Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://www.skepticalscience.com/feed.xml

  1. <?xml version="1.0" encoding="UTF-8" ?>
  2. <rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
  3.  <channel>
  4.   <title>Skeptical Science</title>
  5.   <description>Examining the science of global warming skepticism, clearing up the misconceptions and misleading arguments that populate the climate change debate.</description>
  6.   <link>https://skepticalscience.com/</link>
  7. <atom:link href="https://skepticalscience.com/feed.xml" rel="self" type="application/rss+xml" />
  8. <item>
  9. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #28</title>
  10. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, July 6, 2025 thru Sat, July 12, 2025.&lt;/div&gt;
  11. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  12. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (6 articles)&lt;/strong&gt;&lt;/p&gt;
  13. &lt;ul&gt;
  14. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/debriefed-4-july-2025-trump-megabill-guts-clean-energy-europes-record-heat-scientists-discuss-most-worrying-tipping-points/" target="_blank"&gt;DeBriefed 4 July 2025: Trump `megabill` guts clean energy; Europe`s record heat; Scientists discuss `most worrying` tipping points&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Carbon Brief, Carbon Brief Staff, Jul 04, 2025.&lt;/li&gt;
  15. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/07/devastating-flash-floods-slam-texas-hill-country-tropical-storm-chantal-heads-for-carolinas/" target="_blank"&gt;Devastating flash floods slam Texas Hill Country; Tropical Storm Chantal heads for Carolinas&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Yale Climate Connections, Jeff Masters and Bob Henson, Jul 05, 2025.&lt;/li&gt;
  16. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theclimatebrink.com/p/update-on-texas-flooding" target="_blank"&gt;Update on Texas flooding&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Andrew Dessler's update on the flooding in Texas&lt;/em&gt; The Climate Brink, Andrew Dessler, Jul 07, 2025.&lt;/li&gt;
  17. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/experts-which-climate-tipping-point-is-the-most-concerning/" target="_blank"&gt;Experts: Which climate tipping point is the most concerning?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Last week, hundreds of scientists, policymakers and journalists flocked to the University of Exeter to attend an international conference on &amp;ldquo;tipping points&amp;rdquo;.&lt;/em&gt; Carbon Brief, Carbon Brief Staff, Jul 09, 2025.&lt;/li&gt;
  18. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.independent.co.uk/news/uk/home-news/london-heatwave-deaths-climate-change-b2785386.html" target="_blank"&gt;London heatwave killed 263 people - with climate crisis to blame for most, study says&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Study finds around 1,500 of the 2,300 estimated heat deaths in Europe during recent weeks were the result of the climate crisis&lt;/em&gt; The Independent News, Jabed Ahmed, Jul 09, 2025.&lt;/li&gt;
  19. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://time.com/7301528/climate-scientist-in-texas-floods/" target="_blank"&gt;I&amp;rsquo;m a Climate Scientist in Texas. Here&amp;rsquo;s What the Floods Tell Us&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Time, Katharine Hayhoe, July 10, 2025.&lt;/li&gt;
  20. &lt;/ul&gt;
  21. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (6 articles)&lt;/strong&gt;&lt;/p&gt;
  22. &lt;ul&gt;
  23. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thinc.blog/2025/07/04/chinese-chickens-coming-to-roost-for-climate-denying-republicans/" target="_blank"&gt;Chinese Chickens Coming to Roost for Climate Denying Republicans&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Peter Sinclair teases apart the illogic of the US administration's attitude to energy modernization, and how it leads to a generous geopolitical gift. &lt;/em&gt; This is Not Cool, greenman3610, Jul 04, 2025.&lt;/li&gt;
  24. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/the-green-corporations-funding-anti" target="_blank"&gt;The "green" corporations funding anti-climate groups&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;HEATED reached out to five companies with strong public climate commitments to find out why they're still funding major climate policy obstructors. &lt;/em&gt; HEATED, Casey Quinlan, Jul 07, 2025.&lt;/li&gt;
  25. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/07/08/climate/trump-climate-energy-department.html?unlocked_article_code=1.U08.3Wug.zBtztu19gvb4&amp;amp;smid=url-share" target="_blank"&gt;Trump Hires Scientists Who Doubt the Consensus on Climate Change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The three scientists joined the administration after it dismissed hundreds of experts who were assessing how global warming is affecting the country.&lt;/em&gt; NYT, Maxine Joselow, Jul 08, 2025.&lt;/li&gt;
  26. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/07/09/climate/noaa-fellows-unpaid-leave.html?unlocked_article_code=1.VU8.LP-H.CyTWoeJEQwxS&amp;amp;smid=url-share" target="_blank"&gt;Recipients of a U.S. Climate Science Fellowship Are Put on Unpaid Leave&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Researchers in the NOAA program were furloughed because funds to pay them were not available.&lt;/em&gt; NYT, Rebecca Dzombak, Jul 09, 2025.&lt;/li&gt;
  27. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/abbott-says-megafloods-are-just-part" target="_blank"&gt;Abbott says megafloods are "just part of nature." The fossil fuel industry disagrees.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;In leaked audio from a meeting last month, gas industry representatives acknowledged that extreme weather is getting wackier and more dangerous.&lt;/em&gt; HEATED, Emily Sanders, Jul 10, 2025.&lt;/li&gt;
  28. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/us-news/2025/jul/10/national-climate-assessment-published" target="_blank"&gt;Trump officials axed an online portal for its key climate report. Read it in full here&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Guardian makes legally mandated gold standard report widely available after administration deleted website&lt;/em&gt; The Guardian, Oliver Milman, Jul 10, 2025.&lt;/li&gt;
  29. &lt;/ul&gt;
  30. &lt;!--more--&gt;
  31. &lt;p&gt;&lt;strong&gt;Climate Science and Research (4 articles)&lt;/strong&gt;&lt;/p&gt;
  32. &lt;ul&gt;
  33. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.scientificamerican.com/article/climate-changes-fingerprints-came-early-a-thought-experiment-reveals/" target="_blank"&gt;Climate Change`s Fingerprints Came Early, a Thought Experiment Reveals&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Climate change left its signature on the atmosphere early in the industrial revolution, reveals a thought experiment investigation.&lt;/em&gt; Scientific American, Ben Santer, Susan Solomon, David W. J. Thompson &amp;amp; Qiang Fu, Jul 04, 2025.&lt;/li&gt;
  34. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/mauna-loa-observatory-captured-the-reality-of-climate-change-the-us-plans-to-shut-it-down-260403" target="_blank"&gt;Mauna Loa Observatory captured the reality of climate change: The US plans to shut it down&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;US President Donald Trump has decided to defund the oldest observatory monitoring CO2 in the atmosphere, as well as the widespread US greenhouse gas monitoring network and other climate measuring sites.&lt;/em&gt; The Conversation , Alex Gupta, Katrin Meissner, Timothy Raupach, Jul 05, 2025.&lt;/li&gt;
  35. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/jmrO_nGYrhE?si=0bD5vLv2AAWDUM0p" target="_blank"&gt;What 500 Million years of Climate Clues mean for our future&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; ClimateAdam on Youtube, Adam Levy, July 10, 2025.&lt;/li&gt;
  36. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_28.html"&gt;Skeptical Science New Research for Week #28 2025&lt;/a&gt;&lt;/strong&gt;&amp;nbsp;&lt;em&gt;&amp;nbsp;In this week's edition, a refreshed survey indicates a broad, party-spanning disconnect between the American public and how the present US administration is in deep climate change denial. &lt;/em&gt;&amp;nbsp;by Doug Bostrom &amp;amp; Marc Kodack , Skeptical Science, Jul 10, 2025&lt;/li&gt;
  37. &lt;/ul&gt;
  38. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (4 articles)&lt;/strong&gt;&lt;/p&gt;
  39. &lt;ul&gt;
  40. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/04072025/heat-impact-on-elections/" target="_blank"&gt;The Heat That Seared New York City`s Primary Voters Is Just One Impact of Global Warming on Elections&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Inside Climate News, Chad Small, Jul 04, 2025.&lt;/li&gt;
  41. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.newyorker.com/news/the-lede/is-there-still-time-to-be-hopeful-about-the-climate" target="_blank"&gt;Is There Still Time to Be Hopeful About the Climate?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists have long insisted that we can and must limit global warming to 1.5 degrees&amp;mdash;and some still do, even as that grim milestone nears.&lt;/em&gt; New Yorker, Daniel A. Gross, Jul 09, 2025.&lt;/li&gt;
  42. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/commentisfree/2025/jul/09/extreme-heat-european-cities-greenery-swimming-climate-crisis" target="_blank"&gt;Extreme heat is our future - European cities must adapt | Alexander Hurst&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Greenery, shade and swimming spots won&amp;rsquo;t solve the climate crisis, but they&amp;rsquo;re becoming ever more critical&lt;/em&gt; The Guardian, Alexander Hurst, Jul 09, 2025.&lt;/li&gt;
  43. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.quantamagazine.org/how-can-regional-models-advance-climate-science-20250710/" target="_blank"&gt;How Can Regional Models Advance Climate Science?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Elfatih Eltahir explains why we need more local and social data, like disease spread and population growth, to better predict and address climate-related challenges.&lt;/em&gt; Quanta Magazine, Janna Levin and Steven Strogatz, Jul 10, 2025.&lt;/li&gt;
  44. &lt;/ul&gt;
  45. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (3 articles)&lt;/strong&gt;&lt;/p&gt;
  46. &lt;ul&gt;
  47. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-elnino.html" target="_blank"&gt;Fact brief - Is global warming just due to El Ni&amp;ntilde;o?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, Sue Bin Park, Jul 08, 2025.&lt;/li&gt;
  48. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/can-you-trust-climate-information-how-and-why-powerful-players-are-misleading-the-public-260251" target="_blank"&gt;Can you trust climate information? How and why powerful players are misleading the public&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Conversation, Klaus Bruhn Jensen &amp;amp; Semahat Ece Elbeyi , July 8, 2025.&lt;/li&gt;
  49. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/6JEN6XgG1d0?si=x8F4pZeTFPlFN3Xx" target="_blank"&gt;Jordan Peterson: "Capable of assessing data", or gullibly misled?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; potholer54 on Youtube, Peter Hadfield, July 12, 2025.&lt;/li&gt;
  50. &lt;/ul&gt;
  51. &lt;p&gt;&lt;strong&gt;Health Aspects of Climate Change (2 articles)&lt;/strong&gt;&lt;/p&gt;
  52. &lt;ul&gt;
  53. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/09072025/global-warming-spiked-europe-heatwave-death-toll/" target="_blank"&gt;Human-Caused Global Warming Spiked the Death Toll of Europe`s Early Summer Heatwave&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Researchers found that nearly two thirds of the estimated 2,300 heat deaths resulted from global heating intensified by fossil fuel emissions, but worry that officials undercount heat mortalities.&lt;/em&gt; Inside Climate News, Bob Berwyn, Jul 09, 2025.&lt;/li&gt;
  54. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/jul/10/extreme-heat-death-rate-england-wales-by-2070-climate-change" target="_blank"&gt;Extreme heat could lead to 30,000 deaths a year in England and Wales by 2070s, say scientists&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Worst-case scenario of 4.3C of warming could result in fiftyfold rise in heat-related deaths, researchers say&lt;/em&gt; The Guardian, Anna Bawden, Jul 10, 2025.&lt;/li&gt;
  55. &lt;/ul&gt;
  56. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (1 article)&lt;/strong&gt;&lt;/p&gt;
  57. &lt;ul&gt;
  58. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.newyorker.com/news/the-lede/sheldon-whitehouses-three-hundredth-climate-warning" target="_blank"&gt;Sheldon Whitehouse`s Three-Hundredth Climate Warning&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The Senator&amp;rsquo;s wake-up calls about government inaction take on a new urgency in Trump 2.0.&lt;/em&gt; The New Yorker, Elizabeth Kolbert, Jul 07, 2025.&lt;/li&gt;
  59. &lt;/ul&gt;
  60. &lt;p&gt;&lt;strong&gt;Miscellaneous (3 articles)&lt;/strong&gt;&lt;/p&gt;
  61. &lt;ul&gt;
