-15-in-june-2025-amid-mining-power-slump"&gt;slowdown&lt;/a&gt;&amp;nbsp;in industrial and mining activities,&amp;nbsp;&lt;a href="https://epaper.thehindubusinessline.com/ccidist-ws/bl/bl_hyderabad/issues/101852/OPS/G7JDDI122.1%2BGCUDDJE62.1.html"&gt;disrupted&lt;/a&gt;&amp;nbsp;supply-chains and transport of raw material, goods and services.&lt;/p&gt;
  780. &lt;p&gt;The severe rains also slowed down&amp;nbsp;&lt;a href="https://www.reuters.com/business/energy/short-take-indias-fuel-demand-fell-47-month-month-june-2025-07-07"&gt;road construction activity&lt;/a&gt;, which in turn curtailed demand for transportation, construction equipment and bitumen.&amp;nbsp;&lt;/p&gt;
  781. &lt;p&gt;Weaker diesel demand growth in 2024 had&amp;nbsp;&lt;a href="https://economictimes.indiatimes.com/industry/energy/oil-gas/diesel-demand-growth-falls-to-lowest-since-pandemic/articleshow/120278344.cms"&gt;reflected&lt;/a&gt;&amp;nbsp;slower growth in economic activity, as growth rates in the industrial and agricultural sectors&amp;nbsp;&lt;a href="https://www.thehindu.com/business/Economy/gdp-growth-slows-to-65-in-2024-25-slowest-since-the-pandemic/article69637518.ece"&gt;contracted&lt;/a&gt;&amp;nbsp;compared to previous years.&lt;/p&gt;
  782. &lt;p&gt;Another important trend is that EVs are also&amp;nbsp;&lt;a href="https://economictimes.indiatimes.com/industry/energy/oil-gas/diesel-demand-growth-falls-to-lowest-since-pandemic/articleshow/120278344.cms"&gt;cutting into diesel demand&lt;/a&gt;&amp;nbsp;in the commercial vehicles segment, although this is not yet a significant factor in the overall picture.&lt;/p&gt;
  783. &lt;p&gt;EV adoption is particularly notable in major metropolitan cities and other rapidly emerging urban centres and in the logistics sector, where they are being&amp;nbsp;&lt;a href="https://economictimes.indiatimes.com/industry/energy/oil-gas/diesel-demand-growth-falls-to-lowest-since-pandemic/articleshow/120278344.cms"&gt;preferred&lt;/a&gt;&amp;nbsp;for short haul rides over diesel vans or light commercial vehicles.&lt;/p&gt;
  784. &lt;p&gt;EVs accounted for only&lt;a href="https://www.niti.gov.in/sites/default/files/2025-08/Electric-Vehicles-WEB-LOW-Report.pdf"&gt;&amp;nbsp;7.6%&lt;/a&gt;&amp;nbsp;of total vehicle sales in the financial year 2024-25, up&amp;nbsp;&lt;a href="https://www.spglobal.com/automotive-insights/en/blogs/2025/03/india-ev-market-trends-future#:~:text=The%20Indian%20government%20has%20set%20an%20ambitious%20target,plans%20for%20subsidies%2C%20financing%20options%2C%20and%20infrastructure%20development."&gt;22.5%&amp;nbsp;&lt;/a&gt;year-on-year, but still far from the target of&amp;nbsp;&lt;a href="https://energy.economictimes.indiatimes.com/news/power/india-targets-30-ev-sales-by-2030-pushes-for-infrastructure-expansion/115454418#:~:text=New%20Delhi%3A%20India%20has%20set%20an%20ambitious%20target,Minister%20for%20Heavy%20Industries%20and%20Steel%2C%20H.D.%20Kumaraswamy"&gt;30%&amp;nbsp;&lt;/a&gt;by 2030.&lt;/p&gt;
  785. &lt;p&gt;However, any significant drop in diesel demand will be a function of adoption of EV for long-haul trucks, which account for 32% of the total CO2 emissions from the transport sector. Only 280 electric trucks were sold in 2024, reported&amp;nbsp;&lt;a href="https://www.niti.gov.in/sites/default/files/2025-08/Electric-Vehicles-WEB-LOW-Report.pdf"&gt;NITI Aayog&lt;/a&gt;.&lt;/p&gt;
  786. &lt;p&gt;Trucks remain the largest&amp;nbsp;&lt;a href="https://energy.economictimes.indiatimes.com/news/oil-and-gas/trucks-consume-64-2-of-retail-diesel-2-wheelers-use-59-of-petrol-study/121281193"&gt;diesel&lt;/a&gt;&amp;nbsp;consumers. Moreover, truck sales grew&amp;nbsp;&lt;a href="https://economictimes.indiatimes.com/markets/stocks/news/mm-outpaces-industry-with-10-5-q1-growth-gains-market-share-across-segments-says-siddhartha-khemka/articleshow/123317423.cms"&gt;9.2%&lt;/a&gt;&amp;nbsp;year-on-year in the second quarter of 2025, driven in part by India&amp;rsquo;s target of&amp;nbsp;&lt;a href="https://timesofindia.indiatimes.com/city/chandigarh/india-targets-75-farm-mechanisation-by-2047-amid-current-47-level-focus-on-small-and-marginal-farmers/articleshow/118097117.cms"&gt;75% farm mechanisation&lt;/a&gt;&amp;nbsp;by 2047. This sales growth may outweigh the reduction in diesel demand due to EVs.&amp;nbsp;&lt;a href="https://economictimes.indiatimes.com/markets/stocks/news/mm-outpaces-industry-with-10-5-q1-growth-gains-market-share-across-segments-says-siddhartha-khemka/articleshow/123317423.cms"&gt;Subsidies&lt;/a&gt;&amp;nbsp;for electric tractors have seen some pilots, but demand is yet to take off.&lt;/p&gt;
  787. &lt;p&gt;Apart from diesel, petrol demand growth continued in the first half of 2025 at the same rate as in earlier years. Modest year-on-year&amp;nbsp;&lt;a href="https://www.autopunditz.com/post/indian-mass-market-passenger-vehicle-industry-analysis-h1-2025#:~:text=Indian%20Mass%2Dmarket%20Passenger%20Vehicle%20Industry%20Analysis%20%2D%20H1%202025,-Team%20Autopunditz&amp;amp;text=The%20Indian%20passenger%20vehicle%20industry,has%20drastically%20dropped%20to%201.3%25"&gt;growth of 1.3%&lt;/a&gt;&amp;nbsp;in passenger vehicle sales could temper future increases in petrol demand, however. This is a sharp decline from 7.5% and 10% growth rates in sales in the same period in 2024 and 2023.&lt;/p&gt;
  788. &lt;p&gt;Furthermore, EVs are proving to be&amp;nbsp;&lt;a href="https://www.livemint.com/auto-news/ev-vs-petrol-electric-vehicles-prove-cheaper-to-run-in-india-says-ceew-11750341704904.html"&gt;cheaper to run&lt;/a&gt;&amp;nbsp;than petrol for two- and three-wheelers, which may reduce the sale of petrol vehicles in cities that show policy support for EV adoption.&lt;/p&gt;
  789. &lt;h2 class="wp-block-heading"&gt;Steel and cement emissions continue to grow&lt;/h2&gt;
  790. &lt;p&gt;As already noted, steel and cement were the only major sectors of India&amp;rsquo;s economy to see an increase in emissions growth in the first half of 2025.&lt;/p&gt;
  791. &lt;p&gt;While they were only responsible for around 12% of India&amp;rsquo;s total CO2 emissions from fossil fuels and cement in 2024, they have been growing quickly, averaging 6% a year for the past five years.&lt;/p&gt;
  792. &lt;p&gt;The growth in emissions accelerated in the first half of 2025, as cement output rose 10% and steel output 7%, far in excess of the growth in economic output overall.&lt;/p&gt;
  793. &lt;p&gt;Steel and cement growth&amp;nbsp;&lt;a href="https://www.freepressjournal.in/business/indias-industrial-output-sees-strong-rebound-production-rises-to-35-from-15-manufacturing-infrastructure-see-robust-growth"&gt;accelerated further&lt;/a&gt;&amp;nbsp;in July. A key demand driver is government infrastructure spending, which&amp;nbsp;&lt;a href="https://www.reuters.com/world/india/indian-governments-fy25-fiscal-deficit-line-with-projection-2025-05-30/"&gt;tripled&lt;/a&gt;&amp;nbsp;from 2019 to 2024.&lt;/p&gt;
  794. &lt;p&gt;In the second quarter of 2025, the government&amp;rsquo;s capital expenditure increased&amp;nbsp;&lt;a href="https://www.livemint.com/economy/india-fiscal-deficit-fy26-q1-fy26-fiscal-data-india-government-spending-2025-capital-expenditure-india-11753964460902.html"&gt;52% year-on-year&lt;/a&gt;. albeit from a&amp;nbsp;&lt;a href="https://www.financialexpress.com/policy/economy-slowdown-in-indias-gdp-growth-due-to-lower-govt-spending-elections-says-rbi-governor-3597705/"&gt;low base&lt;/a&gt;&amp;nbsp;during last year&amp;rsquo;s elections. This signals strong growth in infrastructure.&lt;/p&gt;
  795. &lt;p&gt;The government is targeting domestic steel manufacturing capacity of 300m tonnes (Mt) per year by 2030, from&amp;nbsp;&lt;a href="https://www.pib.gov.in/PressReleasePage.aspx?PRID=2149769"&gt;200Mt currently&lt;/a&gt;, under the&amp;nbsp;&lt;a href="https://steel.gov.in/national-steel-policy-nsp-2017"&gt;National Steel Policy 2017&lt;/a&gt;, supported by&amp;nbsp;&lt;a href="https://www.pib.gov.in/PressReleasePage.aspx?PRID=2090683"&gt;financial incentives&lt;/a&gt;&amp;nbsp;for firms that meet production targets for high quality steel.&lt;/p&gt;
  796. &lt;p&gt;The government also imposed&amp;nbsp;&lt;a href="https://www.mining-technology.com/news/india-steel-import-tariff/"&gt;tariffs&lt;/a&gt;&amp;nbsp;on steel imports in April and stricter&amp;nbsp;&lt;a href="https://www.argusmedia.com/en/news-and-insights/latest-market-news/2700863-india-s-new-steel-input-quality-rule-to-curb-imports"&gt;quality standards&lt;/a&gt;&amp;nbsp;for imports in June, in order to boost domestic production.&lt;/p&gt;
  797. &lt;p&gt;Government policies such as&amp;nbsp;&lt;a href="https://www.mordorintelligence.com/industry-reports/real-estate-industry-in-india"&gt;Pradhan Mantri Awas Yojna&lt;/a&gt;&amp;nbsp;&amp;ndash;&amp;nbsp;a &amp;ldquo;housing for all&amp;rdquo; initiative under which&amp;nbsp;&lt;a href="https://www.pib.gov.in/PressReleasePage.aspx?PRID=2023872"&gt;30m houses&lt;/a&gt;&amp;nbsp;are to be built by FY30&amp;nbsp;&amp;ndash; is further expected to lift demand for steel and cement.&lt;/p&gt;
  798. &lt;p&gt;The automotive sector in India is expected to grow at a fast pace, with sales expected to reach&amp;nbsp;&lt;a href="https://www.marketsandmarkets.com/Market-Reports/future-automotive-in-india-219650907.html"&gt;7.5m units&lt;/a&gt;&amp;nbsp;for passenger vehicle and commercial vehicle segments from 5.1m units in 2023, in addition to rapid growth in electric vehicles. This can be expected to be another key driver for growth of the steel sector, as&amp;nbsp;&lt;a href="https://blog.tatanexarc.com/da/steel-in-automotive/"&gt;900 kg of steel&lt;/a&gt;&amp;nbsp;is used per vehicle.&amp;nbsp;&amp;nbsp;&amp;nbsp;&lt;/p&gt;
  799. &lt;p&gt;Without stringent energy efficiency measures and the adoption of cleaner fuel, the expected growth in steel and cement production could drive significant emissions growth from the sector.&lt;/p&gt;
  800. &lt;h2 class="wp-block-heading"&gt;Power-sector emissions could peak before 2030&lt;/h2&gt;
  801. &lt;p&gt;Looking beyond this year, the analysis shows that CO2 from India&amp;rsquo;s power sector could peak before 2030, having previously been the main driver of emissions growth.&lt;/p&gt;
  802. &lt;p&gt;To date, India&amp;rsquo;s clean-energy additions have been lagging behind the growth in total electricity demand, meaning fossil-fuel demand and emissions from the sector have continued to rise.&lt;/p&gt;
  803. &lt;p&gt;However, this dynamic looks likely to change. In 2021, India set a target of having 500GW of non-fossil power generation capacity in place by 2030. Progress was slow at first, so meeting the target implies a substantial acceleration in clean-energy additions.&lt;/p&gt;
  804. &lt;p&gt;The country has been laying the groundwork for such an acceleration.&lt;/p&gt;
  805. &lt;p&gt;There was 234GW of renewable capacity in the pipeline as of April 2025,&amp;nbsp;&lt;a href="https://energy.economictimes.indiatimes.com/news/renewable/india-has-234-gw-renewable-energy-pipeline-installed-capacity-at-220-10-gw-mnre/120189179"&gt;according&lt;/a&gt;&amp;nbsp;to the Ministry of New and Renewable Energy. This includes 169GW already awarded contracts, of which&amp;nbsp;&lt;a href="https://cea.nic.in/wp-content/uploads/rpm_division/2025/05/Under_Construction_Projects_March_2025_M-1.pdf"&gt;145GW&lt;/a&gt;&amp;nbsp;is under construction, and an additional 65GW put out to tender. There is also 5.2GW of new nuclear capacity&amp;nbsp;&lt;a href="https://world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide"&gt;under construction&lt;/a&gt;.&lt;/p&gt;
  806. &lt;p&gt;If all of this is commissioned by 2030, then total non-fossil capacity would increase to 482GW, from 243GW at the end of June 2025, leaving a gap of just 18GW to be filled with new projects.&lt;/p&gt;
  807. &lt;p&gt;When the non-fossil capacity target was set in 2021, CREA&amp;nbsp;&lt;a href="https://energyandcleanair.org/glasgow-impact-on-coal/"&gt;assessed&lt;/a&gt;&amp;nbsp;that the target would suffice to peak demand for coal in power generation before 2030. This assessment remains valid and is reinforced by the latest Central Electricity Authority (CEA)&amp;nbsp;&lt;a href="https://cea.nic.in/wp-content/uploads/irp/2023/05/Optimal_Mix_Report_2029_30_Version_2.0_upload.pdf"&gt;projection&lt;/a&gt;&amp;nbsp;for the country&amp;rsquo;s &amp;ldquo;optimal power mix&amp;rdquo; in 2030, shown in the figure below.&lt;/p&gt;
  808. &lt;p&gt;&lt;img class="wp-image-59085" src="https://www.carbonbrief.org/wp-content/uploads/2025/09/india-power-sector-co2-could-peak-1.png" alt="Chart showing that India's power sector CO2 could peak before 2030" width="550" height="374" /&gt;&lt;em&gt;Electricity generation by fuel, TWh per year. Source: Historical generation from NITI, projection for the fiscal year 2029-30 from CEA. The trajectories from the latest data to 2029-30 are based on assuming steady annual growth rates for generation from each technology. The CEA projection is aligned with the target of reaching 500GW non-fossil capacity by the end of 2030.&lt;/em&gt;&lt;/p&gt;
  809. &lt;p&gt;In the CEA&amp;rsquo;s projection, the share of non-fossil power generation rises to 44% in the 2029-30 fiscal year, up from 25% in 2024-25. From 2025 to 2030, power demand growth, averaging 6% per year, is entirely covered from clean sources.&lt;/p&gt;
  810. &lt;p&gt;To accomplish this, the growth in non-fossil power generation would need to accelerate over time, meaning that towards the end of the decade, the growth in clean power supply would clearly outstrip demand growth overall&amp;nbsp;&amp;ndash; and so power generation from fossil fuels would fall.&lt;/p&gt;
  811. &lt;p&gt;While coal-power generation is expected to flatline,&amp;nbsp;&lt;a href="https://www.carbonbrief.org/guest-post-china-and-india-account-for-87-of-new-coal-power-capacity-so-far-in-2025/"&gt;large amounts&lt;/a&gt;&amp;nbsp;of new coal-power capacity is still being planned, because of the&amp;nbsp;&lt;a href="https://www.business-standard.com/industry/news/india-to-boost-power-generation-transmission-infra-to-attain-power-for-all-124122900153_1.html"&gt;expected&lt;/a&gt;&amp;nbsp;growth in peak electricity demand.&lt;/p&gt;
  812. &lt;p&gt;The post-Covid increase in electricity demand has given rise to a wave of new coal power plant proposals. Recent plans from the government&amp;nbsp;&lt;a href="https://www.livemint.com/industry/coal-fuelled-power-project-electricity-thermal-hydro-cea-deloitte-bhel-general-electric-electric-vehicles-11745920761902.html"&gt;target&lt;/a&gt;&amp;nbsp;an increase in coal-power capacity by another 80-100GW by 2030-32, with 35GW already&amp;nbsp;&lt;a href="https://cea.nic.in/thermal-broad-status-reports/?lang=en"&gt;under construction&lt;/a&gt;&amp;nbsp;as of July 2025.&lt;/p&gt;
  813. &lt;p&gt;The rationale for this is the increase in peak electricity loads, associated in particular with worsening heatwaves and growing use of air conditioning. The increase might yet prove unneeded.&lt;/p&gt;
  814. &lt;p&gt;Analysis by CREA shows that solar and wind are making an&amp;nbsp;&lt;a href="https://energyandcleanair.org/publication/record-renewables-capacity-in-fy24-25-signals-indias-path-beyond-coal/"&gt;increasing contribution&lt;/a&gt;&amp;nbsp;to meeting peak loads. This contribution will increase with the roll-out of solar power with integrated battery storage, the cost of which&amp;nbsp;&lt;a href="https://iecc.gspp.berkeley.edu/resources/reports/plummeting-solarstorage-auction-prices-in-india-unlock-affordable-inflation-proof-24-7-clean-power/"&gt;fell by 50-60%&lt;/a&gt;&amp;nbsp;from 2023 to 2025.&lt;/p&gt;
  815. &lt;p&gt;The&amp;nbsp;&lt;a href="https://iecc.gspp.berkeley.edu/wp-content/uploads/2025/05/IECC-Implications-of-Indias-SolarStorageauctions-for-24-7-clean-power.pdf"&gt;latest auction&lt;/a&gt;&amp;nbsp;held in India saw solar power with battery storage bidding at prices, per unit of electricity generation, that were lower than the cost of new coal power.&lt;/p&gt;
  816. &lt;p&gt;This creates the opportunity to accelerate the decarbonisation of India&amp;rsquo;s power sector, by reducing the need for thermal power capacity.&lt;/p&gt;
  817. &lt;p&gt;The clean-energy buildout has made it possible for India to peak its power-sector emissions within the next few years, if contracted projects are built, clean-energy growth is maintained or accelerated beyond 2030 and demand growth remains within the government&amp;rsquo;s projections.&lt;/p&gt;
  818. &lt;p&gt;This would be a major turning point, as the power sector has been responsible for half of India&amp;rsquo;s recent emissions growth. In order to peak its emissions overall, however, India would still need to take further action to address CO2 from industry and transport.&lt;/p&gt;
  819. &lt;p&gt;With the end-of-September 2025 deadline nearing, India has yet to publish its international climate pledge (&lt;a href="https://www.carbonbrief.org/explainer-what-are-intended-nationally-determined-contributions/"&gt;nationally determined contribution&lt;/a&gt;, NDC) for 2035 under the&amp;nbsp;&lt;a href="https://www.carbonbrief.org/interactive-the-paris-agreement-on-climate-change/"&gt;Paris Agreement&lt;/a&gt;, meaning its future emissions path, in the decades up to its 2070 net-zero goal, remains particularly uncertain.&lt;/p&gt;
  820. &lt;p&gt;The country is expected to&amp;nbsp;&lt;a href="https://climateactiontracker.org/countries/india/targets/"&gt;easily surpass&lt;/a&gt;&amp;nbsp;the headline climate target from its previous NDC, of cutting the emissions intensity of its economy to 45% below 2005 levels by 2030. As such, this goal is &amp;ldquo;unlikely to drive real world emission reductions&amp;rdquo;, according to&amp;nbsp;&lt;a href="https://climateactiontracker.org/"&gt;Climate Action Tracker&lt;/a&gt;.&lt;/p&gt;
  821. &lt;p&gt;In July of this year, it met a 2030 target for 50% of installed power generating capacity to be from non-fossil sources,&amp;nbsp;&lt;a href="https://www.reuters.com/business/energy/india-hits-50-non-fossil-power-milestone-ahead-2030-clean-energy-target-2025-07-14/"&gt;five years early&lt;/a&gt;.&lt;/p&gt;
  822. &lt;h2 class="wp-block-heading"&gt;About the data&lt;/h2&gt;
  823. &lt;p&gt;This analysis is based on official monthly data for fuel consumption, industrial production and power generation from different ministries and government institutes.&lt;/p&gt;