  62. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/04072025/anti-autocracy-handbook-aims-to-protect-scientists/" target="_blank"&gt;New Handbook Aims to Protect Scientists From Autocratic Threats&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists, experts say, need to help protect democracy, &amp;ldquo;the system of government in which science, health and humanity are most likely to thrive.&amp;rdquo;&lt;/em&gt; Inside Climate News, Bob Berwyn, July 4, 2025.&lt;/li&gt;
  63. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.desmog.com/2025/07/05/shetland-schoolchildren-study-in-classrooms-sponsored-by-norwegian-oil-giant/" target="_blank"&gt;Shetland Schoolchildren Study in Classrooms Sponsored by Norwegian Oil Giant&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Critics fear that Equinor&amp;rsquo;s latest UK education deal is aimed at quelling opposition to North Sea drilling.&lt;/em&gt; DeSmog, Ellen Ormesher, Jul 05, 2025.&lt;/li&gt;
  64. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_27.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #27&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 27 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 29, 2025 thru Sat, July 5, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler and Doug Bostrom, Jul 06, 2025.&lt;/li&gt;
  65. &lt;/ul&gt;
  66. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  67. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_28.html</link>
  68. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_28.html</guid>
  69. <pubDate>Sun, 13 Jul 2025 10:36:06 EST</pubDate>
  70. </item>  <item>
  71. <title>Skeptical Science New Research for Week #28 2025</title>
  72. <description>&lt;p&gt;&lt;span&gt;&lt;strong&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/strong&gt;&lt;/span&gt;&lt;/p&gt;
  73. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02496-7" target="_blank"&gt;Americans and policymakers underestimate endorsement for the most popular climate solution narrative, combining personal and political action&lt;/a&gt;&lt;/strong&gt;, Sparkman et al.,&amp;nbsp;&lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  74. &lt;blockquote&gt;
  75. &lt;p&gt;&lt;em&gt;A wide variety of existing narratives describe how we might address climate change. Which of these approaches is popular among the American public? Do the general public and their elected officials accurately perceive which climate solutions are popular? We assess personal endorsement and perceptions of public support in national representative samples of the U.S. public (N&amp;thinsp;=&amp;thinsp;1500) and local-level U.S. policymakers (N&amp;thinsp;=&amp;thinsp;500). Proactive narratives, like ones advocating for both personal behavior and policy action, are widely endorsed, but both the public and policymakers greatly underestimate their popularity (a case of pluralistic ignorance), especially for narratives calling for systemic change. Greater endorsement of these narratives corresponded to greater willingness to take personal and political actions and support climate policy. We also find experimental exposure to some climate narratives (N&amp;thinsp;=&amp;thinsp;2060) may increase participants&amp;rsquo; behavioral intentions and policy support, suggesting which narratives are spread in popular media is important to help address climate change.&lt;/em&gt;&lt;/p&gt;
  76. &lt;p&gt;&lt;sup&gt;&lt;em&gt;&lt;span&gt;The work was supported by a National Science Foundation grant, SES-DRMS 2018063 to E.U.W.&lt;/span&gt;&lt;/em&gt;&lt;/sup&gt;&lt;/p&gt;
  77. &lt;/blockquote&gt;
  78. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61505-7" target="_blank"&gt;The carbon perception gap in actual and ideal carbon footprints across wealth groups&lt;/a&gt;&lt;/strong&gt;, K&amp;ouml;chling et al.,&amp;nbsp;&lt;em&gt;Nature Communications&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  79. &lt;blockquote&gt;
  80. &lt;p&gt;&lt;em&gt;Carbon inequality is gaining attention in public discussions surrounding equitable climate policies. It commonly refers to the unequal distribution of individual greenhouse gas emissions, with wealthier individuals contributing disproportionately higher emissions. Little is known about how people perceive the actual carbon footprint distribution across wealth groups and what they would desire as an ideal distribution. Survey data from Germany show awareness of carbon inequality, with respondents recognizing that wealthier individuals emit disproportionately more. Yet, with surprising consensus, all groups, including the wealthy, desired an inverse ideal distribution, with the wealthy having disproportionately smaller carbon footprints. Nonetheless, most perceived their own carbon footprint as far better compared to others in society and within their wealth group. Here, we show a carbon perception gap, particularly among the wealthiest: Collectively, people acknowledge the presence of carbon inequality and desire a more equitable distribution, yet often perceive themselves as already contributing more than others.&lt;/em&gt;&lt;/p&gt;
  81. &lt;/blockquote&gt;
  82. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2024ef005153" target="_blank"&gt;Permafrost Thaw Impact on Remaining Carbon Budgets and Emissions Pathways in 2&amp;deg;C and 3&amp;deg;C Global Warming Scenarios&lt;/a&gt;&lt;/strong&gt;, Georgievski et al.,&amp;nbsp;&lt;em&gt;Earth's Future&lt;/em&gt;&lt;/p&gt;
  83. &lt;blockquote&gt;
  84. &lt;p&gt;&lt;em&gt;This study focuses on the impact of thawing frozen ground of high northern latitudes, known as permafrost, which contains large amount of soil organic carbon (SOC). As temperatures rise due to climate change, this SOC can be decomposed and released as greenhouse gases (GHG) into atmosphere reinforcing warming. We use climate model experiments with and without permafrost, adapting fossil fuel emissions to simulate different scenarios aimed at limiting GHG concentrations to stabilize global warming to 2&amp;deg;C and 3&amp;deg;C above preindustrial levels. Climate model simulations show that thawing permafrost could release significant amounts of GHG with temporary peaks of about half of present-day annual fossil fuel emissions (&amp;sim;5&amp;nbsp;PgC), but at an average rate of less than 0.7&amp;nbsp;PgC/yr for 3&amp;deg;C, and &amp;sim;0.3&amp;nbsp;PgC/yr for 2&amp;deg;C warming. Thus, by the end of the simulations set for the year 2298, the release of permafrost carbon reduces the amount of carbon available for fossil fuel emissions by &amp;sim;13% for 2&amp;deg;C warming level, and by &amp;sim;11% for 3&amp;deg;C warming level. These results show how important it is to consider permafrost thaw when acting to reduce emissions.&lt;/em&gt;&amp;nbsp;&lt;/p&gt;
  85. &lt;/blockquote&gt;
  86. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02364-4" target="_blank"&gt;Rapid increases in satellite-observed ice sheet surface meltwater production&lt;/a&gt;&lt;/strong&gt;, Zheng et al.,&amp;nbsp;&lt;em&gt;Nature Climate Change&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  87. &lt;blockquote&gt;
  88. &lt;p&gt;&lt;em&gt;Surface meltwater production influences the contribution of ice sheets to global sea-level change. Ice-sheet-wide meltwater production has thus far primarily been quantified by regional climate models. Here we present a 31-year (1992&amp;ndash;2023) time series of daily satellite-observed surface melt flux for the Greenland and Antarctic ice sheets. The annual meltwater volume in Greenland has significantly increased, with intensified melt in the northern basins dominated by a negative North Atlantic Oscillation and elevated melt flux in western basins driven by the decline in Arctic sea-ice. In East Antarctica, high melt rates since 2000 are attributed to warm air incursions from the Southern Ocean due to anomalous atmospheric circulations associated with a negative Southern Annular Mode and the recovery of the Antarctic ozone hole. This region, previously less prone to surface melt, has become a melt hotspot, potentially leading to meltwater ponding and future ice shelf destabilization.&lt;/em&gt;&lt;/p&gt;
  89. &lt;/blockquote&gt;
  90. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1073/pnas.2500440122" target="_blank"&gt;Rising surface salinity and declining sea ice: A new Southern Ocean state revealed by satellites&lt;/a&gt;&lt;/strong&gt;, Silvano et al.,&amp;nbsp;&lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt;&amp;nbsp;&lt;/span&gt;&lt;/p&gt;
  91. &lt;blockquote&gt;
  92. &lt;p&gt;&lt;em&gt;For decades, the surface of the polar Southern Ocean (south of 50&amp;deg;S) has been freshening&amp;mdash;an expected response to a warming climate. This freshening enhanced upper-ocean stratification, reducing the upward transport of subsurface heat and possibly contributing to sea ice expansion. It also limited the formation of open-ocean polynyas. Using satellite observations, we reveal a marked increase in surface salinity across the circumpolar Southern Ocean since 2015. This shift has weakened upper-ocean stratification, coinciding with a dramatic decline in Antarctic sea ice coverage. Additionally, rising salinity facilitated the reemergence of the Maud Rise polynya in the Weddell Sea, a phenomenon last observed in the mid-1970s. Crucially, we demonstrate that satellites can now monitor these changes in real time, providing essential evidence of the Southern Ocean&amp;rsquo;s potential transition toward persistently reduced sea ice coverage.&lt;/em&gt;&lt;/p&gt;
  93. &lt;/blockquote&gt;
  94. &lt;h3&gt;From this week's government/NGO section:&lt;/h3&gt;
  95. &lt;p&gt;&lt;strong&gt;&lt;a href="https://climatecommunication.yale.edu/wp-content/uploads/2025/07/climate-change-american-mind-beliefs-attitudes-spring-2025.pdf" target="_blank"&gt;Climate Change in the American Mind: Beliefs &amp;amp; Attitudes, Spring 2025&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Leiserowitz et al.,&amp;nbsp;&lt;strong&gt;Yale University and George Mason University&lt;/strong&gt;&lt;/p&gt;
  96. &lt;blockquote&gt;Americans who think global warming is happening outnumber those who think it is not by a ratio of more than 4 to 1 (69% versus 15%). Compared with Fall 2024, Americans&amp;rsquo; level of worry is significantly higher for wildfires (+12 percentage points), rising sea levels (+13 points), and hurricanes (+8 points). Additionally, half or more Americans are at least &amp;ldquo;a little worried&amp;rdquo; their local area might be harmed by air pollution (78%), water pollution (77%), diseases carried by mosquitoes and ticks (76%), extreme heat (73%), droughts (73%), agricultural pests and diseases (71%), electricity power outages (71%), wildfires (67%), water shortages (67%), flooding (61%), tornados (60%), rising sea levels (55%), hurricanes (50%), and reduced snowpack (49%). Nearly two-thirds of Americans think that global warming is affecting the weather in the U.S. (64%), and seven in ten or more think it is affecting extreme heat (75%), wildfires (72%), droughts (72%), and flooding (71%). Only 18% of Americans say they hear about global warming in the media &amp;ldquo;at least once a week,&amp;rdquo; which is the lowest percentage since the question was added to the survey in 2015.&lt;/blockquote&gt;
  97. &lt;p&gt;&lt;strong&gt;&lt;a href="https://noclimateresultsfound.com/wp-content/uploads/2025/07/Kairos_NCRFGoogleReport_FINAL.pdf" target="_blank"&gt;Google&amp;rsquo;s Eco-failures. An Environmental Investigation into Alphabet Inc. 2025&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;&lt;strong&gt;Kairos Fellowship&lt;/strong&gt;&lt;/p&gt;
  98. &lt;blockquote&gt;Google&amp;rsquo;s reported total greenhouse gas emissions increased 1,515% from 2010 to 2024 according to the company&amp;rsquo;s own published data. While Google reports a decrease in its data center emissions, it is doing so by only reporting &amp;ldquo;market based emissions,&amp;rdquo; which use renewable energy purchased elsewhere to obscure real emissions. Google&amp;rsquo;s only emissions that have shown an absolute decrease since 2019 are its scope 1 emissions, which merely account for 0.31% of Google&amp;rsquo;s reported total emissions. Google&amp;rsquo;s aggressive investment in Generative AI and its infrastructure is a major factor behind its climate failings. Google&amp;rsquo;s Scope 2 emissions, which measure the emissions from energy that Google purchases to power its data centers, have increased by 820% since 2010.&lt;/blockquote&gt;
  99. &lt;h3&gt;118 articles in 58 journals by 625 contributing authors&lt;/h3&gt;
  100. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  101. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100791" target="_blank"&gt;Dynamical Systems Methods to Understand Projected Heatwave Intensification&lt;/a&gt;, Vakrat &amp;amp; Kushner Kushner, &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100791" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100791&lt;/p&gt;
  102. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116801" target="_blank"&gt;Heat Storage Pattern Linked to the Atlantic Meridional Overturning Circulation Slowdown&lt;/a&gt;, Ren et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116801" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116801&lt;/p&gt;