  824. &lt;p&gt;Coal consumption in thermal power plants is taken from the monthly reports downloaded from the&amp;nbsp;&lt;a href="https://npp.gov.in/publishedReports"&gt;National Power Portal&lt;/a&gt;&amp;nbsp;of the Ministry of Power. The data is compiled for the period January 2019 until June 2025. Power generation and capacity by technology and fuel on a monthly basis are sourced from the&amp;nbsp;&lt;a href="https://iced.niti.gov.in/energy/electricity/generation/power-generation"&gt;NITI data portal&lt;/a&gt;.&lt;/p&gt;
  825. &lt;p&gt;Coal use at steel and cement plants, as well as process emissions from cement production, are estimated using production indices from the&amp;nbsp;&lt;a href="https://eaindustry.nic.in/eight_core_infra/Eight_Infra.pdf"&gt;Index of Eight Core Industries&lt;/a&gt;&amp;nbsp;released monthly by the&amp;nbsp;&lt;a href="https://eaindustry.nic.in/"&gt;Office of Economic Adviser&lt;/a&gt;, assuming that changes in emissions follow production volumes.&lt;/p&gt;
  826. &lt;p&gt;These production indices were used to scale coal use by the sectors in 2022. To form a basis for using the indices, monthly coal consumption data for 2022 was constructed for the sectors using the annual total coal consumption reported in IEA World Energy Balances and monthly production data in a&amp;nbsp;&lt;a href="https://essd.copernicus.org/articles/12/2411/2020/"&gt;paper&lt;/a&gt;&amp;nbsp;by&amp;nbsp;&lt;a href="https://www.cicero.oslo.no/en/employees/robbie-andrew"&gt;Robbie Andrew&lt;/a&gt;, on monthly CO2 emission accounting for India.&lt;/p&gt;
  827. &lt;p&gt;Annual&amp;nbsp;&lt;a href="https://zenodo.org/records/3380081"&gt;cement process emissions&lt;/a&gt;&amp;nbsp;up to 2024 were also taken from Robbie Andrew&amp;rsquo;s work and scaled using the production indices. This approach better approximated changes in energy use and emissions reported in the IEA World Energy Balances, than did the amounts of coal reported to have been dispatched to the sectors, showing that production volumes are the dominant driver of short-term changes in emissions.&lt;/p&gt;
  828. &lt;p&gt;For other sectors, including aluminium, auto, chemical and petrochemical, paper and plywood, pharmaceutical, graphite electrode, sugar, textile, mining, traders and others, coal consumption is estimated based on data on despatch of domestic and imported coal to end users from&amp;nbsp;&lt;a href="https://coal.nic.in/en/public-information/statistical-report"&gt;statistical reports&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://coal.nic.in/en/public-information/monthly-statistics-at-glance"&gt;monthly reports&lt;/a&gt;&amp;nbsp;by the Ministry of Coal, as consumption data is not available.&lt;/p&gt;
  829. &lt;p&gt;The difference between consumption and dispatch is stock changes, which are estimated by assuming that the changes in coal inventories at end user facilities mirror those at coal mines, with end user inventories excluding power, steel and cement assumed to be 70% of those at coal mines, based on comparisons between our data and the IEA World Energy Balances.&lt;/p&gt;
  830. &lt;p&gt;Stock changes at mines are estimated as the difference between production at and despatch from coal mines, as reported by the Ministry of Coal.&lt;/p&gt;
  831. &lt;p&gt;In the case of the second quarter of the year 2025, data on domestic coal has been taken from the&amp;nbsp;&lt;a href="https://coal.nic.in/en/public-information/monthly-statistics-at-glance"&gt;monthly reports&lt;/a&gt;&amp;nbsp;by the Ministry of Coal. The regular data releases on coal imports have not taken place for the second quarter of 2025, for unknown reasons, so data was taken from commercial data providers&amp;nbsp;&lt;a href="https://thecoalhub.com/"&gt;Coal Hub&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://www.thehindubusinessline.com/markets/commodities/indias-coal-import-drops-4-to-2495-mt-in-april/article69681888.ece"&gt;mjunction services ltd&lt;/a&gt;.&lt;/p&gt;
  832. &lt;p&gt;Product-wise petroleum product consumption data, as well as gas use by sector, was downloaded from the&amp;nbsp;&lt;a href="https://ppac.gov.in/consumption/products-wise"&gt;Petroleum Planning and Analysis Cell&lt;/a&gt;&amp;nbsp;of the Ministry of Petroleum &amp;amp; Natural Gas.&lt;/p&gt;
  833. &lt;p&gt;As the fuel dispatch and consumption data is reported as physical volumes, calorific values are taken from IEA&amp;rsquo;s World Energy Balance and CO2 emission factors from 2006 IPCC Guidelines for National Greenhouse Gas Inventories.&lt;/p&gt;
  834. &lt;p&gt;Calorific values are assigned separately to different fuel types, including domestic and imported coal, anthracite and coke, as well as&amp;nbsp; petrol, diesel and several other oil products.&lt;/p&gt;</description>
  835. <link>https://skepticalscience.com/india-power-co2-falls.html</link>
  836. <guid>https://skepticalscience.com/india-power-co2-falls.html</guid>
  837. <pubDate>Mon, 20 Oct 2025 13:53:28 EST</pubDate>
  838. </item>  <item>
  839. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #42</title>
  840. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 27 news and opinion articles we found interesting and shared on social media during the past week: Sun, October 12, 2025 thru Sat, October 18, 2025.&lt;/div&gt;
  841. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  842. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (6 articles)&lt;/strong&gt;&lt;/p&gt;
  843. &lt;ul&gt;
  844. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/12102025/climate-change-comes-for-the-house-of-the-seven-gables/" target="_blank"&gt;Climate Change Comes for the House of the Seven Gables&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;At the edge of Salem&amp;rsquo;s harbor, caretakers face a race against rising seas and intensifying storms to protect a landmark bound up in America&amp;rsquo;s literary and colonial past.&lt;/em&gt; Inside Climate News, Ryan Krugman, Oct 12, 2025.&lt;/li&gt;
  845. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://newsroom.co.nz/2025/10/14/net-zero-is-a-pipe-dream-civilisation-now-faces-an-existential-threat/" target="_blank"&gt;Net-zero is a pipe dream: civilisation now faces an existential threat&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Crops now grown will no longer survive, water shortages will become widespread, and food will be scarce. Are we ready for widespread environmental refugees?&lt;/em&gt; Newsroom NZ, Kevin Trenberth, Oct 13, 2025.&lt;/li&gt;
  846. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/climate-tipping-points-sound-scary-especially-for-ice-sheets-and-oceans-heres-why-theres-still-room-for-optimism-265183" target="_blank"&gt;Climate tipping points sound scary, especially for ice sheets and oceans-why there's still room for optimism&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Conversation, Alexandra A Phillips , Oct 13, 2025.&lt;/li&gt;
  847. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.climatechangenews.com/2025/10/13/as-coral-reefs-pass-tipping-point-ocean-protection-rises-up-political-agenda/" target="_blank"&gt;As coral reefs pass tipping point, ocean protection rises up political agenda&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;New scientific studies show coral reefs are under severe pressure from global warming, while ocean acidification poses a threat to marine life&lt;/em&gt; Climate Home News, Mariel Lozada, Oct 13, 2025.&lt;/li&gt;
  848. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/16102025/antarctica-greenlandification-ice-melt/" target="_blank"&gt;Antarctica is starting to look a lot like Greenland-and that isn`t good&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Global warming is awakening sleeping giants of ice at the South Pole as glaciers start to flow faster and surface melting increases.&lt;/em&gt; Inside Climate News, Bob Berwyn, Oct 16, 2025.&lt;/li&gt;
  849. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/10/16/climate/carbon-dioxide-emissions-record-jump.html?unlocked_article_code=1.t08.wKLg.FZNPjz6lYSmW&amp;amp;smid=url-share" target="_blank"&gt;World Meteorological Report Marks Biggest Annual Jump in CO2 Levels&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Surging emissions from wildfires may have been behind the increase, which was the largest since modern measurements began more than half a century ago.&lt;/em&gt; New York Times, Raymond Zhong and Sachi Kitajima Mulkey, Oct 16, 2025.&lt;/li&gt;
  850. &lt;/ul&gt;
  851. &lt;p&gt;&lt;strong&gt;Climate Law and Justice (5 articles)&lt;/strong&gt;&lt;/p&gt;
  852. &lt;ul&gt;
  853. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/oct/13/climate-defenders-mary-lawlor-human-rights" target="_blank"&gt;`It`s a road to destruction`: climate defenders facing surge in reprisals, says UN expert&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Mary Lawlor, UN special rapporteur for human rights defenders, accuses US, UK and other governments of paying lip service to climate goals while criminalizing activists&lt;/em&gt; The Guardian, Nina Lakhani, Oct 13, 2025.&lt;/li&gt;
  854. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/law/2025/oct/15/youth-climate-activist-lawsuit-dismissed-trump-executive-orders" target="_blank"&gt;Judge dismisses suit by young climate activists against Trump`s pro-fossil fuel policies&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Plaintiffs had &amp;lsquo;overwhelming evidence&amp;rsquo; of climate crisis but a court injunction would be &amp;lsquo;unworkable&amp;rsquo;, ruling says&lt;/em&gt; The Guardian, Maya Yang, Oct 15, 2025.&lt;/li&gt;
  855. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/16102025/montana-court-dismisses-latest-youth-climate-lawsuit/" target="_blank"&gt;Montana Court Dismisses Youth-led Lawsuit Challenging Trump Executive Orders Boosting Fossil Fuels&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The judge in Lighthiser v. Trump described climate change as a &amp;ldquo;children&amp;rsquo;s health emergency,&amp;rdquo; but found that the young plaintiffs lacked standing and the court did not have the authority to grant the relief they requested.&lt;/em&gt; Inside Climate News, Dana Drugmand, Oct 16, 2025.&lt;/li&gt;
  856. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://blogs.law.columbia.edu/climatechange/2025/10/17/governmental-climate-duties-in-comparative-perspective-civil-common-and-european-legal-traditions/" target="_blank"&gt;Governmental Climate Duties in Comparative Perspective: Civil, Common, and European Legal Traditions&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Climate Law Blog, Myrto Leivadarou, Oct 17, 2025.&lt;/li&gt;
  857. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/10/18/climate/climate-lawsuit-children-montana-trump-health.html?unlocked_article_code=1.uU8.mhaK.LchOI5uqJX1F&amp;amp;smid=url-share" target="_blank"&gt;The Kids Who Sued Trump Just Lost Big in Court. Or Did They?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A federal judge threw out their climate lawsuit against the president a few days ago. But legal experts say there was a silver lining in the judge&amp;rsquo;s opinion.&lt;/em&gt; New York Times, Karen Zraick, Oct 18, 2025.&lt;/li&gt;
  858. &lt;/ul&gt;
  859. &lt;!--more--&gt;
  860. &lt;p&gt;&lt;strong&gt;Climate Science and Research (5 articles)&lt;/strong&gt;&lt;/p&gt;
  861. &lt;ul&gt;
  862. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.realclimate.org/index.php/archives/2025/10/high-resolution-fingerprint-images-reveal-a-weakening-atlantic-ocean-circulation-amoc/?utm_source=rss" target="_blank"&gt;High-resolution `fingerprint` images reveal a weakening Atlantic Ocean circulation (AMOC)&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; RealClimate, Stefan Rahmstorf, Oct 12, 2025.&lt;/li&gt;
  863. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-10-democratizing-global-climate.html" target="_blank"&gt;Democratizing global climate modeling&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Ansa Heyl (IIASA), Oct 16, 2025.&lt;/li&gt;
  864. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_42.html?utm-source=facebook&amp;amp;utm-campaign=socialnetworks&amp;amp;utm-term=sks" target="_blank"&gt;Skeptical Science New Research for Week #42 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The latest edition of our weekly climate research and report roundup, this week with 111 academic papers and 28 government/NGO items. &lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Oct 16, 2025.&lt;/li&gt;
  865. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://globalnews.ca/news/11484061/montreal-satellites-play-role-in-climate-fight/" target="_blank"&gt;Montreal satellites play role in climate fight&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;With our GHG budget shot and deeply in the red, a Canadian company helps to track methane emissions from space. &lt;/em&gt; The Canadian Press, Morgan Lowrie, Oct 18, 2025.&lt;/li&gt;
  866. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.livescience.com/planet-earth/arctic-ocean-methane-switch-that-helped-drive-rapid-global-warming-discovered" target="_blank"&gt;Arctic Ocean methane 'switch' that helped drive rapid global warming discovered&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The Arctic Ocean was once an important source of greenhouse gases to the atmosphere &amp;mdash; and it could become one again, researchers warn.&lt;/em&gt; Live Science, Aubrey Zerkle, Oct 18, 2025.&lt;/li&gt;
  867. &lt;/ul&gt;
  868. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (3 articles)&lt;/strong&gt;&lt;/p&gt;
  869. &lt;ul&gt;
  870. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.science.org/content/article/science-teachers-scramble-u-s-climate-resources-vanish" target="_blank"&gt;Science teachers scramble as U.S. climate resources vanish&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;As government websites go dark, some nonprofits are trying to fill the void&lt;/em&gt; Science, Gafa Cabico, Oct 3, 2025.&lt;/li&gt;
  871. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.washingtonpost.com/climate-solutions/2025/10/12/fresk-climate-change-ipcc-games/" target="_blank"&gt;Climate-curious but confused? Grab a beer and some cards.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Fresk converts the latest climate science into a hands-on card game, helping players understand the causes, effects and feedback loops of climate change.&lt;/em&gt; Washington Post, Katharine Houreld, Oct 12, 2025.&lt;/li&gt;
  872. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://cssn.org/news-research/global-assessment/" target="_blank"&gt;Sabotaging Climate Action Around The World&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Climate advocacy has not failed, climate policy has been sabotaged, explains a new open access book, Climate Obstruction: A Global Assessment.&lt;/em&gt; Climate Social Science Network, J. Timmons Roberts, Carlos R.S. Milani, Jennifer Jacquet, and Christian Downie, Oct 14, 2025.&lt;/li&gt;
  873. &lt;/ul&gt;
  874. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (3 articles)&lt;/strong&gt;&lt;/p&gt;
  875. &lt;ul&gt;
  876. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/10/fact-checking-a-trump-administration-claim-about-climate-change-and-crops/" target="_blank"&gt;Fact-checking a Trump administration claim about climate change and crops&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A recent Department of Energy report falsely states that rising carbon dioxide levels in the atmosphere will boost agricultural yields. In fact, climate change is much more likely to make food scarcer and more expensive. &lt;/em&gt; Yale Climate Connections, Dana Nuccitelli, Oct 14, 2025.&lt;/li&gt;
  877. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/15102025/world-bank-international-monetary-fund-climate-lending-policies/" target="_blank"&gt;Task Force Urges World Bank and International Monetary Fund to Prioritize Climate, Restructure Lending Policies&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;As the World Bank and IMF hold annual meetings in Washington, D.C., a new report calls for these institutions to reform their lending models to drive the clean-energy transition and help developing countries withstand climate shocks.&lt;/em&gt; Inside Climate News, Martha Pskowski, Aman Azhar, Oct 16, 2025.&lt;/li&gt;
  878. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/10/17/climate/fed-climate-risk-mandate.html?unlocked_article_code=1.uU8.tl6V.R6VDO8PbobZg&amp;amp;smid=nytcore-ios-share&amp;amp;referringSource=articleShare" target="_blank"&gt;Fed Rescinds Mandate That Banks Plan for Climate Risks&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Financial regulators said the Biden-era policy was superfluous. Democrats said it protected financial stability in an era of unpredictable weather.&lt;/em&gt; New York Times, Scott Dance and Stacy Cowley, Oct 17, 2025.&lt;/li&gt;
  879. &lt;/ul&gt;
  880. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (2 articles)&lt;/strong&gt;&lt;/p&gt;
  881. &lt;ul&gt;
  882. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/commentisfree/2025/oct/14/the-guardian-view-on-the-rising-risk-from-flooding-uninsurable-buildings-should-focus-minds-on-climate-adaptation" target="_blank"&gt;The Guardian view on the rising risk from flooding: uninsurable buildings should focus minds on climate adaptation | Editorial&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The bleak future faced by one small town offers a cautionary tale about the threat from global heating&lt;/em&gt; The Guardian, Editorial, Oct 14, 2025.&lt;/li&gt;
  883. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/oct/15/uk-prepare-buildings-2c-rise-temperature" target="_blank"&gt;UK must prepare buildings for 2C rise in global temperature, government told&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Climate advisers warn that current plans to protect against extreme weather are inadequate&lt;/em&gt; The Guardian, Fiona Harvey, Oct 15, 2025.&lt;/li&gt;
  884. &lt;/ul&gt;
  885. &lt;p&gt;&lt;strong&gt;International Climate Conferences and Agreements (1 article)&lt;/strong&gt;&lt;/p&gt;
  886. &lt;ul&gt;
  887. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/commentisfree/2025/oct/13/donald-trump-withdrawal-paris-agreement-tackling-climate-crisis-easier" target="_blank"&gt;Trump calls climate science a `con job`. That could make tackling the crisis a whole lot easier | Francesco Grillo&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Europe and Brazil have a rare opportunity, unimpeded by the US, to make a success of Cop30 &amp;ndash; and reshape the world order&lt;/em&gt; The Guardian, Francesco Grillo, Oct 13, 2025.&lt;/li&gt;