  103. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  104. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2426140122" target="_blank"&gt;Divergent oxygen trends in ice-covered lakes driven by ice-cover decline and ecological memory&lt;/a&gt;, Jansen et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2426140122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2426140122&lt;/p&gt;
  105. &lt;!--more--&gt;
  106. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-24-0119.1" target="_blank"&gt;Entire-Basin Heat Wave in the Yangtze River Is Becoming the New Normal&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-24-0119.1&lt;/p&gt;
  107. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.aea2480" target="_blank"&gt;Glacial melt due to global warming is triggering earthquakes&lt;/a&gt;, Voosen, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.aea2480&lt;/p&gt;
  108. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-24-0106.1" target="_blank"&gt;Spatiotemporal Trends in Winter Wind Chill Temperatures across Canada and the United States&lt;/a&gt;, Laird et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-24-0106.1&lt;/p&gt;
  109. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl113672" target="_blank"&gt;Timing of the Recent Migration and Intensification of the Southern Hemisphere Westerly Winds&lt;/a&gt;, Tetzner et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl113672" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl113672&lt;/p&gt;
  110. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100794" target="_blank"&gt;Trends and variability of heat waves in Europe and the association with large-scale circulation patterns&lt;/a&gt;, Boboc et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100794" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100794&lt;/p&gt;
  111. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  112. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-17-3203-2025" target="_blank"&gt;A high-resolution pan-Arctic meltwater discharge dataset from 1950 to 2021&lt;/a&gt;, Igneczi &amp;amp; Bamber Bamber Bamber, &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-17-3203-2025&lt;/p&gt;
  113. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  114. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01737-w" target="_blank"&gt;Accelerating increase in the duration of heatwaves under global warming&lt;/a&gt;, Martinez-Villalobos et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01737-w&lt;/p&gt;
  115. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/os-21-1255-2025" target="_blank"&gt;Seafloor marine heatwaves outpace surface events in the future on the northwestern European shelf&lt;/a&gt;, Wilson et al., &lt;em&gt;Ocean Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/os" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/os-21-1255-2025&lt;/p&gt;
  116. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  117. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  118. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-08264-z" target="_blank"&gt;BiLSTM-Kalman framework for precipitation downscaling under multiple climate change scenarios&lt;/a&gt;, Jahangiri et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-08264-z&lt;/p&gt;
  119. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100790" target="_blank"&gt;Can wet heatwaves be represented by CMIP6 models and bias-corrected NEX-GDDP-CMIP6?&lt;/a&gt;, Zhao et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100790" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100790&lt;/p&gt;
  120. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.47205/jdss.2021(2-iv)74" target="_blank"&gt;Global climate models performance: A comprehensive review of applied approaches, recognized issues and possible future directions&lt;/a&gt;, , &lt;em&gt;Journal of Development and Social Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://jdss.org.pk/issues/v2/4/water" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://jdss.org.pk/issues/v2/4/water-sharing-issues-in-pakistan-impacts-on-inter-provincial-relations.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.47205/jdss.2021(2-iv)74&lt;/p&gt;
  121. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  122. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-17-3259-2025" target="_blank"&gt;Antarctic Ice Sheet grounding line discharge from 1996&amp;ndash;2024&lt;/a&gt;, Davison et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-17-3259-2025&lt;/p&gt;
  123. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02363-5" target="_blank"&gt;Continent-wide mapping shows increasing sensitivity of East Antarctica to meltwater ponding&lt;/a&gt;, Tuckett et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02363-5&lt;/p&gt;
  124. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02364-4" target="_blank"&gt;Rapid increases in satellite-observed ice sheet surface meltwater production&lt;/a&gt;, Zheng et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02364-4&lt;/p&gt;
  125. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.rse.2025.114896" target="_blank"&gt;Recent significant subseasonal fluctuations of supraglacial lakes on Greenland monitored by passive optical satellites&lt;/a&gt;, Qiu et al., &lt;em&gt;Remote Sensing of Environment&lt;/em&gt; 10.1016/j.rse.2025.114896&lt;/p&gt;
  126. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2500440122" target="_blank"&gt;Rising surface salinity and declining sea ice: A new Southern Ocean state revealed by satellites&lt;/a&gt;, Silvano et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2500440122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2500440122&lt;/p&gt;
  127. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043953" target="_blank"&gt;Summer Extreme Rainfall Events Intensify Southern Greenland Ice Sheet Melt&lt;/a&gt;, Teng et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2025jd043953&lt;/p&gt;
  128. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/tc-19-2407-2025" target="_blank"&gt;Trends in the annual snow melt-out day over the French Alps and Pyrenees from 38 years of high-resolution satellite data (1986&amp;ndash;2023)&lt;/a&gt;, Barrou Dumont et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-19-2407-2025&lt;/p&gt;
  129. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  130. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2425248122" target="_blank"&gt;Barystatic sea level change observed by satellite gravimetry: 1993&amp;ndash;2022&lt;/a&gt;, Nie et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2425248122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2425248122&lt;/p&gt;
  131. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  132. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-3181-2025" target="_blank"&gt;Acidification, warming, and nutrient management are projected to cause reductions in shell and tissue weights of oysters in a coastal plain estuary&lt;/a&gt;, Czajka et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-3181-2025&lt;/p&gt;
  133. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1101/2024.10.14.618217" target="_blank"&gt;Avian predator-prey dynamics in a changing climate along the Western Antarctic Peninsula: A scoping review&lt;/a&gt;, Russell &amp;amp; Hermanson, &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://www.biorxiv.org/content/biorxiv/early/2024/10/15/2024.10.14.618217.full.pdf" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.biorxiv.org/content/biorxiv/early/2024/10/15/2024.10.14.618217.full.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1101/2024.10.14.618217&lt;/p&gt;
  134. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ddi.70041" target="_blank"&gt;Climate Change Can Exacerbate Ant Invasion Impacts by Unleashing Indoor Populations Into Outdoor Environments&lt;/a&gt;, Tsang et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/ddi.70041" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/ddi.70041&lt;/p&gt;
  135. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecog.07835" target="_blank"&gt;Climatic resilience after extreme drought in Mediterranean shrubland plant communities&lt;/a&gt;, D&amp;iacute;az?Borrego et al., &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecog.07835" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecog.07835&lt;/p&gt;
  136. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70332" target="_blank"&gt;Counterintuitive Range Shifts May Be Explained by Climate Induced Changes in Biotic Interactions&lt;/a&gt;, Osmolovsky et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70332" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70332&lt;/p&gt;
  137. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70149" target="_blank"&gt;Decades of historical outbreak cycles in a multivoltine insect reveal a plastic phenological response to climate change&lt;/a&gt;, Smith et al., &lt;em&gt;Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecy.70149" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecy.70149&lt;/p&gt;
  138. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70334" target="_blank"&gt;Distribution Range and Richness of Plant Species Are Predicted to Increase by 2100 due to a Warmer and Wetter Climate in Northern China&lt;/a&gt;, Sun et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70334" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70334&lt;/p&gt;
  139. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71615" target="_blank"&gt;Grassland Management Affects Plant Leaf Nutrients Under Ambient and Future Climate&lt;/a&gt;, Herion et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71615" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71615&lt;/p&gt;
  140. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70308" target="_blank"&gt;Growing Apart: Global Warming Severely Impacts the Symbiosis of the Hawaiian Bobtail Squid and Bioluminescent Bacteria&lt;/a&gt;, Reichert &amp;amp; Tepav?evi?, &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70308&lt;/p&gt;
  141. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70323" target="_blank"&gt;How Does Climate Change Influence the Regional Ecological&amp;ndash;Social Risks of Harmful Dinoflagellates? A Predictive Study of China's Coastal Waters&lt;/a&gt;, Su et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70323" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70323&lt;/p&gt;
  142. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adw0562" target="_blank"&gt;Integrating population genomics and environmental data to predict adaptation to climate change in post-bottleneck Tibetan macaques&lt;/a&gt;, Teng et al., &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adw0562&lt;/p&gt;
  143. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70150" target="_blank"&gt;Live fast, die young? Day- and night-warming affect the growth, survivorship, and behavior of caterpillars in the field&lt;/a&gt;, Yang et al., &lt;em&gt;Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecy.70150" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecy.70150&lt;/p&gt;
  144. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s44358-025-00058-5" target="_blank"&gt;Marine heatwaves as hot spots of climate change and impacts on biodiversity and ecosystem services&lt;/a&gt;, Wernberg et al., &lt;em&gt;Nature Reviews Biodiversity&lt;/em&gt; 10.1038/s44358-025-00058-5&lt;/p&gt;
  145. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02469-w" target="_blank"&gt;Marine heatwaves impact organism developmental time&lt;/a&gt;, Gim&amp;eacute;nez &amp;amp; Torres, &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02469-w&lt;/p&gt;
  146. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71754" target="_blank"&gt;Niche Shifts Induce Major Changes in the Ranges of the World's Worst Invasive Ant Species&lt;/a&gt;, Wei et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71754" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71754&lt;/p&gt;
  147. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-24-0054.1" target="_blank"&gt;Probabilistic and Threshold-Based Marine Heat Indicators Show Different Signatures of Near-Perpetual Heat Emergence around Mesoamerican Reef under Climate Change&lt;/a&gt;, Phillips et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-24-0054.1&lt;/p&gt;
  148. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02443-6" target="_blank"&gt;Rapid ecological change outpaces climate warming in Tibetan glacier lakes&lt;/a&gt;, Du et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02443-6&lt;/p&gt;
  149. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rspb.2025.0970" target="_blank"&gt;Species&amp;rsquo; traits modulate rapid changes in flight time in high-Arctic muscid flies under climate change&lt;/a&gt;, Gerlich et al., &lt;em&gt;Proceedings of the Royal Society B: Biological Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rspb.2025.0970" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rspb.2025.0970&lt;/p&gt;
  150. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70333" target="_blank"&gt;The Ripple Effects of Climate Change on Tibetan Alpine Arthropods&lt;/a&gt;, Oyarzabal &amp;amp; Borges, &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70333&lt;/p&gt;
  151. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70142" target="_blank"&gt;The stability of plant richness, composition, and cover responds nonlinearly to warming in a decade-long experiment&lt;/a&gt;, Shen et al., &lt;em&gt;Ecology&lt;/em&gt; 10.1002/ecy.70142&lt;/p&gt;
  152. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  153. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043405" target="_blank"&gt;Carbon Sink of Terrestrial Ecosystems in China During 2010&amp;ndash;2020: Spatiotemporal Variability and Climate Impact&lt;/a&gt;, Xie et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2025jd043405&lt;/p&gt;
  154. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71667" target="_blank"&gt;Characterizing Soil Dissolved Organic Matter Across a Permafrost Thaw Gradient (Continuous to Isolated Patches) in Northeastern China&lt;/a&gt;, Zou et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71667" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71667&lt;/p&gt;
  155. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.earscirev.2025.105199" target="_blank"&gt;Global patterns and driving factors of the carbon accumulation rate in coastal wetlands&lt;/a&gt;, Yan et al., &lt;em&gt;Earth&lt;/em&gt; 10.1016/j.earscirev.2025.105199&lt;/p&gt;
  156. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110707" target="_blank"&gt;On soil effluxes of CO&lt;sub&gt;2&lt;/sub&gt; and their accumulation at night&lt;/a&gt;, Hicks et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110707&lt;/p&gt;
  157. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005153" target="_blank"&gt;Permafrost Thaw Impact on Remaining Carbon Budgets and Emissions Pathways in 2&amp;deg;C and 3&amp;deg;C Global Warming Scenarios&lt;/a&gt;, Georgievski et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005153" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005153&lt;/p&gt;
  158. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  159. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  160. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104154" target="_blank"&gt;Assessing potential implications of the EU's carbon dioxide removal strategy on Brazil's land ecosystems and local communities&lt;/a&gt;, Portugal-Pereira et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; 10.1016/j.envsci.2025.104154&lt;/p&gt;
  161. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  162. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114749" target="_blank"&gt;Does a reliable electricity grid connection matter for the development of European renewable energy startups?&lt;/a&gt;, Lyeonov et al., &lt;em&gt;Energy Policy&lt;/em&gt; 10.1016/j.enpol.2025.114749&lt;/p&gt;
  163. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101749" target="_blank"&gt;Economic assessment of battery energy storage systems for frequency regulation reserve provision: A case study of the Dominican Republic&lt;/a&gt;, Cruz-De-Jes&amp;uacute;s et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.esd.2025.101749" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.esd.2025.101749&lt;/p&gt;
  164. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2417921122" target="_blank"&gt;How to tackle the looming challenge of solar PV panel recycling&lt;/a&gt;, Xia et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2417921122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2417921122&lt;/p&gt;
  165. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-06354-6" target="_blank"&gt;Optimizing wind-PV-battery microgrids for sustainable and resilient residential communities&lt;/a&gt;, Mishra &amp;amp; Shankar, &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-06354-6&lt;/p&gt;
  166. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  167. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043117" target="_blank"&gt;Assessing Regional Climate Trends in West Africa Under Geoengineering: A Multimodel Comparison of UKESM1 and CESM2&lt;/a&gt;, Nkrumah et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd043117" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd043117&lt;/p&gt;
  168. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02480-1" target="_blank"&gt;Site selection for ocean alkalinity enhancement informed by passive tracer simulations&lt;/a&gt;, Guo et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02480-1&lt;/p&gt;
  169. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Aerosols&lt;/strong&gt;&lt;/p&gt;
  170. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl114888" target="_blank"&gt;Increased Asian Aerosols Contribute to Historical Climate Change in Antarctica&lt;/a&gt;, Gu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl114888" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl114888&lt;/p&gt;
  171. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006516" target="_blank"&gt;Reduced Anthropogenic Aerosols Reveal Increased Heatwaves Driven by Climate Warming&lt;/a&gt;, Wei et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006516" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006516&lt;/p&gt;
  172. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106588" target="_blank"&gt;Response of PM&lt;sub&gt;2.5&lt;/sub&gt; concentration to climate variability and climate change prediction in China&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106588&lt;/p&gt;
  173. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  174. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02472-1" target="_blank"&gt;Enhancing communication of climate changes under net zero emissions&lt;/a&gt;, King et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02472-1&lt;/p&gt;
  175. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102676" target="_blank"&gt;From Distress to Action? &amp;ndash; A Three-Wave Longitudinal Study of Climate Change Distress, Pro-Environmental Behavior, and Coping Strategies among Finnish Adolescents.&lt;/a&gt;, Salla et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2025.102676" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102676&lt;/p&gt;
  176. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/09644016.2025.2526228" target="_blank"&gt;It&amp;rsquo;s not just climate: rethinking &amp;lsquo;climate emotions&amp;rsquo; in the age of burnout capitalism&lt;/a&gt;, Albert, &lt;em&gt;Environmental Politics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/09644016.2025.2526228" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/09644016.2025.2526228&lt;/p&gt;
  177. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2527645" target="_blank"&gt;Navigating through the Tempest: Climate Change Simulations in Action Role-Playing Games&lt;/a&gt;, Zhao et al., &lt;em&gt;Environmental Communication&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/17524032.2025.2527645" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17524032.2025.2527645&lt;/p&gt;
  178. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61505-7" target="_blank"&gt;The carbon perception gap in actual and ideal carbon footprints across wealth groups&lt;/a&gt;, K&amp;ouml;chling et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-61505-7&lt;/p&gt;
  179. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/wcas-d-24-0132.1" target="_blank"&gt;The Meteorological Glossary as a Tool for Communicating and Disseminating Weather and Climate Sciences: A Case Study of the Update of the 1948 &amp;ldquo;Essay on a Catalan Meteorological Vocabulary&amp;rdquo;&lt;/a&gt;, Mazon et al., &lt;em&gt;Weather, Climate, and Society&lt;/em&gt; 10.1175/wcas-d-24-0132.1&lt;/p&gt;
  180. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  181. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1605176" target="_blank"&gt;Advancing decision support for climate adaptation in agriculture and natural resources&lt;/a&gt;, Ikendi et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1605176" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1605176&lt;/p&gt;
  182. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110720" target="_blank"&gt;Climate and grazing effects on productivity allocation in alpine grasslands of the Qinghai-Tibet Plateau&lt;/a&gt;, Zhang et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110720&lt;/p&gt;
  183. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef005931" target="_blank"&gt;Climate Change Increases Evaporative and Crop Irrigation Demand in North America&lt;/a&gt;, Williams &amp;amp; Abatzoglou, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef005931" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef005931&lt;/p&gt;
  184. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1620331" target="_blank"&gt;Editorial: Socioeconomic implications of forests and forestry in a changing climate and governance&lt;/a&gt;, Purwestri &amp;amp; Lusiana, &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1620331" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1620331&lt;/p&gt;
  185. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adw4780" target="_blank"&gt;High-frequency data reveal limits of adaptation to heat in animal agriculture&lt;/a&gt;, Palandri et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.adw4780" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.adw4780&lt;/p&gt;
  186. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025av001704" target="_blank"&gt;Is Water Stress the Root Cause of the Observed Nonlinear Relationship Between Yield Losses and Temperature?&lt;/a&gt;, Vargas Zeppetello et al., &lt;em&gt;AGU Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025av001704" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025av001704&lt;/p&gt;
  187. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110690" target="_blank"&gt;Light grazing tends to enhance ecosystem carbon sequestration and resource use efficiency in a meadow steppe of northern China&lt;/a&gt;, Yu et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110690" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110690&lt;/p&gt;
  188. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  189. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100793" target="_blank"&gt;The contribution of climate drivers to compound drought and extreme temperature events increased in recent decades&lt;/a&gt;, Li et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100793" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100793&lt;/p&gt;
  190. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1101/2024.06.10.24308682" target="_blank"&gt;To be climate-friendly, food-based dietary guidelines must include limits on total meat consumption &amp;ndash; modeling from the case of France&lt;/a&gt;, Kesse-Guyot et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://www.medrxiv.org/content/medrxiv/early/2024/06/11/2024.06.10.24308682.full.pdf" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.medrxiv.org/content/medrxiv/early/2024/06/11/2024.06.10.24308682.full.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1101/2024.06.10.24308682&lt;/p&gt;
  191. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70324" target="_blank"&gt;Winter Dormant Wheat Will Benefit From Mean Temperature Increase of 2&amp;deg;C When Well-Watered and Fertilized in the Main Producing Regions of China&lt;/a&gt;, Wang et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70324&lt;/p&gt;
  192. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  193. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70019" target="_blank"&gt;A Framework for Quantifying the Robustness and Uncertainty of Drought Projections&lt;/a&gt;, Zhang et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70019&lt;/p&gt;
  194. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02386-y" target="_blank"&gt;Alternative rainfall storylines for the Western European July 2021 floods from ensemble boosting&lt;/a&gt;, Thompson et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02386-y&lt;/p&gt;
  195. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2426140122" target="_blank"&gt;Divergent oxygen trends in ice-covered lakes driven by ice-cover decline and ecological memory&lt;/a&gt;, Jansen et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2426140122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2426140122&lt;/p&gt;
  196. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-24-0119.1" target="_blank"&gt;Entire-Basin Heat Wave in the Yangtze River Is Becoming the New Normal&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-24-0119.1&lt;/p&gt;
  197. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.aea2480" target="_blank"&gt;Glacial melt due to global warming is triggering earthquakes&lt;/a&gt;, Voosen, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.aea2480&lt;/p&gt;
  198. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-24-0106.1" target="_blank"&gt;Spatiotemporal Trends in Winter Wind Chill Temperatures across Canada and the United States&lt;/a&gt;, Laird et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-24-0106.1&lt;/p&gt;
  199. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl113672" target="_blank"&gt;Timing of the Recent Migration and Intensification of the Southern Hemisphere Westerly Winds&lt;/a&gt;, Tetzner et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl113672" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl113672&lt;/p&gt;
  200. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100794" target="_blank"&gt;Trends and variability of heat waves in Europe and the association with large-scale circulation patterns&lt;/a&gt;, Boboc et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100794" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100794&lt;/p&gt;