  888. &lt;/ul&gt;
  889. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (1 article)&lt;/strong&gt;&lt;/p&gt;
  890. &lt;ul&gt;
  891. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-greenhouse.html" target="_blank"&gt;Fact brief - Does increasing CO2 have a noticeable effect?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Yes - The warming effect of increasing atmospheric CO2 is well-established physics, confirmed by direct observation.&lt;/em&gt; Skeptical Science, Sue Bin Park, Oct 14, 2025.&lt;/li&gt;
  892. &lt;/ul&gt;
  893. &lt;p&gt;&lt;strong&gt;Miscellaneous (1 article)&lt;/strong&gt;&lt;/p&gt;
  894. &lt;ul&gt;
  895. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_41.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #41&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 24 news and opinion articles we found interesting and shared on social media during the past week: Sun, October 5, 2025 thru Sat, October 11, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler, John Hartz and Doug Bostrom, Oct 12, 2025.&lt;/li&gt;
  896. &lt;/ul&gt;
  897. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  898. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_42.html</link>
  899. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_42.html</guid>
  900. <pubDate>Sun, 19 Oct 2025 10:19:43 EST</pubDate>
  901. </item>  <item>
  902. <title>50 fact briefs published in collaboration with Gigafact!</title>
  903. <description>&lt;p&gt;In April 2024 we announced the (renewed) &lt;a href="https://skepticalscience.com/gigafact-and-skeptical-science-collaborate-to-create-fact-briefs.html" target="_blank"&gt;collaboration between Gigafact and Skeptical Science to create fact briefs&lt;/a&gt;, short but credibly sourced summaries that offer &amp;ldquo;yes/no&amp;rdquo; answers in response to claims found online. Initially, we published new fact briefs on Saturdays, but switched to Tuesdays earlier this year and while we try to have a new fact brief out each week, we sometimes miss a week due to time constraints and vacations. Regardless of that, we published&amp;nbsp;&lt;a href="https://sks.to/gfb-agw" target="_blank"&gt;fact brief #50 - Are humans responsible for climate change?&lt;/a&gt;&amp;nbsp;- on September 30, 2025 and thought that this little milestone might make for a good reason to write a short blog post about the current status of this project.&lt;/p&gt;
  904. &lt;p&gt;&lt;a href="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Composite-41to50-1000px.jpg" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Composite-41to50-570px.jpg" alt="Fact briefs 41 to 50" width="570" height="341" /&gt;&lt;/a&gt;&lt;/p&gt;
  905. &lt;p&gt;From what we can tell, these bite-sized explanations are still useful to people - at least they collect quite some likes and get shared on various social media platforms once we put up a post there. Another intriguing aspect of this collaboration with Gigafact is, that we are part of their network of news outlets and some of our fact briefs have for example been republished by &lt;a href="https://wisconsinwatch.org/2025/07/is-the-greenhouse-effect-still-debated-among-climate-scientists/" target="_blank"&gt;Wisconsin Watch among their own fact briefs&lt;/a&gt;!&lt;/p&gt;
  906. &lt;!--more--&gt;
  907. &lt;p&gt;&lt;a href="https://skepticalscience.com/pics/Gigafact-Fact-Brief-WisconsinWatch-Settled-1000px.jpg" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-WisconsinWatch-Settled-570px.jpg" alt="SkS fact brief on Wisconsin Watch" width="570" height="441" /&gt;&lt;/a&gt;&lt;/p&gt;
  908. &lt;p&gt;In addition to having the fact briefs available as blog posts on Skeptical Science, I also started creating short 2 minute videos, each with a collection of 10 fact briefs all available in &lt;a href="https://www.youtube.com/playlist?list=PL-3ZEOLMVdixcAwtuzWWkPjcQNDOSo454" target="_blank"&gt;one playlist&lt;/a&gt;, announced in the blog post&amp;nbsp;&lt;a href="https://skepticalscience.com/fact-brief-videos.html" target="_blank"&gt;&lt;span&gt;Making &lt;span id="skstip25" class="skstip beginner disabled"&gt;fact brief&lt;/span&gt;s available as videos on Youtube&lt;/span&gt;&lt;/a&gt;&amp;nbsp;in May. The main purpose of these "videos" is to have a means to link to fact briefs from Youtube-comments for quick debunkings where links to other sources usually causes the comment to disappear immediately. Since May, two more videos for fact briefs 31 to 40 and 41 to 50 have been added to &lt;a href="https://www.youtube.com/playlist?list=PL-3ZEOLMVdixcAwtuzWWkPjcQNDOSo454" target="_blank"&gt;the playlist&lt;/a&gt;.&lt;/p&gt;
  909. &lt;p&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-YoutubePlaylist-570px.jpg" alt="Youtube Playlist" width="570" height="441" /&gt;&lt;/p&gt;
  910. &lt;p&gt;Gigafact is also offering tools to increase "engagement" with the fact briefs. One option is an easy means to customize a little quiz which utilizes the available fact briefs of a partner organization. Players can click through the randomly displayed fact briefs and pick "Yes" or "No" for each of them. At 10 question intervals they see their results and can decide whether or not to keep playing. Gigafact partners have an option to also display "cards" with either a link to sign-up for a newsletter or support the website with a contribution. Want to give it a try? Click the image below or &lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;here&lt;/a&gt;:&lt;/p&gt;
  911. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;
  912. &lt;p&gt;Thanks to the&amp;nbsp;&lt;a href="https://gigafact.org/about-gigafact" target="_blank"&gt;Gigafact team&lt;/a&gt; for including us in this neat collaborative project! Special thanks go to Sue Bin Park for writing most of the fact briefs, to Austin Tannenbaum for editorial comments and Robyn Sundlee for overall project support and Sean Vanderaa for technical support! On our side, this project has only been possible due to the dedication of our&amp;nbsp;&lt;a href="https://skepticalscience.com/remembering-john-mason.html" target="_blank"&gt;late team member John Mason&lt;/a&gt; and - after John's untimely passing away - Ken Rice helping with getting the science right.&lt;/p&gt;
  913. &lt;p class="bluebox"&gt;The list of all now 50+ fact briefs published since April 2024 is&amp;nbsp;&lt;a href="https://sks.to/gfb" target="_blank"&gt;available on Skeptical Science&lt;/a&gt; and a list also including the output from the initial collaboration with Repustar in 2021 is &lt;a href="https://gigafact.org/fact-briefs/?organization=skeptical-science&amp;amp;page=1" target="_blank"&gt;available on the Gigafact website&lt;/a&gt;.&lt;/p&gt;</description>
  914. <link>https://skepticalscience.com/50-fact-briefs-published-with-gigafact.html</link>
  915. <guid>https://skepticalscience.com/50-fact-briefs-published-with-gigafact.html</guid>
  916. <pubDate>Tue, 21 Oct 2025 10:27:12 EST</pubDate>
  917. </item>  <item>
  918. <title>New Book - Climate Obstruction: A global Assessment</title>
  919. <description>&lt;p class="greenbox"&gt;&lt;strong&gt;&lt;a href="https://cssn.org/news-research/global-assessment/" target="_blank"&gt;Climate Obstruction: A Global Assessment&lt;/a&gt;&lt;/strong&gt; is a new book from Brown University&amp;rsquo;s global Climate Social Science Network, for which a team of more than 100 scholars explored who&amp;rsquo;s blocking action on climate change and how they&amp;rsquo;re doing it. John Cook - founder of Skeptical Science and&amp;nbsp;senior research fellow with the Melbourne Centre for Behaviour&amp;nbsp;Change at the University of Melbourne - co-authored chapter 7 in the book titled "&lt;em&gt;Understanding the Political and Psychological Roots of Climate Misinformation and Its&amp;nbsp;Impact on Public Opinion&lt;/em&gt;". The book is available open access for download from the &lt;a href="https://cssn.org/news-research/global-assessment/" target="_blank"&gt;Climate Social Science Network&lt;/a&gt;.&lt;/p&gt;
  920. &lt;h3&gt;The book&lt;/h3&gt;
  921. &lt;p&gt;&lt;a href="https://cssn.org/news-research/global-assessment/" target="_blank"&gt;&lt;img style="display: block; margin-left: auto; margin-right: auto;" src="https://skepticalscience.com/pics/Climate-of-Obstruction-BookCover-400px.jpg" alt="Book Cover" width="300" height="459" /&gt;&lt;/a&gt;&lt;/p&gt;
  922. &lt;p&gt;In addition to an introduction by the editors J. Timmons Roberts, Carlos R. S. Milani, Jennifer Jacquet, and Christian Downie the book contains 12 chapters exploring the many different shapes and forms climate obstruction takes around the globe:&lt;/p&gt;
  923. &lt;ul&gt;
  924. &lt;li&gt;&lt;em&gt;&lt;strong&gt;The Global Role of the Oil and Gas Industry in Climate Delay&amp;nbsp;and Denial&lt;/strong&gt;&lt;/em&gt; - Lead Authors: Geoff Dembicki, Kristoffer Ekberg, and Kert Davies / Contributing Authors: Ann-Kristin Bergquist, Ada Nissen, and Stella Levantesi&lt;/li&gt;
  925. &lt;li&gt;&lt;strong&gt;&lt;em&gt;How Coal, Utilities, and Transportation Impede Climate Action&lt;/em&gt;&lt;/strong&gt; - Lead Authors: Jen Schneider and Gregory Trencher / Contributing Authors: Peter K. Bsumek, Christian Downie, Paul K. Gellert, Giulio Mattioli, Jason Monios, Peter Newell, Jennifer Peeples, Joeri Wesseling, Emily Williams, Ryan Wishart, and Ben Youriev&lt;/li&gt;
  926. &lt;li&gt;&lt;strong&gt;&lt;em&gt;The Animal Agriculture Industry&amp;rsquo;s Role in Obstructing Climate Action&lt;/em&gt;&lt;/strong&gt; - Lead Authors: Kathrin Lauber and Viveca Morris / Contributing Authors: Jennifer Jacquet, Peter Li, Ina M&amp;ouml;ller, Silvia Secchi, Alex Wijeratna, and Melina De Bona&lt;/li&gt;
  927. &lt;li&gt;&lt;strong&gt;&lt;em&gt;Climate Policy Obstruction on the Right and the Far Right&lt;/em&gt;&lt;/strong&gt; - Lead Authors: Dieter Plehwe and Justin Farrell / Contributing Authors: Lucas Araldi, Robert J. Brulle, Jesse Callahan Bryant, William Callison, Kert Davies, Ruth E. McKie, Sotiris Mitralexis, and Alexandru Racu&lt;/li&gt;
  928. &lt;li&gt;&lt;strong&gt;&lt;em&gt;Steering the Climate Discourse: Legacy News, Social Media, Advertising, and Public Relations&lt;/em&gt;&lt;/strong&gt; - Lead Authors: Melissa Aronczyk and Maxwell Boykoff / Contributing Authors: Travis G. Coan, Myanna Lahsen, Hanna E. Morris, and Chris Russill&lt;/li&gt;
  929. &lt;li&gt;&lt;em&gt;&lt;strong&gt;Understanding the Political and Psychological Roots of Climate Misinformation and Its Impact on Public Opinion&lt;/strong&gt;&lt;/em&gt; - Lead Authors: Dominik A. Stecula and John Cook / Contributing Authors: Arunima Krishna, Adrian Dominik W&amp;oacute;jcik, Jean Carlos Hochsprung Miguel, Matthew Hornsey, and Salil Benegal&lt;/li&gt;
  930. &lt;li&gt;&lt;em&gt;&lt;strong&gt;Climate Obstruction Across the Global South&lt;/strong&gt;&lt;/em&gt; - Lead Authors: M. Omar Faruque and Ruth E. McKie / Contributing Authors: Lucas G. Christel, Claire Debucquois, Guy Edwards, Paul K. Gellert, Ricardo A. Gutierrez, Kathryn Hochstetler, Yifei Li, Carlos R. S. Milani, Elisabeth M&amp;ouml;hle, Oluwaseun J. Oguntuase, and Jonathan R. Walz&lt;/li&gt;
  931. &lt;li&gt;&lt;strong&gt;&lt;em&gt;Blocking Climate Action at Subnational Levels&lt;/em&gt;&lt;/strong&gt; - Lead Authors: Rebecca Bromley-Trujillo,&amp;nbsp;Joshua A. Basseches, and Marcela L&amp;oacute;pez-Vallejo / Contributing Authors: Lucas G. Christel, Andrew B. Kirkpatrick, Simone Lucatello, and Maria Isabel Santos Lima&lt;/li&gt;
  932. &lt;li&gt;&lt;em&gt;&lt;strong&gt;Obstruction in the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change&lt;/strong&gt;&lt;/em&gt; - Lead Authors: Kari De Pryck and Eduardo Viola / Contributing Authors: Stefan C. Aykut, Larissa Basso, Danielle Falzon, Mat&amp;iacute;as Franchini, Friederike Hartz, Hannah Hughes, Vin&amp;iacute;cius Mendes, Carlos R. S. Milani, Bruna Bosi Moreira, G&amp;eacute;raldine Pflieger, and Emanuel Semedo&lt;/li&gt;
  933. &lt;li&gt;&lt;strong&gt;&lt;em&gt;Obstructing Global and Local Climate Change Adaptation&lt;/em&gt;&lt;/strong&gt; - Lead Authors: Laura Kuhl and Stacy-ann Robinson / Contributing Authors: Natalie Dietrich Jones, Danielle Falzon, Andrew Malmuth, Michael Mikulewicz, Meg Mills-Novoa, Michelle Mycoo, Meg Parsons, M. Feisal Rahman, E. Lisa F. Schipper, Kimberley Anh Thomas, and Edward Walker&lt;/li&gt;
  934. &lt;li&gt;&lt;strong&gt;&lt;em&gt;Legal and State Efforts to Address Climate Obstruction&lt;/em&gt;&lt;/strong&gt; - Lead Authors: Grace Nosek, Joana Setzer, and Benjamin Franta / Contributing Authors: Alyssa Johl, Lisa Benjamin, Sharon Yadin, William W.&amp;nbsp;Buzbee, and Aria Kovalovich&lt;/li&gt;
  935. &lt;li&gt;&lt;em&gt;&lt;strong&gt;Confronting Climate Obstruction: The Role of Civil Society and Non&amp;ndash;State Actors&lt;/strong&gt;&lt;/em&gt; - Lead Authors: Jennie C. Stephens and Sharon Yadin / Contributing Authors: Laurence L. Delina, Louise M. Fitzgerald, Francisco Garcia-Gibson, Fergus Green, Noel Healy, David Hess, Tariro Kamuti, Cristiana Losekann, David Michaels, Sonja Solomun, and&amp;nbsp;Robin Tschoetschel&lt;/li&gt;
  936. &lt;/ul&gt;
  937. &lt;!--more--&gt;
  938. &lt;h3&gt;A closer look at chapter 7&lt;/h3&gt;
  939. &lt;p&gt;The chapter "&lt;em&gt;&lt;strong&gt;Understanding the Political and Psychological Roots of Climate Misinformation and Its Impact on Public Opinion&lt;/strong&gt;&lt;/em&gt;," lead-authored by Dominik A. Stecula and John Cook, investigates how decades of climate disinformation&amp;mdash;funded by the fossil fuel industry&amp;mdash;have successfully sabotaged public debate. These campaigns exploited common human psychological traits, leading to widespread polarization.&lt;/p&gt;
  940. &lt;p&gt;The authors identify five critical climate beliefs necessary for fostering political urgency: that climate change is real, human-caused, experts agree, it's a bad thing, and that we have hope to avoid the worst-case scenarios. The climate counter-movement systematically promotes five corresponding disbeliefs to obstruct action.&lt;/p&gt;
  941. &lt;p&gt;The key method for cultivating these disbeliefs is by &lt;strong&gt;FLICCing&lt;/strong&gt; off scientific integrity&amp;mdash;using &lt;a href="https://sks.to/flicc-sks" target="_blank"&gt;the five techniques of science denial&lt;/a&gt;:&lt;/p&gt;
  942. &lt;ul&gt;
  943. &lt;li&gt;&lt;strong&gt;F&lt;/strong&gt;ake experts&lt;/li&gt;
  944. &lt;li&gt;&lt;strong&gt;L&lt;/strong&gt;ogical fallacies&lt;/li&gt;
  945. &lt;li&gt;&lt;strong&gt;I&lt;/strong&gt;mpossible expectations&lt;/li&gt;
  946. &lt;li&gt;&lt;strong&gt;C&lt;/strong&gt;herry picking&lt;/li&gt;
  947. &lt;li&gt;&lt;strong&gt;C&lt;/strong&gt;onspiracy theories&lt;/li&gt;
  948. &lt;/ul&gt;
  949. &lt;p&gt;Most excuses for inaction make use of one of these techniques. For example, the &lt;strong&gt;Impossible expectation&lt;/strong&gt; is used to dismiss crucial local climate policy by arguing it won't solve the entire global problem by itself. Additionally, "&lt;strong&gt;Fake experts&lt;/strong&gt;" exploit &amp;ldquo;like-me&amp;rdquo; biases, where people trust messengers who share their ideology.&lt;/p&gt;
  950. &lt;p&gt;Crucially, this disinformation campaign worked through political elites who serve as trusted messengers. Research on the &lt;strong&gt;"elite cue" effect&lt;/strong&gt; shows that after the Kyoto Protocol, Republican elites began explicitly denying climate change, and their voters followed suit. This powerful effect means people often judge climate policies based on who proposes them, rather than their actual content. Ultimately, the industry's lies have led substantial segments of the public to hold &lt;strong&gt;misinformed&lt;/strong&gt; views&amp;mdash;knowing things that are simply not true, but are convenient for the fossil fuel industry.&lt;/p&gt;
  951. &lt;h3&gt;Discussions about the book&lt;/h3&gt;
  952. &lt;p&gt;John Cook participated in a panel discussion recorded in September about the book with editor Timmons Roberts and one of the lead-authors for chapter 6 "Steering the Climate Discourse: Legacy News, Social Media, Advertising, and Public Relations"&amp;nbsp;Melissa Aronczyk. Their panel discussion is available on Youtube:&lt;/p&gt;
  953. &lt;p&gt;&lt;a href="https://www.youtube.com/watch?v=u3Z76N0GRvU" target="_blank"&gt;&lt;img src="https://i.ytimg.com/vi/u3Z76N0GRvU/hqdefault.jpg" data-pre-sourced="yes" data-sourced="yes" id="image1" data-original="https://i.ytimg.com/vi/u3Z76N0GRvU/hqdefault.jpg" data-src="https://i.ytimg.com/vi/u3Z76N0GRvU/hqdefault.jpg" alt="YouTube Video" "="" class="" style="max-width: 580px;"&gt;&lt;/a&gt;&lt;/p&gt;
  954. &lt;p&gt;From the video's description:&lt;/p&gt;
  955. &lt;p&gt;A panel-pod on the scourge of climate disinformation and misinformation - "the firehose of falsehoods" as one panellist poetically puts it! We need to understand which groups are running climate change disinformation and misinformation campaigns -&amp;nbsp; and who is funding them - if we are to make progress. "We don't need to change the minds of everyone in society to get climate action - we just need to activate enough people!" Featuring three people involved in a landmark&amp;nbsp;&lt;a href="https://cssn.org/news-research/global-assessment/" target="_blank"&gt;new book&lt;/a&gt; called Climate Obstruction - A Global Assessment - out from Oxford University Press. Timmons Roberts is a co-editor of the book, and Melissa Aronczyk and John Cook are two of the many contributors to it.&lt;/p&gt;
  956. &lt;p&gt;Update Oct 30, 2025: &lt;a href="https://drilled.media/podcasts/drilled/14/s14-ep3?content=episode-details" target="_blank"&gt;Amy Westervelt discussed the book chapter in episode 3 (season 14) of her podcast "Drilled" with John Cook and Dominik Stecula&lt;/a&gt;:&lt;/p&gt;
  957. &lt;p&gt;If you want to understand how misinformation works in general&amp;hellip;and anyone who cares about democracy should right now&amp;hellip;there&amp;rsquo;s no one better to talk to than researchers who have been studying climate misinformation for years. In today's episode, John Cook (University of Melbourne) and Dominik A. Stecu?a (Colorado State University) join to walk us through everything the research is telling us so far.&lt;/p&gt;</description>
  958. <link>https://skepticalscience.com/new-book-climate-obstruction-a-global-assessment.html</link>
  959. <guid>https://skepticalscience.com/new-book-climate-obstruction-a-global-assessment.html</guid>