  201. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02493-w" target="_blank"&gt;Intensifying tropical cyclones in the Arabian Sea replenish depleting aquifers&lt;/a&gt;, Saleh et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02493-w&lt;/p&gt;
  202. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s00024-025-03757-4" target="_blank"&gt;Prediction of Future Drought Characteristics Over the Southwest Turkey Using CMIP6 Models&lt;/a&gt;, ?ener &amp;amp; Davraz, &lt;em&gt;Pure and Applied Geophysics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s00024" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s00024-025-03757-4&lt;/p&gt;
  203. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  204. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt;Economic impacts of sea level rise on China's coastal provinces under different adaptation strategies&lt;/a&gt;, Wang et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.005&lt;/p&gt;
  205. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.07.001" target="_blank"&gt;Quantifying indirect economic losses from extreme events to inform global and local adaptation strategies&lt;/a&gt;, WANG et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.07.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.07.001&lt;/p&gt;
  206. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/jiec.70062" target="_blank"&gt;The biophysical economic structure of four developed countries: Lessons for decarbonization&lt;/a&gt;, Sinha &amp;amp; Kennedy, &lt;em&gt;Journal of Industrial Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/jiec.70062" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/jiec.70062&lt;/p&gt;
  207. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  208. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61090-9" target="_blank"&gt;A mining reality check on net zero&lt;/a&gt;, , &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-61090-9&lt;/p&gt;
  209. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02496-7" target="_blank"&gt;Americans and policymakers underestimate endorsement for the most popular climate solution narrative, combining personal and political action&lt;/a&gt;, Sparkman et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02496-7&lt;/p&gt;
  210. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104158" target="_blank"&gt;Aviation sector decarbonisation as a case of deep uncertainty: The need for an integrative, exploratory, and interdisciplinary approach&lt;/a&gt;, Belcher et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104158" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104158&lt;/p&gt;
  211. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104156" target="_blank"&gt;Climate justice: A view from the Latin American context&lt;/a&gt;, Guevara-Cue, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; 10.1016/j.envsci.2025.104156&lt;/p&gt;
  212. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114751" target="_blank"&gt;Energy transitions in the Pacific, one island at a time: The case of Efate island, Vanuatu&lt;/a&gt;, Pueyo &amp;amp; Haas , &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114751" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114751&lt;/p&gt;
  213. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114612" target="_blank"&gt;Firms&amp;rsquo; response to climate regulations: Empirical investigations based on the European Emissions Trading System&lt;/a&gt;, Kalantzis et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114612&lt;/p&gt;
  214. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.resourpol.2022.103058" target="_blank"&gt;Green recovery or fossil lock-in? Assessing sustainability and energy transition pathways in major economies&lt;/a&gt;, Ge &amp;amp; Zhu Duncanson Liu Hedges Cordero Press Boyer Kuramochi Liu Hee Ng Miakota Li Zong Leotaud Patr&amp;iacute;cio Mulligan Zanoletti Pe&amp;ntilde;asco Mulligan Welsh Guo Linn&amp;eacute;r Rasoulinezhad Brunori Machado Raukas Skidmore MP Zhang Ryzhenko Tyagi , &lt;em&gt;Resources Policy&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.resourpol.2022.103058&lt;/p&gt;
  215. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114753" target="_blank"&gt;Is the single-buyer model a barrier to clean energy deployment? Empirical evidence on decarbonization and renewable energy supply in emerging and developing countries&lt;/a&gt;, Sirin et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114753" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114753&lt;/p&gt;
  216. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104182" target="_blank"&gt;Making fossil fuel futures: The discursive formation of Canada's net-zero imaginary&lt;/a&gt;, Jara, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2025.104182&lt;/p&gt;
  217. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104170" target="_blank"&gt;Shaping niche innovations in energy transitions: The role of pitching to regulators&lt;/a&gt;, Eitan &amp;amp; Fischhendler, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104170" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104170&lt;/p&gt;
  218. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101783" target="_blank"&gt;Sustainability-driven energy management strategies for reducing carbon footprints in higher education&lt;/a&gt;, Hebala et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101783&lt;/p&gt;
  219. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17583004.2025.2522090" target="_blank"&gt;The challenge of connecting climate benefits with corporate climate targets and global net zero ambition&lt;/a&gt;, Helppi et al., &lt;em&gt;Carbon Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/17583004.2025.2522090" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17583004.2025.2522090&lt;/p&gt;
  220. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  221. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02368-0" target="_blank"&gt;A systems perspective for climate adaptation in deltas&lt;/a&gt;, Eslami et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02368-0&lt;/p&gt;
  222. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rspa.2025.0084" target="_blank"&gt;An emergent optimal resource allocation for climate resilience of transport infrastructure networks&lt;/a&gt;, Li et al., &lt;em&gt;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rspa.2025.0084" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rspa.2025.0084&lt;/p&gt;
  223. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1561526" target="_blank"&gt;Applying global NASA data to local planning for extreme heat in Prince George&amp;rsquo;s County, Maryland&lt;/a&gt;, Schollaert Uz et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1561526" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1561526&lt;/p&gt;
  224. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02365-3" target="_blank"&gt;Avoid urban development policy that fuels climate risk&lt;/a&gt;, Agarwal et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02365-3&lt;/p&gt;
  225. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102505" target="_blank"&gt;Climate justice in urban public space adaptation: Developing and testing a collective assessment tool in Hunters Point, New York City&lt;/a&gt;, Ruiz de Gopegui et al., &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2025.102505" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2025.102505&lt;/p&gt;
  226. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/feart.2025.1650815" target="_blank"&gt;Editorial: Extreme hydro-meteorological events in a changing climate: monitoring, risk assessment, and early warning&lt;/a&gt;, Jiang et al., &lt;em&gt;Frontiers in Earth Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/feart.2025.1650815" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/feart.2025.1650815&lt;/p&gt;
  227. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2525468" target="_blank"&gt;Effective climate finance management? An analysis of institutional structures for climate change adaptation in Tanzania&lt;/a&gt;, Sumari et al., &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2525468&lt;/p&gt;
  228. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.47205/jdss.2021(2-iv)74" target="_blank"&gt;Effectively lowering climate risk with innovation in adaptation technology&lt;/a&gt;, , &lt;em&gt;Journal of Development and Social Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://jdss.org.pk/issues/v2/4/water" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://jdss.org.pk/issues/v2/4/water-sharing-issues-in-pakistan-impacts-on-inter-provincial-relations.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.47205/jdss.2021(2-iv)74&lt;/p&gt;
  229. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103026" target="_blank"&gt;Heatwave adaptation conditioned by everyday life: Analysing interacting changes to daily activities during Pacific Northwest summers&lt;/a&gt;, Y&amp;uuml;cel &amp;amp; Schwanen, &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103026" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103026&lt;/p&gt;
  230. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104204" target="_blank"&gt;Powering fairness in climate adaptation capabilities: Evaluating the influence of air conditioning rebates in a hot climate&lt;/a&gt;, Wade et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104204" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104204&lt;/p&gt;
  231. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.07.001" target="_blank"&gt;Quantifying indirect economic losses from extreme events to inform global and local adaptation strategies&lt;/a&gt;, WANG et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.07.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.07.001&lt;/p&gt;
  232. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102666" target="_blank"&gt;Understanding slow progress on urban climate adaptation: An empirical analysis of behavioural dynamics in Dutch policymaking&lt;/a&gt;, Bellmann et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2025.102666" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102666&lt;/p&gt;
  233. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  234. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/wcc.70010" target="_blank"&gt;Medicine in a Warming World: The Physician's Role in Climate Action&lt;/a&gt;, Tarver &amp;amp; Macpherson, &lt;em&gt;WIREs Climate Change&lt;/em&gt; 10.1002/wcc.70010&lt;/p&gt;
  235. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006000" target="_blank"&gt;Rising Global Elderly Health Inequalities in the Face of Temperature Extremes&lt;/a&gt;, Qi et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006000" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006000&lt;/p&gt;
  236. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.lanplh.2025.06.001" target="_blank"&gt;[Review] The effect of climate mitigation and adaptation policies on health and health inequalities: a systematic review&lt;/a&gt;, Hjelmskog et al., &lt;em&gt;The Lancet Planetary Health&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.lanplh.2025.06.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.lanplh.2025.06.001&lt;/p&gt;
  237. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  238. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104950" target="_blank"&gt;Anthropogenic activities have greatly altered mangroves over the last hundred years&lt;/a&gt;, Zhang et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104950&lt;/p&gt;
  239. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102679" target="_blank"&gt;Community attitudes towards advancing climate justice with climate aid&lt;/a&gt;, Stanley et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102679&lt;/p&gt;
  240. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102680" target="_blank"&gt;Data from 88 countries reveal international predictors of climate activism&lt;/a&gt;, Pearson et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102680&lt;/p&gt;
  241. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  242. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02388-w" target="_blank"&gt;Challenges of institutional adaptation&lt;/a&gt;, , &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02388-w&lt;/p&gt;
  243. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/feart.2025.1650815" target="_blank"&gt;Editorial: Extreme hydro-meteorological events in a changing climate: monitoring, risk assessment, and early warning&lt;/a&gt;, Jiang et al., &lt;em&gt;Frontiers in Earth Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/feart.2025.1650815" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/feart.2025.1650815&lt;/p&gt;
  244. &lt;hr /&gt;
  245. &lt;h3&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  246. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.unccd.int/sites/default/files/2025-07/Drought%20Hot%20Spots%202023-25%20EN.pdf" target="_blank"&gt;Global Drought Hotspots Report Catalogs Severe Suffering, Economic Damage&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;The United Nations Convention to Combat Desertification, The International Drought Resilience Alliance and the US. National Drought Mitigation Center&lt;/strong&gt;&lt;/p&gt;