  960. <pubDate>Wed, 22 Oct 2025 04:02:08 EST</pubDate>
  961. </item>  <item>
  962. <title>Skeptical Science New Research for Week #42 2025</title>
  963. <description>&lt;h3&gt;Open access notables&lt;/h3&gt;
  964. &lt;p&gt;&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="A desk piled high with research reports" width="250" height="139" /&gt;&lt;/p&gt;
  965. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02449-0" target="_blank"&gt;Mountain glaciers recouple to atmospheric warming over the twenty-first century&lt;/a&gt;&lt;/strong&gt;, Shaw et al.,&amp;nbsp;&lt;em&gt;Nature Climate Chang&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  966. &lt;blockquote&gt;
  967. &lt;p&gt;&lt;em&gt;Recent studies have argued that air temperatures over many mountain glaciers are decoupled from their surroundings, leading to a local cooling which could slow down melting. Here we use a compilation of on-glacier meteorological observations to assess the extent to which this relationship changes under warming. Statistical modelling of the potential temperature decoupling of the world&amp;rsquo;s mountain glaciers indicates that currently glacier boundary layers warm ~0.83&amp;thinsp;&amp;deg;C on average for every degree of ambient temperature rise. Future projections under shared socioeconomic pathway (SSP) climate scenarios SSP&amp;thinsp;2-4.5 and SSP&amp;thinsp;5-8.5 indicate that decoupling, and thus relative cooling over glaciers, is maximized during the 2020s and 2030s, before widespread glacier retreat acts to recouple above-glacier air temperatures with its surroundings. This nonlinear feedback will lead to an increased sensitivity to warming from midcentury, with glaciers losing their capacity to affect the local climate and cool themselves.&lt;/em&gt;&lt;/p&gt;
  968. &lt;/blockquote&gt;
  969. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s41467-025-63404-3" target="_blank"&gt;Antarctic seep emergence and discovery in the shallow coastal environment&lt;/a&gt;&lt;/strong&gt;, Seabrook et al.,&amp;nbsp;&lt;em&gt;Nature Communications&lt;/em&gt;&amp;nbsp;&lt;/p&gt;
  970. &lt;blockquote&gt;
  971. &lt;p&gt;&lt;em&gt;We report striking discoveries of numerous seafloor seeps of climate-reactive fluid and gases in the coastal Ross Sea, indicating this process may be a common phenomenon in the region. We establish the recent emergence of many of these seep features, based on their discovery in areas routinely surveyed for decades with no previous seep presence. Additionally, we highlight impacts to the local benthic ecosystem correlated to seep presence and discuss potential broader implications. With these discoveries, our understanding of Antarctic seafloor seeps shifts from them being rare phenomenon to seemingly widespread, and an important question is raised about the driver of seep emergence in the region. While the origin and underlying mechanisms of these emerging seep systems remains unknown, similar processes in the paleo-record and the&amp;nbsp;Arctic have been attributed to climate-driven cryospheric change. Such a mechanism may be widespread around the Antarctic Continent, with concerning positive feedbacks that are currently undetermined. Future, internationally coordinated research is required to uncover the causative mechanisms of the seep emergence reported here and reveal potential sensitivities to contemporary climate change&amp;nbsp;and implications for surrounding ecosystems.&lt;/em&gt;&lt;/p&gt;
  972. &lt;/blockquote&gt;
  973. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2571949" target="_blank"&gt;Engaged Climate Change Pedagogy: Lessons from 15 Years of Interdisciplinary Climate Change Education&lt;/a&gt;&lt;/strong&gt;, Artiga-Purcell et al.,&amp;nbsp;&lt;em&gt;Environmental Communication&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  974. &lt;blockquote&gt;
  975. &lt;p&gt;&lt;em&gt;This article explores lessons learned from 15 years of an interdisciplinary, team-taught course on global climate change at a minority-serving public university in the United States San Francisco Bay Area integrating climate science with policymaking, public communication strategies, and principles of climate justice. First taught in 2007, 16 faculty from 5 different departments collaborated across disciplines to produce innovative teaching practices and curriculum design that evolved through each iteration of the course. Theme analysis of two roundtable discussions with course instructors identified three themes: changing course context, integrative learning, and community engagement. The essay concludes with lessons learned from this case study and recommendations for future interdisciplinary climate change education models. We argue that effective climate change education must foster bottom-up interdisciplinarity, respond to students&amp;rsquo; social and political realities, and cultivate student agency to enact personal, social, and ecological well-being. For climate change education to be effective, it needs to actively engage students in hands-on, participatory learning experience that fosters critical thinking and real-world problem solving.&lt;/em&gt;&lt;/p&gt;
  976. &lt;/blockquote&gt;
  977. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02800-5" target="_blank"&gt;Existing demand-side climate change mitigation policies neglect avoid options&lt;/a&gt;&lt;/strong&gt;, Brad et al.,&amp;nbsp;&lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  978. &lt;blockquote&gt;
  979. &lt;p&gt;&lt;em&gt;Demand-side options are increasingly recognized for their potential to mitigate climate change while reducing reliance on novel carbon dioxide removal. However, systematic analyses of implemented demand-side mitigation policy mixes remain scarce, compromising assessment and exploration of effective and feasible demand-side policies. Here, we provide a multilevel analysis of the evolution, composition, and foci of demand-side mitigation policy mixes in the transport and housing sector from 1995 to 2024, focusing on the EU, the federal Austrian level and two provincial levels (Vienna, Lower Austria). Our high-resolution policy database features 356 demand-side measures, systematically classified according to policy target, instrument type, and the avoid-shift-improve framework. We find that existing policy mixes heavily rely on shift and improve measures, critically neglecting mitigation potentials of avoid options as well as certain policy areas. This suggests an urgent need to broaden demand-side policy mixes and explore strategies that increase the political feasibility of avoid options.&lt;/em&gt;&lt;/p&gt;
  980. &lt;/blockquote&gt;
  981. &lt;h3&gt;From this week's government/NGO &lt;a href="#gov-ngo"&gt;section&lt;/a&gt;:&lt;/h3&gt;
  982. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cssn.org/news-research/global-assessment/" target="_blank"&gt;Climate Obstruction: A Global Assessment&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Multiple,&amp;nbsp;&lt;strong&gt;Brown University&amp;rsquo;s global Climate Social Science Network&lt;/strong&gt;&lt;/p&gt;
  983. &lt;blockquote&gt;People burning fossil fuels causes climate change, a scientific fact that has been clear for decades. And climate policy is broadly popular, with as many as 89% of people around the world wanting more climate action from their leaders. So why haven&amp;rsquo;t those leaders taken appropriate action? Because at every step, the fossil fuel, agriculture, and other high-carbon industries and their enablers have made it &amp;ldquo;exponentially more difficult&amp;rdquo; to enact policies to keep the climate, and the public, safe, the authors of a groundbreaking new assessment of climate obstruction write. A team of more than 100 scholars explore who&amp;rsquo;s blocking action on climate change and how they&amp;rsquo;re doing it.&lt;/blockquote&gt;
  984. &lt;p&gt;&lt;strong&gt;&lt;a href="https://global-tipping-points.org/download/1418/" target="_blank"&gt;Global Tipping Points Report 2025&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Lenton et al.,&amp;nbsp;&lt;strong&gt;University of Exeter et al&lt;/strong&gt;&lt;/p&gt;
  985. &lt;blockquote&gt;The world has entered a new reality. Global warming will soon exceed 1.5&amp;deg;C. This puts humanity in the danger zone where multiple climate tipping points pose catastrophic risks to billions of people. Already warm-water coral reefs are crossing their thermal tipping point and experiencing unprecedented dieback, threatening the livelihoods of hundreds of millions who depend on them. Polar ice sheets are approaching tipping points, committing the world to several meters of irreversible sea-level rise that will affect hundreds of millions. These climate tipping point risks are interconnected and most of the interactions between them are destabilizing, meaning tipping one system makes tipping another more likely. The resulting impacts would cascade through the ecological and social systems we depend upon, creating escalating damages. Humanity faces a potentially catastrophic, irreversible outcome. The Inter-American Court of Human Rights recognizes the right of humans to a safe climate, hence preventing irreversible harm to the climate system is a legal imperative.&lt;/blockquote&gt;
  986. &lt;h3&gt;111 articles in 55 journals by 774 contributing authors&lt;/h3&gt;
  987. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  988. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006201" target="_blank"&gt;A Stylized Study of the Climate Response to Longwave and Shortwave Forcing at the Altitude of Aviation-Induced Cirrus&lt;/a&gt;, Thomas et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006201" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006201&lt;/p&gt;
  989. &lt;!--more--&gt;
  990. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0496.1" target="_blank"&gt;Perturbing the Surface Energy Balance to Emulate the Historical Pattern of Tropical Pacific Sea Surface Temperature Trends&lt;/a&gt;, Merlis, &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0496.1&lt;/p&gt;
  991. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2023-2589" target="_blank"&gt;Tipping points in ocean and atmosphere circulations&lt;/a&gt;, Loriani et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/esd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2023-2589&lt;/p&gt;
  992. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  993. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70144" target="_blank"&gt;Heatwaves in the Northern Brazil Region: Current and Future Perspectives&lt;/a&gt;, de Medeiros et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70144&lt;/p&gt;
  994. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-64112-8" target="_blank"&gt;Inter-basin contrast in the Southern Ocean warming&lt;/a&gt;, Song et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-64112-8&lt;/p&gt;
  995. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  996. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100811" target="_blank"&gt;Attributing a deadly landslide disaster in Southeastern Brazil to human-induced climate change&lt;/a&gt;, Barbosa et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100811" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100811&lt;/p&gt;
  997. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jc022886" target="_blank"&gt;Detection of Satellite Sea Surface Temperature Extremes: Low Frequency Variability and Climate Change&lt;/a&gt;, Serva et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jc022886" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jc022886&lt;/p&gt;
  998. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jpo-d-25-0018.1" target="_blank"&gt;Statistical Features of a Time-Averaged Global State Estimate: Strong Regional Variations and Implications for Sea Level and Heat Content Change&lt;/a&gt;, Wunsch, &lt;em&gt;Journal of Physical Oceanography&lt;/em&gt; 10.1175/jpo-d-25-0018.1&lt;/p&gt;
  999. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  1000. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0728.1" target="_blank"&gt;Contrast in Slow Climate Response to Methane and Carbon Dioxide Forcings Identified Using the Radiative Kernel Technique&lt;/a&gt;, Kumar et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0728.1&lt;/p&gt;
  1001. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0752.1" target="_blank"&gt;Contribution of AMOC Decline to Uncertainty in Global Warming via Ocean Heat Uptake and Climate Feedbacks&lt;/a&gt;, Hahn et al., &lt;em&gt;Journal of Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.31223/x5wx3x" target="_blank"&gt; Open Access&lt;/a&gt; 10.1175/jcli-d-24-0752.1&lt;/p&gt;
  1002. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108547" target="_blank"&gt;Future projections of wet and dry spells in southern Sweden: The impact of climate model resolution&lt;/a&gt;, An et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.atmosres.2025.108547" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.atmosres.2025.108547&lt;/p&gt;
  1003. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jas-d-24-0283.1" target="_blank"&gt;Future Trends in Upper-Atmospheric Shear Instability from Climate Change&lt;/a&gt;, de Medeiros &amp;amp; Williams, &lt;em&gt;Journal of the Atmospheric Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1175/jas" target="_blank"&gt; Open Access&lt;/a&gt; 10.1175/jas-d-24-0283.1&lt;/p&gt;
  1004. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70144" target="_blank"&gt;Heatwaves in the Northern Brazil Region: Current and Future Perspectives&lt;/a&gt;, de Medeiros et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70144&lt;/p&gt;
  1005. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117068" target="_blank"&gt;Increased Shortwave Radiation Dampens Summertime SST Tendency in Mid-Latitude Oceans Under Future Warming Scenarios&lt;/a&gt;, Tian &amp;amp; Zhang, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117068" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117068&lt;/p&gt;
  1006. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.09.008" target="_blank"&gt;More prolonged hot, dry, and compound dry?hot events in China than expected based on observation-constrained projections&lt;/a&gt;, YUAN et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.09.008" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.09.008&lt;/p&gt;
  1007. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0437.1" target="_blank"&gt;Nonmonotonic Future Changes in the North Atlantic Warming Hole under a Fast CO2 Emission Scenario&lt;/a&gt;, Geng et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0437.1&lt;/p&gt;
  1008. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/wcc.70025" target="_blank"&gt;Southern African Climate Change: Processes, Models, and Projections&lt;/a&gt;, Munday et al., &lt;em&gt;WIREs Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/wcc.70025" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/wcc.70025&lt;/p&gt;
  1009. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0669.1" target="_blank"&gt;The Impact of a Subpolar North Atlantic Freshwater Anomaly on Eurasian Winter Climate&lt;/a&gt;, Grist et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0669.1&lt;/p&gt;
  1010. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/qj.70012" target="_blank"&gt;The impact of Arctic sea-ice loss on winter weather in the British Isles&lt;/a&gt;, Hay et al., &lt;em&gt;Quarterly Journal of the Royal Meteorological Society&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/qj.70012" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/qj.70012&lt;/p&gt;
  1011. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  1012. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jhm-d-25-0017.1" target="_blank"&gt;A Deep Learning&amp;ndash;Based Framework for ESM Climate Downscaling and Its Application to the U.S. Northeast&lt;/a&gt;, Badhan et al., &lt;em&gt;Journal of Hydrometeorology&lt;/em&gt; 10.1175/jhm-d-25-0017.1&lt;/p&gt;
  1013. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0734.1" target="_blank"&gt;A Statistical Reduced Complexity Climate Model for Probabilistic Analyses and Projections&lt;/a&gt;, Bennedsen et al., &lt;em&gt;Journal of Climate&lt;/em&gt; &lt;a style="color: green;" href="https://arxiv.org/pdf/2407.04351" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://arxiv.org/pdf/2407.04351" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1175/jcli-d-24-0734.1&lt;/p&gt;
  1014. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  1015. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jhm-d-24-0124.1" target="_blank"&gt;Evaluation of CMIP6 Streamflow in the Arctic&lt;/a&gt;, Solander et al., &lt;em&gt;Journal of Hydrometeorology&lt;/em&gt; 10.1175/jhm-d-24-0124.1&lt;/p&gt;
  1016. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-25-0191.1" target="_blank"&gt;Finalizing Experimental Protocols for the Geoengineering Model Intercomparison Project (GeoMIP) Contribution to CMIP7&lt;/a&gt;, Visioni et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-25-0191.1&lt;/p&gt;
  1017. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-25-0099.1" target="_blank"&gt;High-Resolution CMIP6 Models Better Capture Southern High Mountain Asia Precipitation Trends&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-25-0099.1&lt;/p&gt;
  1018. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-24-0240.1" target="_blank"&gt;The Impact of Cumulus Parameterization on Regional Climate Simulations of Central American Climate&lt;/a&gt;, Gonzalez et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-24-0240.1&lt;/p&gt;
  1019. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000708" target="_blank"&gt;Towards provision of regularly updated climate data from the Coupled Model Intercomparison Project&lt;/a&gt;, Hewitt et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000708" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000708&lt;/p&gt;
  1020. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1021. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2025-709" target="_blank"&gt;Exploring the Greenland Ice Sheet&amp;rsquo;s response to future atmospheric warming-threshold scenarios over 200 years&lt;/a&gt;, Delhasse et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2025-709&lt;/p&gt;
  1022. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-3593" target="_blank"&gt;Monitoring shear-zone weakening in East Antarctic outlet glaciers through differential InSAR measurements&lt;/a&gt;, Wild et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-3593&lt;/p&gt;