  247. &lt;blockquote&gt;The authors synthesize information from hundreds of government, scientific and media sources to highlight impacts within the most acute drought hotspots in Africa (Somalia, Ethiopia, Zimbabwe, Zambia, Malawi, Botswana, Namibia), the Mediterranean (Spain, Morocco, T&amp;uuml;rkiye), Latin America (Panama, Amazon Basin), Southeast Asia, and beyond.&lt;/blockquote&gt;
  248. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.oecd.org/en/publications/environment-at-a-glance-indicators_ac4b8b89-en.html" target="_blank"&gt;Environment at a Glance Indicators&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;The Organisation for Economic Co-operation and Development&lt;/strong&gt;&lt;/p&gt;
  249. &lt;blockquote&gt;The authors provide a real-time interactive on-line access to the latest comparable OECD-country data on the environment from the OECD Core Set of Environmental Indicators &amp;ndash; a tool to evaluate environmental performance in countries and to track the course towards sustainable development. The web version allows users to play with the data and graphics, download and share them, and consult and download thematic web-books. These indicators provide key messages on major environmental trends in areas such as climate change, biodiversity, water resources, air quality, circular economy and ocean resources.&lt;/blockquote&gt;
  250. &lt;p&gt;&lt;strong&gt;&lt;a href="https://outside.vermont.gov/agency/anr/climatecouncil/Shared%20Documents/Vermont_Climate_Council/CAP2025_ChapterDrafts/ClimateActionPlan_2025_Final.pdf" target="_blank"&gt;Vermont Climate Action Plan 2025&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;The Vermont Climate Council&lt;/strong&gt;&lt;/p&gt;
  251. &lt;blockquote&gt;In the chapters, the Council presents a significant and broad set of recommendations intended to guide climate action over the next four years. At the heart of our efforts is a commitment not only to fulfill the obligations of the Global Warming Solutions Act, but also to ensure Vermont remains a vibrant, healthy place for current and future generations. Recognizing the breadth of the work that includes more than 250 recommended actions, in this update to the Plan the Council has highlighted 52 priority actions as well as a short list of 10 highest priority actions. Creating a short list of highest priority actions was done in direct response to public input. These highest priority actions intentionally address investments needed to both reduce climate pollution and help Vermont communities become more resilient.&lt;/blockquote&gt;
  252. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.unepfi.org/wordpress/wp-content/uploads/2025/07/Bridging-Climate-and-Credit-Risk.pdf" target="_blank"&gt;Bridging climate and credit risk: Current approaches and emerging trends for climate-related credit risk assessment methodologies&amp;mdash;insights from a global survey&lt;/a&gt;, &lt;/strong&gt;Arshad et al., &lt;strong&gt;United National Environemnt Program-Financial Initiative&lt;/strong&gt;&lt;/p&gt;
  253. &lt;blockquote&gt;The authors offer a detailed analysis of how banks currently assess and manage climate-related credit risks, and actionable insights for risk professionals and senior management to identify strengths and gaps in their current practices. They also offer supervisory authorities a comprehensive view of how climate risks are being incorporated into credit risk management worldwide. They highlight standard methods used across the banking sector to help establish a benchmark for credit risk modelling practices. The goal is to support financial institutions in refining their approaches to climate risk management and aligning them with emerging best practices.&lt;/blockquote&gt;
  254. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2025/06/Global-Trends-in-Climate-Change-Litigation_2025-Snapshot.pdf" target="_blank"&gt;Global trends in climate change litigation: 2025 snapshot&lt;/a&gt;, &lt;/strong&gt;Joana Setzer and Catherine Higham, &lt;strong&gt;The Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science&lt;/strong&gt;&lt;/p&gt;
  255. &lt;blockquote&gt;The authors focus on key trends and evolutions in global climate change litigation from the calendar year 2024, while also highlighting important new developments through to May 2025. They provide a numerical analysis of how many cases have been filed, where and by whom, and a qualitative assessment of trends and themes in the types of cases filed. The primary sources of data are the two Climate Change Litigation databases maintained by the Sabin Center for Climate Change Law.&lt;/blockquote&gt;
  256. &lt;p&gt;&lt;strong&gt;&lt;a href="https://assets.marincounty.gov/marincounty-prod/public/2025-06/StinsonARC_StudyReport_ADA%20508%20Format.pdf" target="_blank"&gt;Stinson Beach Adaptation &amp;amp; Resilience Collaboration. Sea Level Rise Adaptation Study&lt;/a&gt;, &lt;/strong&gt;Environmental Science Associates, &lt;strong&gt;Marin County Community Development Agency&lt;/strong&gt;&lt;/p&gt;
  257. &lt;blockquote&gt;This document serves as a sea level rise adaptation resource and guide for the Stinson Beach community. It does not provide a prescriptive adaptation plan, but rather a framework for identifying, evaluating, and implementing potential sea level rise adaptation projects. Critical next steps include community organization and leadership to fund, plan, design, and implement near term adaptation measures. This study connects adaptation needs at Stinson Beach to relevant ongoing projects being undertaken by other agencies, identifies priority projects and implementation funding sources, and establishes a monitoring approach to track and respond to sea level rise.&lt;/blockquote&gt;
  258. &lt;p&gt;&lt;strong&gt;&lt;a href="https://noclimateresultsfound.com/wp-content/uploads/2025/07/Kairos_NCRFGoogleReport_FINAL.pdf" target="_blank"&gt;Google&amp;rsquo;s Eco-failures. An Environmental Investigation into Alphabet Inc. 2025&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Kairos Fellowship&lt;/strong&gt;&lt;/p&gt;
  259. &lt;blockquote&gt;Google&amp;rsquo;s reported total greenhouse gas emissions increased 1,515% from 2010 to 2024 according to the company&amp;rsquo;s own published data. While Google reports a decrease in its data center emissions, it is doing so by only reporting &amp;ldquo;market based emissions,&amp;rdquo; which use renewable energy purchased elsewhere to obscure real emissions. Google&amp;rsquo;s only emissions that have shown an absolute decrease since 2019 are its scope 1 emissions, which merely account for 0.31% of Google&amp;rsquo;s reported total emissions. Google&amp;rsquo;s aggressive investment in Generative AI and its infrastructure is a major factor behind its climate failings. Google&amp;rsquo;s Scope 2 emissions, which measure the emissions from energy that Google purchases to power its data centers, have increased by 820% since 2010.&lt;/blockquote&gt;
  260. &lt;p&gt;&lt;strong&gt;&lt;a href="https://openknowledge.worldbank.org/entities/publication/9138e73a-038e-4a16-af2a-030336ba1a2f" target="_blank"&gt;Unlivable. How Cities in Europe and Central Asia Can Survive ? and Thrive ? in a Hotter Future&lt;/a&gt;, &lt;/strong&gt;Mukim et al., &lt;strong&gt;The World Bank&lt;/strong&gt;&lt;/p&gt;
  261. &lt;blockquote&gt;Extreme heat is becoming one of the most lethal and underestimated threats to cities in Europe and Central Asia, exacerbating health risks, undermining productivity, and pushing infrastructure to its limits. This report presents new analysis showing that without urgent adaptation, heat-related deaths could double or triple, and economic losses could reach 2.5% of GDP by mid-century. The report identifies cities as both the frontline victims and potential leaders in building resilience, offering a roadmap of practical, high-impact actions. With targeted investments, cities can cool their environments, protect vulnerable populations, and safeguard economic performance in an increasingly hotter world.&lt;/blockquote&gt;
  262. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.isciii.es/documents/d/guest/guia-comunicacion_salud_y_calor_final_junio_2025" target="_blank"&gt;Gu&amp;iacute;a pr&amp;aacute;ctica de comunicaci&amp;oacute;n. Salud y calor. Verano 2025 (Practical Communication Guide. Health and Heat. Summer 2025)&lt;/a&gt;, &lt;/strong&gt;Franco et al, &lt;strong&gt;El Observatorio de Salud y Cambio Clim&amp;aacute;tico del Gobierno de Espa&amp;ntilde;a (The Spanish Government's Health and Climate Change Observatory)&lt;/strong&gt;&lt;/p&gt;
  263. &lt;blockquote&gt;The authors seek to improve public communication about the effects of extreme heat on health and promote self-protection behaviors in the face of climate change.&lt;/blockquote&gt;
  264. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.morganstanley.com/assets/pdfs/MS_Institute_for_Sustainable_Investing_Sustainable_Signals_Corporate_report_2025.pdf" target="_blank"&gt;Sustainable Signals&lt;/a&gt;, &lt;/strong&gt;Institute for Sustainable Investing, &lt;strong&gt;Morgan Stanley&lt;/strong&gt;&lt;/p&gt;
  265. &lt;blockquote&gt;Eighty-eight percent of companies globally view sustainability as a long-term value creation opportunity, up three percentage points from 2024. While high investment needs remain a challenge, two-thirds of companies say their sustainability strategies are meeting or exceeding expectations. More than 80% of companies say they can measure returns on investment for sustainability-related projects. More than half of companies have experienced physical climate-related impacts in the past year and, in response, 80% say they are prepared to increase resilience measures.&lt;/blockquote&gt;
  266. &lt;p&gt;&lt;strong&gt;&lt;a href="https://commercial.allianz.com/content/dam/onemarketing/commercial/commercial/pdfs-risk-advisory/ARC-Emerging-Risk-Trend-Wildfires.pdf" target="_blank"&gt;Wildfires Emerging Risk Trend Talk 4&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Allianz Commercial&lt;/strong&gt;&lt;/p&gt;
  267. &lt;blockquote&gt;The authors highlight wildfire hazard trends and stress the need for companies to be aware of how their assets and operations could either initiate or be affected by a wildfire. The increasing severity and frequency of wildfires, coupled with the growing number of people affected, has driven a significant rise in related losses &amp;ndash; becoming six times more expensive over a decade. Regulatory challenges and litigation related to wildfire liabilities are also on the rise, necessitating robust risk management strategies and well documented wildfire management plans. Technological innovations are enhancing detection and suppression capabilities.&lt;/blockquote&gt;
  268. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ca1-clm.edcdn.com/publications/Latest-science-on-the-1.5%C2%B0C-limit-of-the-Paris-Agreement.pdf?v=1750930158" target="_blank"&gt;Latest science on the 1.5&amp;deg;C limit of the Paris Agreement&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Climate Analytics&lt;/strong&gt;&lt;/p&gt;
  269. &lt;blockquote&gt;The authors provide a comprehensive overview of what the science is saying now about 1.5&amp;deg;C &amp;ndash; what it means, what is at stake, and what actions are needed to limit the risks of overshoot and safeguard a livable future.&lt;/blockquote&gt;
  270. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.rte.ie/documents/news/2025/06/nccra-summary-for-policymakers-published-june-2025.pdf" target="_blank"&gt;National Climate Change Risk Assessment&lt;/a&gt;, &lt;/strong&gt;Environmental Protection Agency, &lt;strong&gt;Government of Ireland&lt;/strong&gt;&lt;/p&gt;
  271. &lt;blockquote&gt;Ireland&amp;rsquo;s first National Climate Change Risk Assessment (NCCRA) provides a comprehensive national overview of how Ireland may be impacted by climate changes. The NCCRA identifies, ranks, and prioritizes national climate change risks; identifies areas where action needs to be prioritized to make Ireland more resilient to the impacts of climate change; supports the prioritization of adaptation-related investments in infrastructure and improve the robustness of policy development in climate-sensitive sectors; provides a consistent evidence base on which to inform the development of the National Adaptation Framework and other adaptation responses at a national level, such as the Central Bank of Ireland&amp;rsquo;s Climate Risk and Sustainable Finance Forum; and provides a national reference for conducting and updating sectoral, local, and other stakeholder adaptation plans in Ireland.&lt;/blockquote&gt;
  272. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ember-energy.org/app/uploads/2025/06/BRICS-now-account-for-more-than-half-of-global-solar-power.pdf" target="_blank"&gt;Solar BRICS: Emerging economies now lead the world&amp;rsquo;s clean energy race&lt;/a&gt;, &lt;/strong&gt;Fulghum et al., &lt;strong&gt;Ember&lt;/strong&gt;&lt;/p&gt;
  273. &lt;blockquote&gt;BRICS countries now generate more than half of the world&amp;rsquo;s solar power. In 2024, the 10 BRICS members &amp;mdash; Brazil, China, India, South Africa, Russia, Egypt, Ethiopia, Indonesia, Iran and the United Arab Emirates &amp;mdash; collectively accounted for 51% of the world&amp;rsquo;s electricity generation from solar, a dramatic rise from just 15% a decade ago. China was the dominant driver of this increase, making up 39% of global solar generation in 2024, up from 12% in 2014. India and Brazil were also major contributors, with India accounting for 6.3% (up from 2.5% in 2014), and Brazil for 3.5% (0.01% in 2014). South Africa and the United Arab Emirates each made up 0.9%, with the remaining BRICS countries together contributing 0.5% of the global total.&lt;/blockquote&gt;
  274. &lt;p&gt;&lt;strong&gt;&lt;a href="https://milieudefensie.nl/actueel/milieudefensie_newcarbonlegislation_july2025.pdf/@@download/file/Milieudefensie_NewCarbonLegislation_July2025.pdf" target="_blank"&gt;Carbon market laws in the global South set to increase corporate control over community forests&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Milieudefensi/Friends of the Earth Netherlands&lt;/strong&gt;&lt;/p&gt;
  275. &lt;blockquote&gt;Companies that were previously involved in deforestation and human rights violations are now at risk of benefiting from new carbon trading laws in countries in the Global South. This is evident from a new report by . According to the authors, these new rules will allow large logging and mining companies to access the profitable carbon market. As a result, these laws endanger the rights of local communities. They are at risk of losing control over their forests, which they have often lived and cared for for generations. The legislative changes are often supported by international organizations such as the World Bank, the UN Development Program and The Nature Conservancy.&lt;/blockquote&gt;
  276. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.mpwatch.org/fossil-fuel-ads" target="_blank"&gt;Fossil Fueol Advertising and Sponsorship&lt;/a&gt;, &lt;/strong&gt;Victoria Harvey, &lt;strong&gt;MP Watch&lt;/strong&gt;&lt;/p&gt;
  277. &lt;blockquote&gt;The author sets out how and why the UK should ban fossil fuel advertising and sponsorship.&lt;/blockquote&gt;
  278. &lt;p&gt;&lt;strong&gt;&lt;a href="https://rmi.org/insight/opportunities-for-industrial-modernization-in-washington/" target="_blank"&gt;Opportunities for Industrial Modernization in Washington. Technical Pathways, Investments, Policy, and Decarbonizing Options for Emissions- Intensive, Trade-Exposed Industries&lt;/a&gt;, &lt;/strong&gt;Azarova et al., &lt;strong&gt;RMI&lt;/strong&gt;&lt;/p&gt;
  279. &lt;blockquote&gt;Washington&amp;rsquo;s Cap-and-Invest program is a popular and powerful tool for meeting the state&amp;rsquo;s greenhouse gas targets and funding investments that support Washington&amp;rsquo;s businesses and residents. But how the program considers industrial emissions beyond 2034 will have to be revisited by Washington&amp;rsquo;s legislative and regulatory bodies in order for the program to function efficiently and equitably in the long term. The authors performed a technical pathways analysis for each of Washington&amp;rsquo;s &amp;ldquo;Emission-Intensive, Trade-Exposed&amp;rdquo; (EITE) industrial sectors, which produce paper, food, beverages, steel, aluminum, glass, cement, building materials, airplanes, semiconductors, fertilizer, and transportation fuels. They found that existing and near-term technologies could reduce emissions from EITEs 39% by the end of 2034, largely through implementing energy and material efficiency measures and electrifying applications.&lt;/blockquote&gt;
  280. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.epaoig.gov/sites/default/files/reports/2025-06/_epaoig_20250630-25-n-0040_cert.pdf" target="_blank"&gt;Evaluation of Risks to Federal Facility Superfund Site Remedies from Sea-Level Rise or Increased Storm Surge&lt;/a&gt;, &lt;/strong&gt;Office of Inspector General, &lt;strong&gt;Environmental Protection Agency&lt;/strong&gt;&lt;/p&gt;
  281. &lt;blockquote&gt;The authors determined that 49 of the 157 federal facility Superfund sites on the National Priorities List are potentially at risk from sea-level rise or increased storm surge. Sea-level rise and increased storm surge at federal facility Superfund sites are of concern to the EPA because of the federal government&amp;rsquo;s role in overseeing cleanup at these sites and also because many of these sites are located near population centers and important ecological areas. Federal facility Superfund sites may be at risk if the cleanup remedies that have been implemented at those sites to keep people and the environment safe are susceptible to sea-level rise or increased storm surge.&lt;/blockquote&gt;
  282. &lt;p&gt;&lt;strong&gt;&lt;a href="https://futureclimatesmartag.org/wp-content/uploads/2025/06/Future-Climate-Smart-Ag_230625.pdf" target="_blank"&gt;Unlocking the Future of Climate-Smart Agriculture: Integrating Biochar Carbon Removal and Enhanced Rock Weathering into Agricultural Value Chains&lt;/a&gt;, &lt;/strong&gt;Mills et al., &lt;strong&gt;Stripe Climate and Carbon Gap&lt;/strong&gt;&lt;/p&gt;
  283. &lt;blockquote&gt;The authors provide agribusinesses with a scalable, science-backed pathway to Scope 3 decarbonization, supply chain resilience, and farmer productivity, when tailored to local conditions and deployed with robust safeguards.&lt;/blockquote&gt;
  284. &lt;p&gt;&lt;strong&gt;&lt;a href="https://zenodo.org/records/15829357" target="_blank"&gt;Heavy rain in July 2025 Texas floods locally intensified by human-driven climate change&lt;/a&gt;, &lt;/strong&gt;Faranda et al., &lt;strong&gt;Zenodo&lt;/strong&gt;&lt;/p&gt;
  285. &lt;blockquote&gt;Meteorological conditions similar to that causing floods in Texas are up to 2 mm/day (up to 7%) wetter in the present than they have been in the past. This event was associated with very exceptional meteorological conditions. Natural variability alone cannot explain the increase in precipitation associated with Texas floods.&lt;/blockquote&gt;
  286. &lt;p&gt;&lt;strong&gt;&lt;a href="https://nsarchive.gwu.edu/briefing-book/climate-change-transparency-project/2025-06-30/spying-climate-inside-intelligence" target="_blank"&gt;Spying on Climate: Inside the Intelligence Community&amp;rsquo;s Environmental Legacy&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;National Security Archive&lt;/strong&gt;&lt;/p&gt;
  287. &lt;blockquote&gt;For decades, the U.S. Intelligence Community (IC) has viewed climate change as a serious national security threat that will create &amp;ldquo;new and compounded stresses on people and societies around the world,&amp;rdquo; according to one of the records featured in a repository of U.S. intelligence reports published online today by the National Security Archive. From early evaluations of Russia&amp;rsquo;s post-Soviet environmental challenges in the 1990s to present-day threat assessments on human and environmental security, the 45-document collection follows the evolution of the IC&amp;rsquo;s environmental monitoring and its increasingly dire warnings about the security threats posed by climate change.&lt;/blockquote&gt;
  288. &lt;p&gt;&lt;strong&gt;&lt;a href="https://climatecommunication.yale.edu/wp-content/uploads/2025/07/climate-change-american-mind-beliefs-attitudes-spring-2025.pdf" target="_blank"&gt;Climate Change in the American Mind: Beliefs &amp;amp; Attitudes, Spring 2025&lt;/a&gt;, &lt;/strong&gt;Leiserowitz et al., &lt;strong&gt;Yale University and George Mason University&lt;/strong&gt;&lt;/p&gt;
  289. &lt;blockquote&gt;Americans who think global warming is happening outnumber those who think it is not by a ratio of more than 4 to 1 (69% versus 15%). Compared with Fall 2024, Americans&amp;rsquo; level of worry is significantly higher for wildfires (+12 percentage points), rising sea levels (+13 points), and hurricanes (+8 points). Additionally, half or more Americans are at least &amp;ldquo;a little worried&amp;rdquo; their local area might be harmed by air pollution (78%), water pollution (77%), diseases carried by mosquitoes and ticks (76%), extreme heat (73%), droughts (73%), agricultural pests and diseases (71%), electricity power outages (71%), wildfires (67%), water shortages (67%), flooding (61%), tornados (60%), rising sea levels (55%), hurricanes (50%), and reduced snowpack (49%). Nearly two-thirds of Americans think that global warming is affecting the weather in the U.S. (64%), and seven in ten or more think it is affecting extreme heat (75%), wildfires (72%), droughts (72%), and flooding (71%). Only 18% of Americans say they hear about global warming in the media &amp;ldquo;at least once a week,&amp;rdquo; which is the lowest percentage since the question was added to the survey in 2015.&lt;/blockquote&gt;
  290. &lt;p&gt;&lt;strong&gt;&lt;a href="https://globalenergymonitor.org/wp-content/uploads/2025/06/GEM-China-wind-solar-brief-July-2025.pdf" target="_blank"&gt;China&amp;rsquo;s solar and onshore wind capacity reaches new heights, while offshore wind shows promise&lt;/a&gt;, &lt;/strong&gt;Mengqi Zhang, &lt;strong&gt;Global Energy Monitor&lt;/strong&gt;&lt;/p&gt;
  291. &lt;blockquote&gt;China is advancing a nearly 1.3 terawatt (TW) pipeline of utility-scale solar and wind capacity, leading the global effort in renewable energy buildout. This is in addition to China&amp;rsquo;s already operating 1.4 TW of solar and wind capacity, nearly 26% of which (357 gigawatts (GW)) came online in 2024. Though only a small portion of China&amp;rsquo;s overall renewable capacity, China&amp;rsquo;s offshore wind fleet contributes over 50% of the overall offshore wind capacity in construction worldwide. However, China is not immune to the challenges of this new market, as development of offshore wind in China has slowed in recent years. In order for this technology to advance, China has an opportunity to move from its provincial development approach to one that provides stable and market-specific national policies.&lt;/blockquote&gt;
  292. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.pwc.com/gx/en/issues/esg/pwc-semi-con-report.pdf" target="_blank"&gt;Climate change threatens the world&amp;rsquo;s most critical technology&lt;/a&gt;, &lt;/strong&gt;Renate de Lange and Glenn Burm, &lt;strong&gt;PwC&lt;/strong&gt;&lt;/p&gt;
  293. &lt;blockquote&gt;Today's global supply chains rely on semiconductors. They are embedded in everything from computers and phones to cars and washing machines. It is hard to think of a company that does not rely on semiconductors in some way. Semiconductors are also needed to seize the potential of AI, for quantum computing, and to transition to renewable energy. But, the copper needed to make semiconductors is at risk from drought caused by climate change. Without adapting to climate change, within 10 years a third of all semiconductor production will be reliant on copper at risk from climate disruption. By 2050, it could be nearly double that. That is a lot - and it shows why action is needed now.&lt;/blockquote&gt;
  294. &lt;p&gt;&lt;strong&gt;&lt;a href="https://static1.squarespace.com/static/61dc554a6c6b0048e8e90538/t/686c8053d6ca854834a13004/1751941209586/The+2035+Initiative+%7C+Unlocking+Next-Generation+Geothermal+Heat+for+Industry.pdf" target="_blank"&gt;Unlocking Next-Generation Geothermal Heat for Industry&lt;/a&gt;, &lt;/strong&gt;Mariano et al., &lt;strong&gt;The 2035 Initiative, University of California, Santa Barbara&lt;/strong&gt;&lt;/p&gt;
  295. &lt;blockquote&gt;Industrial facilities account for 23% of all U.S. greenhouse gas emissions, most of which come from burning fossil fuels to generate heat. Yet, there is an abundant, zero-emissions source of heat right beneath our feet: geothermal energy. This report is a primer on how next-generation geothermal technologies can provide clean, reliable heat for the industrial sector. The authors discuss recent advances in geothermal technologies, explore industrial processes that are good candidates for geothermal and why, provide case studies of existing geothermal industrial heat sites, and propose strategies to scale geothermal heat for industry.&lt;/blockquote&gt;
  296. &lt;hr /&gt;
  297. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  298. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  299. &lt;h3&gt;Suggestions&lt;/h3&gt;
  300. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  301. &lt;h3&gt;Previous edition&lt;/h3&gt;
  302. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_27.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  303. <link>https://skepticalscience.com/new_research_2025_28.html</link>
  304. <guid>https://skepticalscience.com/new_research_2025_28.html</guid>
  305. <pubDate>Thu, 10 Jul 2025 14:16:36 EST</pubDate>
  306. </item>  <item>
  307. <title>Trump just gave a huge gift to China’s economy</title>
  308. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/07/trump-just-gave-a-huge-gift-to-chinas-economy/"&gt;re-post from Yale Climate Connections&lt;/a&gt;&lt;/p&gt;
  309. &lt;p class="has-drop-cap"&gt;On the Fourth of July &amp;ndash; America&amp;rsquo;s 249th birthday &amp;ndash; President Donald Trump signed into law a bill that could very well cede the country&amp;rsquo;s position as the leading global economic superpower to China.&lt;/p&gt;