  1023. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02449-0" target="_blank"&gt;Mountain glaciers recouple to atmospheric warming over the twenty-first century&lt;/a&gt;, Shaw et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02449-0&lt;/p&gt;
  1024. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-134" target="_blank"&gt;Thermo-hydrological observatory in a permafrost river valley landscape in Syrdakh, Central Yakutia&lt;/a&gt;, Pohl et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-134&lt;/p&gt;
  1025. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/tc-19-4471-2025" target="_blank"&gt;Warm proglacial lake temperatures and thermal undercutting enhance rapid retreat of an Arctic glacier&lt;/a&gt;, Dye et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-19-4471-2025&lt;/p&gt;
  1026. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1027. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117434" target="_blank"&gt;Modeling Sea Level Rise Over 1993&amp;ndash;2022: Implications for Understanding Coastal Observations&lt;/a&gt;, Mu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117434" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117434&lt;/p&gt;
  1028. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09600-z" target="_blank"&gt;Modern sea-level rise breaks 4,000-year stability in southeastern China&lt;/a&gt;, Lin et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09600-z&lt;/p&gt;
  1029. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116127" target="_blank"&gt;Multi-Year Prediction of Accelerated Sea Level Rise Along the Gulf of Mexico Coast During 2010&amp;ndash;2020&lt;/a&gt;, Zhang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116127" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116127&lt;/p&gt;
  1030. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02457-0" target="_blank"&gt;The interplay of future emissions and geophysical uncertainties for projections of sea-level rise&lt;/a&gt;, Darnell et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02457-0&lt;/p&gt;
  1031. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  1032. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.105021" target="_blank"&gt;Editorial preface to special issue: Temporal and spatial patterns in Holocene floods under the influence of past global change, and their implications for forecasting &amp;ldquo;unpredecented&amp;rdquo; future events&lt;/a&gt;, Schulte et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloplacha.2025.105021" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloplacha.2025.105021&lt;/p&gt;
  1033. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01806-0" target="_blank"&gt;Sea-level rise at the end of the last deglaciation dominated by North American ice sheets&lt;/a&gt;, Mukherjee et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01806-0&lt;/p&gt;
  1034. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  1035. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110886" target="_blank"&gt;Biogeophysical warming effects of vegetation growth in the temperate water-limited region&lt;/a&gt;, Lan et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110886&lt;/p&gt;
  1036. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.72305" target="_blank"&gt;Comprehensive Analysis of the Impact of Climate Change and Human Activities on the Distribution of Five Fritillaria Species Using the Optimized Maxent Model&lt;/a&gt;, Li et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.72305" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.72305&lt;/p&gt;
  1037. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70539" target="_blank"&gt;Co-Extinctions and Co-Compensatory Species Responses to Climate Change Moderate Ecosystem Futures&lt;/a&gt;, Williams et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70539" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70539&lt;/p&gt;
  1038. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70196" target="_blank"&gt;Does increasing canopy liana density decrease the tropical forest carbon sink?&lt;/a&gt;, Schnitzer &amp;amp; DeFilippis, &lt;em&gt;Ecology&lt;/em&gt; 10.1002/ecy.70196&lt;/p&gt;
  1039. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02717-z" target="_blank"&gt;Ecosystems mediate climate impacts on northern hemisphere seabirds&lt;/a&gt;, Killeen et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02717-z&lt;/p&gt;
  1040. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/1365-2745.70172" target="_blank"&gt;Experimental warming drives local grassland plant species loss&lt;/a&gt;, Anderson &amp;amp; Isbell Forest Isbell, &lt;em&gt;Journal of Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/1365" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/1365-2745.70172&lt;/p&gt;
  1041. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ddi.70099" target="_blank"&gt;Full Annual Cycle Drivers of Phenology in a Migratory Bird Reveal Implications for Spatial Variation in Vulnerability to Climate Change&lt;/a&gt;, Ralston &amp;amp; Tonra Christopher M. Tonra Christopher M. Tonra, &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/ddi.70099" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/ddi.70099&lt;/p&gt;
  1042. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126427" target="_blank"&gt;Growth of &lt;em&gt;Tamarix ramosissima&lt;/em&gt; Ledeb. is benefitting from the recent climate change at the southern Tarim basin, northwest China&lt;/a&gt;, Keyimu et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; 10.1016/j.dendro.2025.126427&lt;/p&gt;
  1043. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70544" target="_blank"&gt;Mapping Resilient Landscapes to Climate Change in a Megadiverse Country&lt;/a&gt;, Rosenfield et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70544" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70544&lt;/p&gt;
  1044. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-5435-2025" target="_blank"&gt;Mapping the safe operating space of marine ecosystems under contrasting emission pathways&lt;/a&gt;, Bourgeois et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-5435-2025&lt;/p&gt;
  1045. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ddi.70106" target="_blank"&gt;Predictions of Future Insect Distributions Under Climate Change&lt;/a&gt;, Bates &amp;amp; Bertelsmeier Cleo Bertelsmeier Cleo Bertelsmeier Cleo Bertelsmeier Lim, &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/ddi.70106" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/ddi.70106&lt;/p&gt;
  1046. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107599" target="_blank"&gt;Remote sensing technologies for monitoring coral reef health under climate change&lt;/a&gt;, Kemarau et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107599&lt;/p&gt;
  1047. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.72317" target="_blank"&gt;Shifting Seasons: Long-Term Insights Into Climate Change Effects on Bird Phenology From Ringing Data&lt;/a&gt;, Hinchcliffe &amp;amp; Tkaczynski, &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.72317" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.72317&lt;/p&gt;
  1048. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/geb.70135" target="_blank"&gt;Variation in Ectotherm Thermal Tolerances With Elevation and Temperature Across Biological Scales&lt;/a&gt;, Khaliq et al., &lt;em&gt;Global Ecology and Biogeography&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/geb.70135" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/geb.70135&lt;/p&gt;
  1049. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70536" target="_blank"&gt;Warming and Reduced Rainfall Alter Fungal Necromass Decomposition Rates and Associated Microbial Community Composition and Functioning at a Temperate&amp;ndash;Boreal Forest Ecotone&lt;/a&gt;, Cantoran et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70536" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70536&lt;/p&gt;
  1050. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  1051. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-63404-3" target="_blank"&gt;Antarctic seep emergence and discovery in the shallow coastal environment&lt;/a&gt;, Seabrook et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-63404-3&lt;/p&gt;
  1052. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jg008623" target="_blank"&gt;Contrasting Carbon and Water Flux Dynamics in an East African Rangeland and Cropland&lt;/a&gt;, Odongo et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jg008623" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jg008623&lt;/p&gt;
  1053. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02768-2" target="_blank"&gt;Increased carbon inputs alter soil microbial genetic potential for biogeochemical cycling in Arctic ecosystems&lt;/a&gt;, Cuartero et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02768-2&lt;/p&gt;
  1054. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-5497-2025" target="_blank"&gt;Long-term nitrogen fertilization alters microbial respiration sensitivity to temperature and moisture, potentially enhancing soil carbon retention in a boreal Scots pine forest&lt;/a&gt;, ?upek et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-5497-2025&lt;/p&gt;
  1055. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107606" target="_blank"&gt;Long-term trends and anthropogenic forcing of surface ocean carbon storage and acidification&lt;/a&gt;, Chen, &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107606&lt;/p&gt;
  1056. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.earscirev.2025.105222" target="_blank"&gt;Measures of prehistoric terrestrial net ecosystem productivity and carbon sink function&lt;/a&gt;, Mays et al., &lt;em&gt;Earth&lt;/em&gt; 10.1016/j.earscirev.2025.105222&lt;/p&gt;
  1057. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gb008484" target="_blank"&gt;Methane and Nitrous Oxide Budgets for Australasia: A Regional Assessment of Natural and Anthropogenic Sources and Sinks&lt;/a&gt;, Villalobos et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GB008484" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2024GB008484" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1029/2024gb008484&lt;/p&gt;
  1058. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2024-397" target="_blank"&gt;Revised and updated geospatial monitoring of twenty-first century forest carbon fluxes&lt;/a&gt;, Gibbs et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2024-397&lt;/p&gt;
  1059. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl117961" target="_blank"&gt;Sensitivity of Ocean Carbon Sink Estimates to Rare Observations&lt;/a&gt;, Fay et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl117961" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl117961&lt;/p&gt;
  1060. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  1061. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-5413-2025" target="_blank"&gt;Temporal patterns of greenhouse gas emissions from two small thermokarst lakes in Nunavik, Canada&lt;/a&gt;, Pouliot et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-5413-2025&lt;/p&gt;
  1062. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  1063. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114915" target="_blank"&gt;Carbon capture and storage as a bridging technology in Germany&amp;rsquo;s energy transition&lt;/a&gt;, Honig et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114915" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114915&lt;/p&gt;
  1064. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02725-z" target="_blank"&gt;National-scale datasets underestimate vegetation recovery in Australian human-induced native forest regeneration carbon sequestration projects&lt;/a&gt;, Moore et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02725-z&lt;/p&gt;
  1065. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2381" target="_blank"&gt;Public Perceptions and Engagement for Carbon Capture, Utilization, and Storage: Literature Review With a Case Study of Utah, USA&lt;/a&gt;, Xiao et al., &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ghg.2381" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ghg.2381&lt;/p&gt;
  1066. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-5557-2025" target="_blank"&gt;Reviews and syntheses: Potential and limitations of oceanic carbon dioxide storage via reactor-based accelerated weathering of limestone&lt;/a&gt;, Huysmans et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-5557-2025&lt;/p&gt;
  1067. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  1068. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70537" target="_blank"&gt;Solar Farms as Potential Future Refuges for Bumblebees&lt;/a&gt;, Blaydes et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70537" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70537&lt;/p&gt;
  1069. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114849" target="_blank"&gt;Survival of the largest: Why regulators fail to develop a heterogeneous wind energy sector&lt;/a&gt;, Paz-Sawicki et al., &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2025.114849&lt;/p&gt;
  1070. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104363" target="_blank"&gt;Why support seasonal thermal energy storage? Swiss residents' preferences for ownership, decision-making and energy costs&lt;/a&gt;, Str&amp;auml;ter, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104363" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104363&lt;/p&gt;
  1071. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  1072. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-5511-2025" target="_blank"&gt;A tracer study for the development of in-water monitoring, reporting, and verification (MRV) of ship-based ocean alkalinity enhancement&lt;/a&gt;, Subhas et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-5511-2025&lt;/p&gt;
  1073. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-25-0191.1" target="_blank"&gt;Finalizing Experimental Protocols for the Geoengineering Model Intercomparison Project (GeoMIP) Contribution to CMIP7&lt;/a&gt;, Visioni et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-25-0191.1&lt;/p&gt;
  1074. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  1075. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2571949" target="_blank"&gt;Engaged Climate Change Pedagogy: Lessons from 15 Years of Interdisciplinary Climate Change Education&lt;/a&gt;, Artiga-Purcell et al., &lt;em&gt;Environmental Communication&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17524032.2025.2571949&lt;/p&gt;
  1076. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02438-3" target="_blank"&gt;Generative AI can influence climate beliefs and actions&lt;/a&gt;, Sabherwal, &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02438-3&lt;/p&gt;
  1077. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/wcas-d-25-0028.1" target="_blank"&gt;Psychological Time Perspective and Climate Change Interest of Young Polish Adults&lt;/a&gt;, Pr&amp;oacute;chniak et al., &lt;em&gt;Weather, Climate, and Society&lt;/em&gt; 10.1175/wcas-d-25-0028.1&lt;/p&gt;
  1078. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02424-9" target="_blank"&gt;Using generative AI to increase sceptics&amp;rsquo; engagement with climate science&lt;/a&gt;, Bago et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02424-9&lt;/p&gt;
  1079. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02461-4" target="_blank"&gt;World Heritage documents reveal persistent gaps between climate awareness and local action&lt;/a&gt;, Chen et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02461-4&lt;/p&gt;
  1080. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1081. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103073" target="_blank"&gt;Bridging extreme climate risks, financial precarity, and adaptation gaps: Advancing inclusive adaptation in rainfed agricultural systems&lt;/a&gt;, Touch et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103073" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103073&lt;/p&gt;
  1082. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.72297" target="_blank"&gt;Climate Change Drives the Distribution of Insect Vectors for GLRaV-3 on a Global Scale&lt;/a&gt;, Niu et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.72297" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.72297&lt;/p&gt;
  1083. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104244" target="_blank"&gt;Climate change-induced threats to transhumance pastoral system in Burkina Faso, West Africa&lt;/a&gt;, Sanou &amp;amp; Akoba, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; 10.1016/j.envsci.2025.104244&lt;/p&gt;
  1084. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.09.006" target="_blank"&gt;Dynamics and drivers of China&amp;rsquo;s crop production carbon emissions in 2001?2021: A micro?macro data integration study&lt;/a&gt;, NIU et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.09.006" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.09.006&lt;/p&gt;
  1085. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.08.004" target="_blank"&gt;Escalating risks of anomalously hot&amp;ndash;dry growing seasons in arid Northwest China under human influence&lt;/a&gt;, Yu et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.08.004" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.08.004&lt;/p&gt;
  1086. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  1087. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17565529.2025.2569770" target="_blank"&gt;The impact of climate-smart agriculture practices on household vulnerability to climate change: evidence from Zimbabwe&lt;/a&gt;, Okumu et al., &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2025.2569770&lt;/p&gt;
  1088. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  1089. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-03313-z" target="_blank"&gt;Carbon credits are failing to help with climate change &amp;mdash; here&amp;rsquo;s why&lt;/a&gt;, Macintosh et al., &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-025-03313-z&lt;/p&gt;
  1090. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02800-5" target="_blank"&gt;Existing demand-side climate change mitigation policies neglect avoid options&lt;/a&gt;, Brad et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02800-5&lt;/p&gt;