  310. &lt;p&gt;As the nonpartisan energy think tank RMI has&amp;nbsp;&lt;a href="https://rmi.org/insight/the-cleantech-revolution/"&gt;argued&lt;/a&gt;, the world is in the midst of a transition from the Information Age, which the United States led by dominating the development of new software and information technologies, to the Renewable Age, in which the development and deployment of electric and renewable energy technologies will drive the global economy.&lt;/p&gt;
  311. &lt;p&gt;This transition is dominated by insurgent clean technologies, such as solar, wind, electric vehicles, and batteries, whose prices are falling rapidly and whose growth is exponential.&lt;/p&gt;
  312. &lt;p&gt;&lt;img class="perfmatters-lazy entered pmloaded" title="" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/07/null-3.png?w=2000&amp;amp;ssl=1" alt="A chart illustrating six waves of innovations: Iron/Waterpower/Mechanization, Steam engines/steam power/rail, Electricity/steel/heavy engineering, mass-produced automobiles/cheap oil/petrochem, information technologies/telecomms/software, and renewable energy/electrification/resource efficiency. " width="550" data-recalc-dims="1" data-src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/07/null-3.png?w=2000&amp;amp;ssl=1" data-ll-status="loaded" /&gt;&lt;em&gt;Transitions to new global economic ages and the countries that led and are poised to lead them. (Image credit:&amp;nbsp;&lt;a href="https://rmi.org/insight/the-cleantech-revolution/"&gt;RMI&lt;/a&gt;&amp;nbsp;/ used with permission)&lt;/em&gt;&lt;/p&gt;
  313. &lt;p&gt;Chinese manufacturers have invested heavily in those technologies. To help the U.S. economy better compete in the clean tech sector, Democrats passed the Inflation Reduction Act, or IRA, in August 2022. That law included incentives to spur domestic manufacturing of these key clean energy technologies.&lt;/p&gt;
  314. &lt;p&gt;And it was working.&lt;/p&gt;
  315. &lt;p&gt;The U.S. experienced a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2024/05/the-choice-could-not-be-more-stark-how-trump-and-biden-compare-on-climate-change/"&gt;clean energy manufacturing boom&lt;/a&gt;&amp;nbsp;over the ensuing two years. But Republicans&amp;rsquo; new budget reconciliation law, called the &amp;ldquo;One, Big Beautiful Bill Act,&amp;rdquo; guts those incentives and pulls the rug out from under nascent domestic clean energy industries.&lt;/p&gt;
  316. &lt;p&gt;On America&amp;rsquo;s birthday, President Donald Trump could not have given the Chinese economy a more generous gift.&lt;/p&gt;
  317. &lt;!--more--&gt;
  318. &lt;h4 class="wp-block-heading"&gt;Chinese manufacturers are dominating the EV market&lt;/h4&gt;
  319. &lt;p&gt;The United States has the world&amp;rsquo;s second-largest car market, but EVs account for less than 10% of the country&amp;rsquo;s new auto sales. That can give U.S. residents the mistaken impression that EVs are unpopular.&lt;/p&gt;
  320. &lt;p&gt;In fact, more than one in five new passenger cars sold around the world in 2024 were electric. BloombergNEF, a market research firm, forecasts that this share will rise to about&amp;nbsp;&lt;a href="https://about.bnef.com/insights/clean-transport/electric-vehicle-outlook/"&gt;one in four new cars this year&lt;/a&gt;. That could rise to&amp;nbsp;&lt;a href="https://www.iea.org/reports/global-ev-outlook-2025/executive-summary"&gt;four out of every 10 by 2030&lt;/a&gt;, according to the International Energy Agency. In other words, the global auto market is increasingly electric.&lt;/p&gt;
  321. &lt;p&gt;China has the largest domestic auto market in the world, and half the new vehicles sold in the country today are EVs. And Chinese automakers are&amp;nbsp;&lt;a href="https://elements.visualcapitalist.com/visualizing-chinese-ev-market-share-overseas/"&gt;dominating the global EV market&lt;/a&gt;, offering a wide array of affordable and advanced cars. The electric car giant BYD&amp;rsquo;s cheapest model, the Seagull, is priced at&amp;nbsp;&lt;a href="https://www.reuters.com/business/autos-transportation/chinas-byd-lowers-starting-price-its-lowest-priced-ev-model-seagull-by-54-2024-03-06/"&gt;less than $10,000&lt;/a&gt;, dramatically undercutting U.S.-based companies like Tesla.&lt;/p&gt;
  322. &lt;p&gt;Ford CEO Jim Farley&amp;nbsp;&lt;a href="https://finance.yahoo.com/news/fords-ceo-says-chinas-ev-054800452.html"&gt;recently described&lt;/a&gt;&amp;nbsp;Chinese EVs as &amp;ldquo;far superior to what I see in the West.&amp;rdquo; He added that if his company loses the EV market to Chinese automakers, &amp;ldquo;We do not have a future Ford.&amp;rdquo;&lt;/p&gt;
  323. &lt;p&gt;Former President Joe Biden placed a 100% tariff on Chinese EVs to protect the U.S. domestic industry. And U.S. demand for EVs was expected to grow rapidly in the coming years as the result of federal tax credits for American-made electric cars and U.S. tailpipe pollution regulations.&lt;/p&gt;
  324. &lt;p&gt;But Republicans&amp;rsquo; new budget law will terminate the former on September 30, and the Trump administration has gutted the latter.&lt;/p&gt;
  325. &lt;p&gt;As a result, energy systems modelers at&amp;nbsp;&lt;a href="https://zenodo.org/records/15490326"&gt;Princeton&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://www.axios.com/2025/06/18/ev-sales-seen-to-plummet"&gt;BloombergNEF&lt;/a&gt;&amp;nbsp;project that only about half as many U.S. residents will buy EVs over the next five years as previously expected. By 2030, only about 27% of new car sales in the U.S. are now expected to be electric, compared to 80% in China.&lt;/p&gt;
  326. &lt;h4 class="wp-block-heading"&gt;Chinese firms are winning the solar market, too&lt;/h4&gt;
  327. &lt;p&gt;The story is similar for solar panels. Solar energy is cheap, fast to deploy, and produces virtually no pollution during its operation. It accounted for about&amp;nbsp;&lt;a href="https://www.canarymedia.com/articles/clean-energy/renewables-global-power-construction-2024"&gt;70% of all new global power&lt;/a&gt;&amp;nbsp;generation capacity added in 2024, including&amp;nbsp;&lt;a href="https://www.eia.gov/todayinenergy/detail.php?id=64126"&gt;nearly 60% in the United States&lt;/a&gt;.&lt;/p&gt;
  328. &lt;p&gt;&lt;a href="https://www.iea.org/reports/solar-pv-global-supply-chains/executive-summary"&gt;Chinese firms control over 80%&lt;/a&gt;&amp;nbsp;of the global solar panel manufacturing supply chain, according to the International Energy Agency.&lt;/p&gt;
  329. &lt;p&gt;The IRA aimed to bolster the U.S. solar manufacturing industry, in part through clean electricity tax credits. But as a result of the Republican budget law&amp;rsquo;s rapid phaseout of those incentives, the U.S. will deploy about 40% less clean energy over the next decade, according to&amp;nbsp;&lt;a href="https://zenodo.org/records/15801701"&gt;modeling by experts at Princeton&lt;/a&gt;. Companies&amp;nbsp;&lt;a href="https://www.nytimes.com/2025/07/02/business/energy-environment/trump-bill-solar-panels-china.html"&gt;like U.S. solar manufacturer Talon PV&lt;/a&gt;&amp;nbsp;have already begun pausing or canceling U.S. projects in anticipation of the clean energy tax credit repeals, as well as other uncertainties like Trump&amp;rsquo;s unpredictable tariffs.&lt;/p&gt;
  330. &lt;p&gt;When the IRA became law, there was a surge in planned battery, EV, and solar manufacturing investments, according to&amp;nbsp;&lt;a href="https://www.the-big-green-machine.com/"&gt;a project to track clean energy manufacturing announcements&lt;/a&gt;&amp;nbsp;by a team at Wellesley College. That was followed by a steep decline since last November&amp;rsquo;s elections and associated threats to clean energy incentives.&lt;/p&gt;
  331. &lt;p&gt;Energy Innovation, a Yale Climate Connections content-sharing partner,&amp;nbsp;&lt;a href="https://energyinnovation.org/report/updated-economic-impacts-of-u-s-senate-passed-one-big-beautiful-bill-act-energy-provisions/"&gt;anticipates&lt;/a&gt;&amp;nbsp;that the repealed clean energy tax credits will cost 760,000 jobs by 2030 and reduce the country&amp;rsquo;s gross domestic product by nearly a trillion dollars.&lt;/p&gt;
  332. &lt;p&gt;&lt;img class="perfmatters-lazy entered pmloaded" title="" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/07/null-4.png?w=2000&amp;amp;ssl=1" alt="A chart shows announced capital investments by quarter for batteries, EVs, solar, and wind. The announcements peaked between 2022 and 2024. " width="550" data-recalc-dims="1" data-src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/07/null-4.png?w=2000&amp;amp;ssl=1" data-ll-status="loaded" /&gt;&lt;em&gt;U.S. clean energy manufacturing project investments announcements by quarter. (Image credit:&amp;nbsp;&lt;a href="https://www.the-big-green-machine.com/"&gt;Wellesley College&amp;rsquo;s The Big Green Machine database&lt;/a&gt;&amp;nbsp;/ used with permission)&lt;/em&gt;&lt;/p&gt;
  333. &lt;h4 class="wp-block-heading"&gt;The budget reconciliation law gives the Chinese economy other advantages&lt;/h4&gt;
  334. &lt;p&gt;The big budget law will likely cause&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/06/10-ways-that-trumps-tax-bill-would-undermine-his-energy-promises/"&gt;a tremendous number of other negative impacts&lt;/a&gt;. Because clean energy deployment will slow down at a time when power demand is rising rapidly and&amp;nbsp;&lt;a href="https://www.spglobal.com/commodity-insights/en/news-research/latest-news/electric-power/052025-us-gas-fired-turbine-wait-times-as-much-as-seven-years-costs-up-sharply"&gt;natural gas turbines are facing years of delivery backlogs&lt;/a&gt;, experts warn it will create energy scarcity. American companies will likely be left scrambling to find enough supply to meet rising power demand, which will lead to higher electricity bills and put U.S. artificial intelligence developers at a disadvantage in&amp;nbsp;&lt;a href="https://www.wsj.com/tech/ai/artificial-intelligence-us-vs-china-03372176?mod=hp_lead_pos1"&gt;their high-stakes race against their Chinese competitors&lt;/a&gt;.&lt;/p&gt;
  335. &lt;p&gt;Increasing the country&amp;rsquo;s reliance on fossil fuels will also result in more air pollution and sicker U.S. residents, coinciding with&amp;nbsp;&lt;a href="https://www.washingtonpost.com/politics/2025/07/01/least-17-million-americans-would-lose-insurance-under-trump-plan/"&gt;at least 17 million people losing their health coverage&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://abcnews.go.com/US/wireStory/rural-hospitals-brace-financial-hits-closure-republicans-1-123474194"&gt;more than 300 hospitals facing the risk of closure&lt;/a&gt;, the result of other provisions in the GOP&amp;rsquo;s new law.&lt;/p&gt;
  336. &lt;h4 class="wp-block-heading"&gt;The Senate made the bill 25% less damaging to the climate&lt;/h4&gt;
  337. &lt;p&gt;As harmful as the final law is, it was very nearly considerably worse for the climate. The version initially passed by the House would have effectively immediately gutted the clean electricity tax credits. It was so damaging that&amp;nbsp;&lt;a href="https://fitzpatrick.house.gov/_cache/files/7/6/7688bef7-9bef-4776-8b1d-3401b044be09/E6CBE719E8EBFFEEED465FAE37FCDDA23DAF35A819E54071E82DB773A784127C.cetc-letter-to-senate.pdf"&gt;13 House Republicans pleaded with their Senate colleagues to fix the bill&lt;/a&gt;&amp;nbsp;they had all just voted for.&lt;/p&gt;
  338. &lt;p&gt;The Senate Finance Committee did indeed make some improvements, softening the requirements for clean electricity to qualify for the tax credits and significantly extending their timeline for sources other than solar and wind.&lt;/p&gt;
  339. &lt;p&gt;Republican Senators Lisa Murkowski (Alaska), Joni Ernst (Iowa), Chuck Grassley (Iowa), and John Curtis (Utah)&amp;nbsp;&lt;a href="https://www.eenews.net/articles/last-gasp-megabill-talks-eased-assault-on-renewables/"&gt;reportedly negotiated&lt;/a&gt;&amp;nbsp;a last-minute amendment to the bill that added a one-year runway for new solar and wind projects to begin construction and still qualify for the full clean electricity tax credits.&lt;/p&gt;
  340. &lt;p&gt;&lt;a href="https://zenodo.org/records/15801701"&gt;The Princeton modelers&lt;/a&gt;&amp;nbsp;estimated that compared to the status quo, the House version of the bill would have added about 2.7 billion tons of climate pollution to the atmosphere while increasing average U.S. household energy bills by more than $2,000 over the coming decade. The final bill passed by the Senate and signed into law by Trump is projected to instead add 2.1 billion tons of climate pollution and cost U.S. households a bit under $1,700 in higher energy bills over the next decade.&lt;/p&gt;
  341. &lt;p&gt;That&amp;rsquo;s about 25% less costly than the House version &amp;ndash; both to pocketbooks and to the climate.&lt;/p&gt;
  342. &lt;div id="id_126912" class="newspack-popup-container newspack-popup newspack-inline-popup newspack-lightbox-no-border" data-segments="14345" data-frequency="0,0,0,month"&gt;
  343. &lt;div class="wp-block-group is-style-border"&gt;
  344. &lt;div class="wp-block-group__inner-container is-layout-constrained wp-block-group-is-layout-constrained"&gt;
  345. &lt;p&gt;But it&amp;rsquo;s considerably worse than the status quo of Biden-era policies and regulations, in which the accelerated deployment of cheap solar and wind energy was expected to reduce household energy bills by about $600 over the next decade.&lt;/p&gt;
  346. &lt;/div&gt;
  347. &lt;/div&gt;
  348. &lt;/div&gt;
  349