  1091. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41893-025-01647-0" target="_blank"&gt;Oil and gas industry&amp;rsquo;s marginal share of global renewable energy&lt;/a&gt;, Llavero-Pasquina &amp;amp; Bontempi, &lt;em&gt;Nature Sustainability&lt;/em&gt; 10.1038/s41893-025-01647-0&lt;/p&gt;
  1092. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101861" target="_blank"&gt;Roadmap toward carbon neutrality in Pakistan: Policy challenges and strategic measures&lt;/a&gt;, Shah et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101861&lt;/p&gt;
  1093. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104364" target="_blank"&gt;Socially preferable and technically feasible: European citizens choose solar power and import independence over lower costs&lt;/a&gt;, Tr&amp;ouml;ndle et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104364" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104364&lt;/p&gt;
  1094. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  1095. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104243" target="_blank"&gt;Bridging equity and resilience: A Systematic review of social sustainability in climate change mitigation and adaptation&lt;/a&gt;, Hageer, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104243" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104243&lt;/p&gt;
  1096. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1619799" target="_blank"&gt;Building Africa&amp;rsquo;s climate resilience: understanding the impacts and future strategies in the face of climate change&lt;/a&gt;, Ayompe &amp;amp; Epie, &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1619799" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1619799&lt;/p&gt;
  1097. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.aeb7893" target="_blank"&gt;Can COP30 put investment in research at the heart of adaptation?&lt;/a&gt;, Elouafi, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.aeb7893&lt;/p&gt;
  1098. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1672694" target="_blank"&gt;Editorial: Nature-based solutions for climate change adaptation&lt;/a&gt;, Rao et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1672694" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1672694&lt;/p&gt;
  1099. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104239" target="_blank"&gt;Four propositions to narrow the gap between science and policy for climate change adaptation: Insights and evidence from Aotearoa New Zealand&lt;/a&gt;, Halliday et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104239" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104239&lt;/p&gt;
  1100. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103071" target="_blank"&gt;Mapping the solution space for local adaptation under global change: An test of concept for the Vietnamese Mekong delta&lt;/a&gt;, Dunn et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103071" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103071&lt;/p&gt;
  1101. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006479" target="_blank"&gt;Urban Adaptation Strategies Alleviate the Exposure of Future Population to Extreme Heat in China&lt;/a&gt;, Wu et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006479" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006479&lt;/p&gt;
  1102. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  1103. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70551" target="_blank"&gt;A Scoping Review of Mosquito Vector Range Shifts: Widespread Expansions and Evidence Gaps in Climate Attribution&lt;/a&gt;, Lyberger et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70551&lt;/p&gt;
  1104. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosenv.2025.121580" target="_blank"&gt;Interaction between extreme temperature events and ozone on mortality: Evidence from a time-stratified case-crossover study&lt;/a&gt;, Zhan et al., &lt;em&gt;Atmospheric Environment&lt;/em&gt; 10.1016/j.atmosenv.2025.121580&lt;/p&gt;
  1105. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.72265" target="_blank"&gt;Modeling the Potential Distribution of Typha domingensis (Pers.) in Niger Under Current and Future Climate Scenarios&lt;/a&gt;, Adamou Moumouni et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.72265" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.72265&lt;/p&gt;
  1106. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000722" target="_blank"&gt;Systems-level risks of the climate crisis are currently missed: A mental health lens&lt;/a&gt;, Mikaelsson et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000722" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000722&lt;/p&gt;
  1107. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human culture&lt;/strong&gt;&lt;/p&gt;
  1108. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gc-8-251-2025" target="_blank"&gt;Place-based science from Okinawa: 18th-century climate and geology recorded in Ryukyuan classical music&lt;/a&gt;, Higa et al., &lt;em&gt;Geoscience Communication&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gc-8-251-2025&lt;/p&gt;
  1109. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  1110. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/asl.1325" target="_blank"&gt;Anthropogenic Heat Release, a Potential Factor Impacting the Climate in the Arctic in Boreal Summer&lt;/a&gt;, Chen et al., &lt;em&gt;Atmospheric Science Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/asl.1325" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/asl.1325&lt;/p&gt;
  1111. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17565529.2025.2574075" target="_blank"&gt;Reparative research for the climate and nature emergency&lt;/a&gt;, Stein &amp;amp; Bowness, &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2025.2574075&lt;/p&gt;
  1112. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/asl.1323" target="_blank"&gt;Statistical Characteristics of Dabie-Vortex-Associated Tornadogenesis During an 18-Year Period (2006&amp;ndash;2023)&lt;/a&gt;, Xiao et al., &lt;em&gt;Atmospheric Science Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/asl.1323" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/asl.1323&lt;/p&gt;
  1113. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  1114. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000726" target="_blank"&gt;China&amp;rsquo;s supposed leadership on climate change: Action vs. obstruction in an authoritarian state&lt;/a&gt;, Harris, &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000726" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000726&lt;/p&gt;
  1115. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2571955" target="_blank"&gt;Communicating Antarctica in a Changing Climate &amp;ndash; Recommendations Following a National Survey&lt;/a&gt;, Hunt et al., &lt;em&gt;Environmental Communication&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/17524032.2025.2571955" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17524032.2025.2571955&lt;/p&gt;
  1116. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.aec8146" target="_blank"&gt;Free global access to climate and weather data must continue&lt;/a&gt;, Taalas, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.aec8146&lt;/p&gt;
  1117. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.aec9021" target="_blank"&gt;Science teachers scramble as U.S. climate resources vanish&lt;/a&gt;, Cabico, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.aec9021&lt;/p&gt;
  1118. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Book reviews&lt;/strong&gt;&lt;/p&gt;
  1119. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-03310-2" target="_blank"&gt;The race to uncover snow&amp;rsquo;s many mysteries before it disappears forever&lt;/a&gt;, Thompson, &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-025-03310-2&lt;/p&gt;
  1120. &lt;hr /&gt;
  1121. &lt;h3&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  1122. &lt;p&gt;&lt;strong&gt;&lt;a href="https://gridlab.org/portfolio-item/ca-load-mgmt-standard/" target="_blank"&gt;California Load Management Standard Avoided Distribution Grid Upgrade Study&lt;/a&gt;, &lt;/strong&gt;Kevala, &lt;strong&gt;GridLab&lt;/strong&gt;&lt;/p&gt;
  1123. &lt;blockquote&gt;The authors developed an estimate of the potential avoided cost benefits of achieving California&amp;rsquo;s Load Management Standard (LMS) goal to double the amount of load shift from 3.5 GW to 7 GW by 2030. The authors analyzed different peak load reduction scenarios leveraging previous work conducted for the U.S. Department of Energy&amp;rsquo;s Multi-State Transportation Electrification Impact Study. They estimated total avoided distribution system upgrade costs and the marginal cost of service (MCOS) resulting from achieving the LMS goal under a Base Case and three scenarios. Depending on the scenario, LMS allocation reduced estimated distribution capital costs from $3.2 to $11.9 billion, which equates to reductions of $3.7 to $13.7 billion in total present value costs to customers.&lt;/blockquote&gt;
  1124. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.brattle.com/wp-content/uploads/2025/08/The-Demand-Side-Grid-Support-Program-An-Assessment-of-Scale-and-Value.pdf" target="_blank"&gt;The Demand Side Grid Support Program: An Assessment of Scale and Value&lt;/a&gt;, &lt;/strong&gt;The Brattle Group, &lt;strong&gt;Sunrun and Tesla Energy&lt;/strong&gt;&lt;/p&gt;
  1125. &lt;blockquote&gt;The Demand Side Grid Support (DSGS) program is a taxpayer funded program run by the California Energy Commission (CEC), designed to improve the reliability of the California power system by tapping into the capabilities of behind-the-meter (BTM) resources such as batteries. The authors evaluated the benefits and costs of DSGS Option 3, which is the participation option that accommodates battery storage. DSGS storage capacity has scaled quickly, and continued growth is expected. DSGS can provide significant net cost savings to California, especially in a suddenly inflationary environment. If the DSGS program is continued, opportunities to maximize the value of the program include increasing the flexibility of the event trigger, incorporating the program into resource planning initiatives, and optimizing the dispatch patterns of participating batteries to provide a broader range of grid services.&lt;/blockquote&gt;
  1126. &lt;p&gt;&lt;strong&gt;&lt;a href="https://nao.gov.mt/wp-content/uploads/2025/10/Climate-scanner-Oct-2025.pdf" target="_blank"&gt;A review of Malta&amp;rsquo;s climate action using the ClimateScanner framework&lt;/a&gt;, &lt;/strong&gt;Auditor General, &lt;strong&gt;National Audit Office, Malta&lt;/strong&gt;&lt;/p&gt;
  1127. &lt;blockquote&gt;The high-level review revealed that overall, Malta registered considerable progress. Such developments included the enactment of a new Climate Action Act and the establishment of the Climate Action Authority (CAA). While registering notable progress, the authors identified areas for improvement, on the three main ClimateScanner Axes of Governance, Public Policies and Finance. This assessment revealed that the key elements for effective governance of climate action are generally in place. These include the regulatory and strategic framework, as well as risk management considerations. The authors found that while the horizontal coordination mechanisms are well-established, that vertical coordination at the local government level, is still evolving. Additionally, monitoring mechanisms characterized by data limitations, may affect local contributions to policymaking. The ClimateScanner initiative is a rapid assessment tool developed by the Brazilian Federal Court of Accounts in collaboration with various stakeholders and is primarily intended to facilitate independent high-level reviews of climate action by Supreme Audit Institutions across different countries and regions.&lt;/blockquote&gt;
  1128. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.sipri.org/sites/default/files/2025-10/rpp_florian_katongo.pdf" target="_blank"&gt;Climate-resilient Investment in Fragile and Conflict-affected Situations: Opportunities for Business?&lt;/a&gt;, &lt;/strong&gt;Katongo Seyuba and Florian Krampe, &lt;strong&gt;Stockholm International Peace Research Institute&lt;/strong&gt;&lt;/p&gt;
  1129. &lt;blockquote&gt;Climate change exacerbates risk in fragile and conflict-affected situations (FCS), deepening vulnerabilities, disrupting livelihoods and heightening the risk of violent conflict. These dynamics create a vicious circle that undermines resilience, peace and stability, while also affecting business operations and global supply chains. The business sector has a critical but underexplored role in promoting climate resilience and peacebuilding in these contexts. The authors highlight the role of businesses&amp;mdash;from local small to medium-sized enterprises to multinationals&amp;mdash;in investing in resilience-building initiatives and innovations that strengthen local economies, reduce conflict drivers and open new markets. Businesses, however, face major obstacles in FCS, such as insecurity, weak governance, reputational risk and lack of growth capital. Governments, donors and financial institutions can de-risk fragile markets and build enabling ecosystems for peace-positive investment. At the same time, businesses should embed conflict sensitivity, forge equitable local partnerships and treat resilience as a core business strategy.&lt;/blockquote&gt;
  1130. &lt;p&gt;&lt;strong&gt;&lt;a href="https://climatecommunication.yale.edu/publications/top-news-sources/" target="_blank"&gt;What are the top sources of news for Global Warming&amp;rsquo;s Six Americas?&lt;/a&gt;, &lt;/strong&gt;Carman et al., &lt;strong&gt;Yale University and George Mason University&lt;/strong&gt;&lt;/p&gt;
  1131. &lt;blockquote&gt;Past research on journalistic coverage of climate change has focused largely on mainstream media, particularly print and TV sources, but in recent years social media has grown as a major news source for Americans while newspaper circulation and traditional TV viewership have declined. Social media news sources, however, have much less regulatory or fact-checking oversight than traditional mainstream media, and recently many social media sites have reduced their voluntary fact-checking practices. In fact, many of the most popular online shows spread climate misinformation. 19% of Americans say that social media, e.g. Facebook, Instagram, X/Twitter, YouTube, is their single most important source of news &amp;mdash; a 7 percentage point increase since the question was last asked in March 2021. Among the Six Americas, the Concerned had the largest changes in their top news source. From 2021 to 2025, social media as the most important source of news nearly doubled among the Concerned (from 11% to 21%), while local TV news declined by 10 percentage points (from 26% to 16%). Local TV news remains a top source of news for many Americans (18% in 2025).&lt;/blockquote&gt;
  1132. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.gov.uk/government/publications/uk-international-climate-finance-results-2025/uk-international-climate-finance-results-2025" target="_blank"&gt;UK International Climate Finance results 2025&lt;/a&gt;, &lt;/strong&gt;UK International Climate Finance, &lt;strong&gt;Governemnt of the United Kingdom&lt;/strong&gt;&lt;/p&gt;
  1133. &lt;blockquote&gt;An estimated 137 million people have been supported to better adapt to the effects of climate change as a result of UK International Climate Finance since 2011. UK International Climate Finance has helped to mobilize an estimated &amp;pound;21 billion in public and private finance combined since 2011 through UK International Climate Finance, an estimated 145 million tons of greenhouse gas emissions have been reduced or avoided since 2011, and an estimated 12 million hectares of land are managed more sustainably as a result of UK International Climate Finance since 2011&lt;/blockquote&gt;
  1134. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.finance-watch.org/wp-content/uploads/2025/09/Report-a-trillion-dollars-of-climate-risk.pdf" target="_blank"&gt;A trillion dollars of climate risk. Banks&amp;rsquo; fossil fuel exposures and the cost-effective case for a climate systemic risk buffer&lt;/a&gt;, &lt;/strong&gt;Greg Ford and Julia Symon, &lt;strong&gt;Finance Watch&lt;/strong&gt;&lt;/p&gt;
  1135. &lt;blockquote&gt;The authors examine fossil fuel exposures among the 60 largest global banks, updating an earlier estimate with 2023 data using revised methods. They consider how the transition risks could be better managed and use the fossil fuel exposure data to simulate the application of a climate systemic risk buffer, based on a loan-to-value mechanism. They also estimate the size of the implicit subsidy that fossil fuel companies enjoy due to the current underpricing of transition risks. The results show that banks have more than USD 1.1 trillion of exposures to coal, oil and gas extraction and fossil fuel-powered electricity production on their balance sheets, or more than USD 1.6 trillion when off-balance sheet exposures are included. The calculations in this report indicate that a climate systemic risk buffer could be implemented to mitigate the systemic risks of these exposures, with limited impact on bank profits and little to no impact on lending.&lt;/blockquote&gt;
  1136. &lt;p&gt;&lt;strong&gt;&lt;a href="https://wedocs.unep.org/bitstream/handle/20.500.11822/47718/Financing-Responsible-Supply-Energy-Transition-Minerals_Sustainable-Development.pdf?sequence=1&amp;amp;isAllowed=y" target="_blank"&gt;Financing the Responsible Supply of Energy Transition Minerals for Sustainable Development&lt;/a&gt;, &lt;/strong&gt;Ekins et al., &lt;strong&gt;United Nations Environment Program&lt;/strong&gt;&lt;/p&gt;
  1137. &lt;blockquote&gt;The finance sector can play a critical role in promoting responsible mining, particularly in the context of the rising demand for energy transition minerals such as lithium, cobalt, and rare earth elements. These minerals are essential for the global shift to sustainable energy systems, and the massive investments required, from exploration and extraction to processing and refining, present a unique opportunity to drive transformative change. The authors focus on how the financing of the extraction of these minerals should be reformed to help bring about their environmentally and socially responsible production, and the equitable distribution of the resulting financial and other economic and social benefits. They explore the scale of the challenge, in terms of both increasing the supply of primary metals, and the need to manage the demand for them through circular economy approaches and resource efficiency policies.&lt;/blockquote&gt;
  1138. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.globalccsinstitute.com/wp-content/uploads/2025/10/Global-Status-of-CCS-2025-report-9-October.pdf" target="_blank"&gt;Global Status of CCS 2025&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Global CCS Institute&lt;/strong&gt;&lt;/p&gt;
  1139. &lt;blockquote&gt;The authors summarize the key milestones in the global adoption of carbon capture and storage (CCS) over the past 12 months. They highlight how CCS is advancing across regions, albeit at varying rates of progress. The authors identify advancements in the deployment of CCS around the world. Japan is covered in its own section for the first time due to its domestic advances and increasing influence in the Asia Pacific region. This authoritative snapshot of the global CCS industry is based on the Institute&amp;rsquo;s database of CCS facilities (CO?RE) and analysis by the Institute&amp;rsquo;s global team.&lt;/blockquote&gt;
  1140. &lt;p&gt;&lt;strong&gt;&lt;a href="https://eepublicdownloads.blob.core.windows.net/public-cdn-container/clean-documents/Publications/2025/entso-e_incident_report_ES-PT_April_2025_06.pdf" target="_blank"&gt;Grid Incident in Spain and Portugal on 28 April 2025&lt;/a&gt;, &lt;/strong&gt;Gabrijel et al., &lt;strong&gt;Expert Panel on the Grid Incident on 28 April 2025&lt;/strong&gt;&lt;/p&gt;
  1141. &lt;blockquote&gt;The authors describe the system conditions on 28 April 2025 and details the sequence of events that occurred on that day from 9:00 onwards in the electricity systems in Spain, Portugal, and France. The purpose of this report is to provide a technical and objective account of the incident, based on factual evidence. It aims to support transparency, learning, and continuous improvement in system operation across Europe. While this report is based on most reliable data made available to the Expert Panel by a range of data providers. It serves solely as a factual record to transparently inform stakeholders and governance bodies, and to facilitate further discussion and evaluation within the context of the final report referred to hereafter.&lt;/blockquote&gt;
  1142. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ca1-clm.edcdn.com/assets/Climate_Analytics_Hard_to_abate_2025.pdf?v=1757930237" target="_blank"&gt;Hard to abate: a justification for delay?&lt;/a&gt;, &lt;/strong&gt;Hare et al., &lt;strong&gt;Climate Analytics&lt;/strong&gt;&lt;/p&gt;
  1143. &lt;blockquote&gt;The iron and steel and cement sectors provide valuable case studies of how the &amp;lsquo;hard-to-abate&amp;rsquo; label has shaped both policy and industrial actions, in ways that risk undermining the urgency and effectiveness of global climate mitigation efforts. While the technical and process-related challenges in these sectors are non-trivial, the evidence presented in this report demonstrates that their decarbonization is not only possible but highly achievable with existing and emerging technologies &amp;ndash; especially when guided by integrated, whole-of-system approaches and supported by robust policy frameworks. The authors found that while there is no single pathway to decarbonizing the iron and steel and cement sectors, the continued framing of these sectors as inherently hard to abate is both scientifically inaccurate and politically counterproductive. The evidence is clear: many of the most impactful abatement measures are available today, and their deployment is limited primarily by policy, investment, and institutional inertia.&lt;/blockquote&gt;
  1144. &lt;p&gt;&lt;strong&gt;&lt;a href="https://gridlab.org/portfolio-item/data-center-flexibility-nv-energy-case-study-report/" target="_blank"&gt;Bringing Data Center Flexibility into Resource Adequacy Planning. A Case Study of NV Energy&lt;/a&gt;, &lt;/strong&gt;Cox et al., &lt;strong&gt;GridLab and Telos Energy&lt;/strong&gt;&lt;/p&gt;
  1145. &lt;blockquote&gt;The authors aim to fill a crucial gap in utility planning methods to allow data center flexibility to be considered up front in resource planning. NV Energy of Nevada was used as a case study due to its rising data center load growth, with the intent to create a replicable method for other regions. The authors evaluate the resource adequacy benefits of data center flexibility, including avoided capacity needs and costs. They present and test a framework for incorporating large load flexibility into resource planning by allowing it to count towards a planning reserve margin (PRM) requirement via a demand-side effective load carrying capability (ELCC). The results of this case study highlight significant capacity contributions and cost savings enabled by data center flexibility, as well as an analytical approach that can be incorporated into various planning, procurement, and market processes including integrated resource plans and transmission interconnection.&lt;/blockquote&gt;
  1146. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.annualreviews.org/content/journals/10.1146/annurev-environ-112823-064813" target="_blank"&gt;Are Carbon Offsets Fixable?&lt;/a&gt;, &lt;/strong&gt;Romm et al., &lt;strong&gt;Annual Reviews&lt;/strong&gt;&lt;/p&gt;
  1147. &lt;blockquote&gt;The authors provides a systematic review of the literature on carbon offsets. A growing number of studies have found that the most widely used offset programs continue to greatly overestimate their probable climate impact often by a factor of five to ten or more. Credit quality has remained a problem since the inception of carbon credits, despite repeated efforts to address the core challenges of additionality, leakage, double counting, environmental injustice, verification, and permanence. Combined, these issues have led many to conclude that over-crediting in carbon offsets is an intractable problem. These challenges helped stall the rapid growth in the voluntary carbon market (VCM) earlier this decade. They warrant renewed focus in the wake of COP29, where 200 nations significantly advanced the effort begun with the Paris Agreement to create the rules governing a global compliance market for carbon credits. But COP29 did not substantially address the quality problem, creating the risk the Paris compliance market will be rife with over-crediting and other problems&amp;mdash;and that the VCM could undermine the Paris market. The authors recommend that all stakeholders begin focusing on high-integrity, durable carbon dioxide removal and storage, while recognizing that the recent literature has raised the question of whether durable means 100 years, 1,000 years, or longer. Ultimately, many of the most popular offset project types feature intractable quality problems. Focus should be placed on creating rules to find and fund the relatively few types of high-quality projects while employing alternative finance and strategies such as contribution claims for the critical projects in conservation, renewable energy, and sustainable development.&lt;/blockquote&gt;
  1148. &lt;p&gt;&lt;strong&gt;&lt;a href="https://a-us.storyblok.com/f/1021068/x/a39cd225cc/homegrown-energy-rewiring-america.pdf?cv=1758151862430" target="_blank"&gt;Homegrown energy How household upgrades can meet 100 percent of data center demand growth&lt;/a&gt;, &lt;/strong&gt;Wyent et al., &lt;strong&gt;Rewiring America&lt;/strong&gt;&lt;/p&gt;
  1149. &lt;blockquote&gt;Over the next five years, U.S. electricity demand is projected to grow by 128 GW. This is an increase of 16 percent over today&amp;rsquo;s national peak demand (the most electricity we use in the country at a given time) and marks a sharp departure from more than two decades of flat electricity demand. The primary drivers for this increase are hyperscalers, the tech companies building energy-intensive AI data centers at a rapid pace. The data centers currently planned or already under construction across the country would add a total of 93 GW of electricity demand to the grid by 2029. In response to this new era of demand growth, hyperscalers and utilities are currently looking to centralized, utility-scale solutions, like building fossil fuel or nuclear power plants. However, there is an overlooked solution that has the potential to provide sweeping benefits: investing in the household as energy infrastructure.&lt;/blockquote&gt;
  1150. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2025/Oct/IRENA_SOC_Renewable_energy_gender_perspective_2Ed_2025.pdf" target="_blank"&gt;Renewable energy: A Gender perspective&lt;/a&gt;, &lt;/strong&gt;Celia Garc&amp;iacute;a-Ba&amp;ntilde;os, &lt;strong&gt;The International Renewable Energy Agency&lt;/strong&gt;&lt;/p&gt;
  1151. &lt;blockquote&gt;The author provides an updated picture of women&amp;rsquo;s roles in renewable energy, the barriers they face and the measures needed to enable their full participation. Building on IRENA&amp;rsquo;s 2019 flagship study, to assess the share of women in the overall renewable energy sector, the author uses a global survey of individuals and organizations, offering insights into both quantitative patterns and lived experiences. The author shows that women hold 32% of full-time jobs in the renewable energy sector. This is higher than in oil and gas (23%) or nuclear energy (25%), demonstrating that renewables are comparatively more inclusive. However, this share still falls far short of women&amp;rsquo;s global workforce average of 43.4%, meaning that nearly one in nine potential female workers is absent in the renewable energy sector compared to the economy at large.&lt;/blockquote&gt;
  1152. &lt;p&gt;&lt;strong&gt;&lt;a href="https://grattan.edu.au/wp-content/uploads/2025/10/Bills-down-emissions-down-A-practical-path-to-net-zero-electricity-Grattan-2025.pdf" target="_blank"&gt;Bills down, emissions down A practical path to net-zero electricity&lt;/a&gt;, &lt;/strong&gt;Reeve et al., &lt;strong&gt;Grattan Institute&lt;/strong&gt;&lt;/p&gt;
  1153. &lt;blockquote&gt;Australian household energy bills are set to halve by 2050, leaving &amp;lsquo;policy room&amp;rsquo; for the federal government to cut emissions in the electricity sector without hurting households. Modelling for the report shows that cutting greenhouse gas emissions from electricity in line with the net-zero 2050 national target results in average household energy bills of about $3,000 in 2050 &amp;ndash; down from an average of about $5,800 today. These savings come about because most households in 2050 will have solar panels on their roof, a battery in the shed, an electric car in the garage, and all-electric appliances in the home. The federal government should consider activating the Safeguard Mechanism to reduce emissions in the electricity sector, to complement policies to reduce emissions in the industrial and transport sectors.&lt;/blockquote&gt;
  1154. &lt;p&gt;&lt;strong&gt;&lt;a href="https://efifoundation.org/foundation-reports/modernizing-american-energy-innovation/" target="_blank"&gt;Modernizing American Energy Innovation. Five Ways to Re-energize the Department of Energy&lt;/a&gt;, &lt;/strong&gt;Kizer et al., &lt;strong&gt;EFI Foundation&lt;/strong&gt;&lt;/p&gt;
  1155. &lt;blockquote&gt;The authors analyze challenges and opportunities at the U.S. Department of Energy (DOE) as it increases end-to-end support for energy innovation. As their analysis shows, large spending policies are critical, yet inadequate, for accelerating American innovation. The tools that have worked for past R&amp;amp;D programs have proven inadequate for demonstration and deployment of clean energy technologies. For the United States to compete in the rapidly modernizing global energy system, the U.S. must sharpen its' innovation tools. Success depends on implementation.&lt;/blockquote&gt;
  1156. &lt;p&gt;&lt;strong&gt;&lt;a href="https://global-tipping-points.org/download/1418/" target="_blank"&gt;Global Tipping Points Report 2025&lt;/a&gt;, &lt;/strong&gt;Lenton et al., &lt;strong&gt;University of Exeter et al&lt;/strong&gt;&lt;/p&gt;
  1157. &lt;blockquote&gt;The world has entered a new reality. Global warming will soon exceed 1.5&amp;deg;C. This puts humanity in the danger zone where multiple climate tipping points pose catastrophic risks to billions of people. Already warm-water coral reefs are crossing their thermal tipping point and experiencing unprecedented dieback, threatening the livelihoods of hundreds of millions who depend on them. Polar ice sheets are approaching tipping points, committing the world to several meters of irreversible sea-level rise that will affect hundreds of millions. These climate tipping point risks are interconnected and most of the interactions between them are destabilizing, meaning tipping one system makes tipping another more likely. The resulting impacts would cascade through the ecological and social systems we depend upon, creating escalating damages. Humanity faces a potentially catastrophic, irreversible outcome. The Inter-American Court of Human Rights recognizes the right of humans to a safe climate, hence preventing irreversible harm to the climate system is a legal imperative.&lt;/blockquote&gt;
  1158. &lt;p&gt;&lt;strong&gt;&lt;a href="https://innovation.luskin.ucla.edu/wp-content/uploads/2025/09/Innovation-Opportunities-for-a-Resilient-L.A.pdf" target="_blank"&gt;Innovation Opportunities for a Resilient L.A&lt;/a&gt;, &lt;/strong&gt;Pierce et al., &lt;strong&gt;The Luskin Center for Innovation, University of California, Los Angeles&lt;/strong&gt;&lt;/p&gt;
  1159. &lt;blockquote&gt;The authors identify four areas critical to strengthening water and power infrastructure in order to reduce risks and improve reliability as climate-related disasters intensify. The innovation areas &amp;mdash; undergrounding utility lines, water distribution systems, advanced metering technology, and wildfire risk assessment &amp;mdash; resulted from a LADWP-commissioned workshop in June 2025, developed and hosted by UCLA. More than 100 utility representatives, technology innovators, academic researchers, public sector leaders, and consultants identified a mix of potential implementation strategies and barriers. Many of the ideas developed at the workshop are already informing LADWP requests for proposals and pilot projects.&lt;/blockquote&gt;
  1160. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.nyiso.com/documents/20142/39103148/2025-Q3-STAR-Report-Final.pdf/" target="_blank"&gt;Short-Term Assessment of Reliability: 2025 Quarter 3&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;New York Independent System Operator&lt;/strong&gt;&lt;/p&gt;
  1161. &lt;blockquote&gt;The authors studies electric system reliability over a five-year period from July 15, 2025, through July 15, 2030, and identifies reliability violations in New York City and Long Island beginning in the summer of 2026. The violations are driven by generator deactivations, increasing consumer demand, and transmission limitations.&lt;/blockquote&gt;
  1162. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.nyiso.com/documents/20142/54426374/11b_Draft_2025-2034-Comprehensive-Reliability-Plan_OC.pdf/603bab0b-0ec6-ea9e-9786-cd089105843e" target="_blank"&gt;2025-2034 Comprehensive Reliability Plan&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;New York Independent System Operator&lt;/strong&gt;&lt;/p&gt;
  1163. &lt;blockquote&gt;The authors present the plan to maintain a reliable electric grid over a ten-year planning period. The authors warn that the New York State electric system faces an era of profound reliability challenges driven by the convergence of three structural trends: the aging of the existing generation fleet; the rapid growth of large loads, e.g., data centers and semiconductor manufacturing; and the increasing difficulty of developing new supply resources due to public policies, supply chain constraints and rising costs for equipment.&lt;/blockquote&gt;
  1164. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.prod.website-files.com/666b00bb91a866df89c4f469/68e6dae68726c2106670aefa_PJM-Storage-Report_10.08.2025.pdf" target="_blank"&gt;Outlook for Energy Storage in PJM&lt;/a&gt;, &lt;/strong&gt;Sheilendranath et al., &lt;strong&gt;The US. Energy Storage Coalition&lt;/strong&gt;&lt;/p&gt;
  1165. &lt;blockquote&gt;The authors warn that PJM must deploy at least 16 GW of energy storage&amp;ndash;enough to power 12 million homes&amp;ndash;by 2032 and 23 GW by 2040 to ensure system reliability. Without this buildout, the region, which serves 65 million customers from Chicago to New Jersey, risks severe power shortages, forced load shedding of up to 15 GW during extreme weather, and sharp increases in electricity costs. They emphasize that energy storage not only strengthens grid resilience but also delivers major economic benefits, including lower energy costs, billions in new investment, and thousands of local jobs. However, regulatory and market barriers threaten to delay urgently needed projects already in PJM&amp;rsquo;s queue. To meet demand, the authors call on PJM and state policymakers to streamline interconnection, reform market rules to properly value storage, clarify transmission charges, and modernize permitting standards. Without decisive action, millions of homes and businesses could face costly and dangerous reliability risks within the next decade.&lt;/blockquote&gt;
  1166. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.transportenvironment.org/uploads/files/202510_TE_international_biofuels_briefing.pdf" target="_blank"&gt;CrOP30 Why burning food for land-hungry biofuels is fueling the climate crisis&lt;/a&gt;, &lt;/strong&gt;Ceruology, &lt;strong&gt;Transport and Environment&lt;/strong&gt;&lt;/p&gt;
  1167. &lt;blockquote&gt;Biofuels are promoted as a climate-friendly fix for transport decarbonization, but at what cost? The authors assess the consequences of the global biofuels boom, analyzing projected volumes, land use, and emissions in key regions. There are serious risks of current international biofuels policies. For example, backed by government support, global biofuels use has grown seven-fold over two decades, reaching 4% of transport energy demand in 2023. Over 75% of production comes from the U.S., Brazil, and Europe, mainly for road transport as biodiesel, hydro-processed oils, or ethanol. Demand is set to rise 40% by 2030. On top of this, new IMO rules and sustainable aviation fuel targets will fuel further growth, with shipping alone potentially doubling today&amp;rsquo;s global biofuels use in the 2030s.&lt;/blockquote&gt;
  1168. &lt;p&gt;&lt;strong&gt;&lt;a href="https://reclaimfinance.org/site/wp-content/uploads/2025/10/Not-This-Way-why-coal-transition-offsets-are-a-dead-end.pdf?utm_source=substack&amp;amp;utm_medium=email" target="_blank"&gt;Not This Way: Why Coal Transition Offsets are a Dead End&lt;/a&gt;, &lt;/strong&gt;Patrick McCully, &lt;strong&gt;Reclaim Finance and the Center for Energy, Ecology and Development&lt;/strong&gt;&lt;/p&gt;
  1169. &lt;blockquote&gt;Nearly 40 years of experience with offsetting shows that the great majority of credits do not represent emissions reductions, and that repeated efforts to reform offsetting have failed. Offsets are not intended to reduce emissions but to move them between locations. But because offsets are bogus their impact is to increase emissions at the global level. Coal offsets would likely repeat the failures of the offset market. Because most coal offsets would likely be bogus, their overall impact would likely be to increase emissions. Many of the players involved in designing the coal offsets market are the same companies and others who run the existing offsets market. Their core interest remains generating and trading offsets, not cutting emissions.&lt;/blockquote&gt;
  1170. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cpr-assets.s3.amazonaws.com/wp/uploads/2025/10/md-building-electrification-rpt.pdf" target="_blank"&gt;Building Electrification in Maryland: Implementation of Zero-Emission Heating Equipment Standards for Low-Income Households&lt;/a&gt;, &lt;/strong&gt;Christopher Stix and Bryan Dunning, &lt;strong&gt;Sierra Club Maryland Chapter and Center for Progressive Reform&lt;/strong&gt;&lt;/p&gt;
  1171. &lt;blockquote&gt;Maryland has committed to an equitable approach to achieving its ambitious climate goals while minimizing harms or costs placed on historically disadvantaged communities. One of the programs critical to achieving the state&amp;rsquo;s climate and energy goals is zero-emission heating equipment standards (ZEHES). Equitable implementation of ZEHES requires low-income households to be able to fully benefit from clean, efficient heating under the program. ZEHES is projected to require replacements starting in 2029 and will require yearly replacements until all eligible building and water heating systems have been replaced. Based on the expected lifespan of legacy fossil fuel systems, water heating replacement should be achieved, in whole or substantial part, by 2039, and building heating replacement by 2059 for a ZEHES policy with the effective year of 2029. In the context of replacements for low-income households, modeling projects a yearly total cost of close to $300 million, with an additional cost, depending on implementation policy, of an additional $80 million for building weatherization.&lt;/blockquote&gt;
  1172. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ericc.adaptecca.es/" target="_blank"&gt;La Evaluaci&amp;oacute;n de Riesgos e Impactos derivados del Cambio Clim&amp;aacute;tico en Espa&amp;ntilde;a (The Assessment of Risks and Impacts derived from Climate Change in Spain)&lt;/a&gt;, &lt;/strong&gt;Ecological Transition and Demographic Challenge Ministry, &lt;strong&gt;Government of Spain&lt;/strong&gt;&lt;/p&gt;
  1173. &lt;blockquote&gt;(The report) el primer an&amp;aacute;lisis integral a escala nacional que identifica y caracteriza los riesgos asociados al cambio clim&amp;aacute;tico en nuestro pa&amp;iacute;s. Sus resultados servir&amp;aacute;n de base para orientar las pol&amp;iacute;ticas de adaptaci&amp;oacute;n en Espa&amp;ntilde;a, integrando las dimensiones sociales, econ&amp;oacute;micas y ambientales (The Assessment of Risks and Impacts derived from Climate Change in Spain (ERICC-2025) is the first comprehensive analysis on a national scale that identifies and characterizes the risks associated with climate change in our country. Its results will serve as a basis for guiding adaptation policies in Spain, integrating the social, economic and environmental dimensions).&lt;/blockquote&gt;
  1174. &lt;p&gt;&lt;strong&gt;&lt;a href="https://assets.site.ingka.com/ingka-com/files/2025-people-planet-consumer-insights-trends.pdf" target="_blank"&gt;People and Planet Consumer Insights and Trends 2025&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;INGKA and GlobalScan&lt;/strong&gt;&lt;/p&gt;
  1175. &lt;blockquote&gt;The authors asked 30,000+ adults in 30 countries for their thoughts on climate, inequality, and unsustainable consumption &amp;ndash; and how businesses and government can help. The research reveals that people still care deeply enough to act on climate change and inequality &amp;ndash; but they need more knowledge and support to make a meaningful difference. Concern remains high regarding climate and inequality. A large majority of people take some climate action but many are held back by cost, uncertainty about the impact of their efforts, and insufficient support from government and businesses. Despite the context of geopolitical and economic instability across the world, many people are still concerned about climate change &amp;ndash; even if there is a downward trend.&lt;/blockquote&gt;
  1176. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cssn.org/news-research/global-assessment/" target="_blank"&gt;Climate Obstruction: A Global Assessment&lt;/a&gt;, &lt;/strong&gt;Multiple, &lt;strong&gt;Brown University&amp;rsquo;s global Climate Social Science Network&lt;/strong&gt;&lt;/p&gt;
  1177. &lt;blockquote&gt;People burning fossil fuels causes climate change, a scientific fact that has been clear for decades. And climate policy is broadly popular, with as many as 89% of people around the world wanting more climate action from their leaders. So why haven&amp;rsquo;t those leaders taken appropriate action? Because at every step, the fossil fuel, agriculture, and other high-carbon industries and their enablers have made it &amp;ldquo;exponentially more difficult&amp;rdquo; to enact policies to keep the climate, and the public, safe, the authors of a groundbreaking new assessment of climate obstruction write. A team of more than 100 scholars explore who&amp;rsquo;s blocking action on climate change and how they&amp;rsquo;re doing it.&lt;/blockquote&gt;
  1178. &lt;hr /&gt;
  1179. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  1180. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  1181. &lt;h3&gt;Suggestions&lt;/h3&gt;
  1182. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  1183. &lt;h3&gt;Previous edition&lt;/h3&gt;
  1184. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_41.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  1185. <link>https://skepticalscience.com/new_research_2025_42.html</link>
  1186. <guid>https://skepticalscience.com/new_research_2025_42.html</guid>
  1187. <pubDate>Thu, 16 Oct 2025 15:29:53 EST</pubDate>
  1188. </item>  <item>
  1189. <title>Fact-checking a Trump administration claim about climate change and crops</title>
  1190. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/10/fact-checking-a-trump-administration-claim-about-climate-change-and-crops/"&gt;re-post from Yale Climate Connections&lt;/a&gt;&lt;/p&gt;
  1191. &lt;p class="has-drop-cap"&gt;A draft report commissioned by the Trump administration&amp;rsquo;s Department of Energy, or DOE, misleadingly claims that increasing levels of carbon dioxide could be beneficial for agriculture. In fact, mainstream climate experts have found that rising CO2 levels, by causing climate change, are harmful to agriculture overall &amp;ndash; and likely to cause food prices to increase.&lt;/p&gt;
  1192. &lt;p&gt;The Trump administration&amp;rsquo;s claim arose from a&amp;nbsp;&lt;a href="https://www.energy.gov/sites/default/files/2025-07/DOE_Critical_Review_of_Impacts_of_GHG_Emissions_on_the_US_Climate_July_2025.pdf"&gt;draft &amp;ldquo;critical review&amp;rdquo; report&lt;/a&gt;&amp;nbsp;commissioned by DOE and written by fringe experts. The DOE subsequently&amp;nbsp;&lt;a href="https://www.cnn.com/2025/09/10/climate/trump-dissolves-contrarian-group"&gt;disbanded that group&lt;/a&gt;&amp;nbsp;when faced with&amp;nbsp;&lt;a href="https://library.edf.org/AssetLink/0kdlw6oq5v8hsvj152eqx01b0qn74uuq.pdf"&gt;a lawsuit&lt;/a&gt;&amp;nbsp;alleging that it violated a law requiring that such federal advisory committees must be transparent and unbiased.&lt;/p&gt;
  1193. &lt;p&gt;The Environmental Protection Agency cited the DOE report&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/08/the-republican-campaign-to-stop-the-u-s-epa-from-protecting-the-climate/"&gt;in a proposal to reverse its Obama-era determination&lt;/a&gt;&amp;nbsp;that carbon pollution poses a threat to public health and welfare. The agency argued that higher carbon dioxide levels in the atmosphere will increase the amount of food that farmers produce, implying that carbon pollution is a good thing.&lt;/p&gt;
  1194. &lt;p&gt;&amp;ldquo;Recent data and analysis show that even marginal increases in CO2 concentrations have substantial beneficial impacts on plant growth and agricultural productivity, and that this benefit has been significantly greater than previously believed,&amp;rdquo; the agency wrote.&lt;/p&gt;
  1195. &lt;p&gt;Mainstream climate experts say that&amp;rsquo;s incorrect.&lt;/p&gt;
  1196. &lt;p&gt;In response to the DOE report, a group of&amp;nbsp;&lt;a href="https://drive.google.com/file/d/1PwAR8I9YYmPhbQ6CRekHkroJGMbjbX7l/view"&gt;85 climate experts&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://nap.nationalacademies.org/catalog/29239/effects-of-human-caused-greenhouse-gas-emissions-on-us-climate-health-and-welfare"&gt;the National Academies of Sciences, Engineering, and Medicine&lt;/a&gt;&amp;nbsp;each published comprehensive reviews of the scientific literature and arrived at the opposite conclusion. These expert reports found that rather than boosting agricultural productivity, the body of scientific evidence indicates that increased extreme weather resulting from climate change will instead reduce crop yields, making food more expensive.&amp;nbsp;&lt;/p&gt;
  1197. &lt;!--more--&gt;
  1198. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Weather disasters are very, very bad for crops&lt;/span&gt;&lt;/h4&gt;
  1199. &lt;p&gt;The notion that crops will benefit from climate pollution is based on the fact that plants absorb carbon dioxide during photosynthesis. Scientists have known for decades that in a controlled environment like a glass greenhouse, higher CO2 levels in the air will cause plants to grow bigger.&lt;/p&gt;
  1200. &lt;p&gt;But Earth&amp;rsquo;s atmosphere isn&amp;rsquo;t a controlled environment. Increased carbon dioxide concentrations in the atmosphere trap extra heat like a blanket,&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2024/10/climate-change-made-hurricane-helene-and-other-2024-disasters-more-damaging-scientists-find/"&gt;causing more frequent extreme weather&lt;/a&gt;&amp;nbsp;like heat waves, droughts, and floods. These events stress plants and hamper their growth and productivity.&lt;/p&gt;
  1201. &lt;p&gt;Innovations in agricultural practices like the use of fertilizers, pesticides, new seed varieties, and irrigation have boosted crop yields over the past century. But increasingly extreme weather could slow those gains.&lt;/p&gt;
  1202. &lt;p&gt;To study these complex variables, scientists have conducted what are known as free-air CO2 enrichment, or FACE, experiments. These studies use pipes or vents to release carbon dioxide into large open plots of crops.&lt;/p&gt;
  1203. &lt;p&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/10.1111/gcb.15375"&gt;A 2020 analysis&lt;/a&gt;&amp;nbsp;of 30 years of FACE experiments found that higher carbon dioxide concentrations increased crop yields as expected when &amp;ldquo;under non-stress conditions.&amp;rdquo; But when stressed by factors like changing temperatures or precipitation, as climate experts&amp;nbsp;&lt;a href="https://drive.google.com/file/d/1PwAR8I9YYmPhbQ6CRekHkroJGMbjbX7l/view"&gt;said recently&lt;/a&gt;, &amp;ldquo;the yield increases were suppressed and in some cases erased.&amp;rdquo;&lt;/p&gt;
  1204. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Climate damages overwhelm farmers&amp;rsquo; efforts to adapt&lt;/span&gt;&lt;/h4&gt;
  1205. &lt;p&gt;Farmers may be able to adapt to some climate impacts, for example, by adjusting plant varieties, fertilizers, and crop cultivation windows. But those changes won&amp;rsquo;t be sufficient to fully overcome damage from climate change, according to a&amp;nbsp;&lt;a href="https://www.nature.com/articles/s41586-025-09085-w"&gt;study published in June 2025&lt;/a&gt;.&lt;/p&gt;
  1206. &lt;p&gt;The study&amp;rsquo;s authors estimated that each additional 1&amp;deg;C of global warming in 2100 will reduce crop yields by the equivalent of 4.4% of each person on Earth&amp;rsquo;s recommended daily calorie intake. Most staple crops, including wheat, corn, and soybeans, will see significant yield declines.&lt;/p&gt;
  1207. &lt;p&gt;And farmers are already experiencing the impacts of climate change.&amp;nbsp;&lt;a href="https://www.nature.com/articles/s41561-025-01724-1"&gt;Another 2025 study&lt;/a&gt;&amp;nbsp;found that thanks to more efficient farming practices, the amount of global land devoted to agriculture could have decreased 2% over the past 30 years &amp;ndash; while growing the same amount of food. Instead, global croplands expanded by nearly 4% during that time because climate change slowed the growth in agricultural productivity.&lt;/p&gt;
  1208. &lt;p&gt;The paper estimated that those climate impacts caused over 200 million acres of land to be converted to cropland &amp;ndash; twice the area of California. And converting existing ecosystems like forests to agricultural land reduced the amount of carbon absorbed by plant life on Earth. The study estimated that this land conversion added 22 billion tons of carbon dioxide to the atmosphere. That&amp;rsquo;s the equivalent of about six months of humanity&amp;rsquo;s carbon dioxide emissions.&lt;/p&gt;
  1209. &lt;p&gt;It&amp;rsquo;s a vicious cycle &amp;ndash;&amp;nbsp;climate change reduces agricultural yields, which forces farmers to convert more forests to cropland, which adds more carbon to the atmosphere and worsens climate change.&lt;/p&gt;
  1210. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Climate change could make food more expensive&lt;/span&gt;&lt;/h4&gt;
  1211. &lt;p&gt;As&amp;nbsp;&lt;a href="https://en.wikipedia.org/wiki/Supply_and_demand"&gt;the law of supply and demand&lt;/a&gt;&amp;nbsp;tells us, if crop yields are suppressed while people still need to eat the same amount of food, prices will rise.&amp;nbsp;&lt;a href="https://www.nature.com/articles/s43247-023-01173-x"&gt;A 2024 study&lt;/a&gt;&amp;nbsp;estimated that &amp;ldquo;annual food inflation of 1-3 percentage points per year could result from temperatures projected for 2035.&amp;rdquo;&lt;/p&gt;
  1212. &lt;p&gt;Another problem is that climate change is worsening many different types of extreme weather, which can sometimes strike the same place at the same time. Scientists call these events compound extremes.&lt;/p&gt;
  1213. &lt;div id="id_126912" class="newspack-popup-container newspack-popup newspack-inline-popup newspack-lightbox-no-border" data-segments="14345" data-frequency="0,0,0,month"&gt;
  1214. &lt;div class="wp-block-group is-style-border"&gt;
  1215. &lt;div class="wp-block-group__inner-container is-layout-constrained wp-block-group-is-layout-constrained"&gt;
  1216. &lt;p&gt;&lt;a href="https://www.nature.com/articles/s43017-022-00368-8"&gt;A 2022 study&lt;/a&gt;&amp;nbsp;looked at the impacts of these compound extremes on crop yields. The authors concluded, &amp;ldquo;Since around 2000, these compound extremes, and hot droughts in particular, have been linked to especially poor harvests (up to 30% yield losses) in regions such as India, Ethiopia, the USA, Europe and Russia.&amp;rdquo; For example, a combined heat wave and drought in the Midwest U.S. in 2012 was estimated to reduce corn yields by 20% that season.&lt;/p&gt;
  1217. &lt;/div&gt;
  1218. &lt;/div&gt;
  1219. &lt;/div&gt;
  1220. &lt;p&gt;And&amp;nbsp;&lt;a href="https://iopscience.iop.org/article/10.1088/1748-9326/ac1223"&gt;a 2021 paper&lt;/a&gt;&amp;nbsp;found that over the prior three decades, temperature-related crop losses resulted in $27 billion in crop insurance claims due to reduced yields in part as a result of these kinds of severely suppressed crop yield seasons.&lt;/p&gt;
  1221. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;The verdict: carbon damages overwhelm benefits for crops&lt;/span&gt;&lt;/h4&gt;
  1222. &lt;p&gt;As this body of scientific research illustrates, although plants directly benefit from higher carbon dioxide levels, the damages from extreme weather are already becoming bigger than those benefits.&lt;/p&gt;
  1223. &lt;p&gt;Farmers have so far been able to overcome those climate damages by devoting more land to agriculture and implementing innovative practices. But there are limits to land and water availability, and detrimental effects on the environment and health from applying too many pesticides and fertilizers.&lt;/p&gt;
  1224. &lt;p&gt;Meanwhile, climate damages will only worsen as long as temperatures continue to rise. As the report written by 85 climate scientists concluded, &amp;ldquo;in the major agricultural growing regions of the U.S. (and in most parts of the world), CO2-induced climate change will lead to yield declines.&amp;rdquo; That will lead to higher food prices until humanity&amp;nbsp;&lt;a href="https://www.carbonbrief.org/explainer-will-global-warming-stop-as-soon-as-net-zero-emissions-are-reached/"&gt;stops the rise in global temperatures by reaching net-zero carbon pollution&lt;/a&gt;.&lt;/p&gt;</description>
  1225. <link>https://skepticalscience.com/fact-check-climate-crops.html</link>
  1226. <guid>https://skepticalscience.com/fact-check-climate-crops.html</guid>
  1227. <pubDate>Wed, 15 Oct 2025 14:45:15 EST</pubDate>
  1228. </item> </channel> </rss>

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=https%3A//skepticalscience.com/feed.xml

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda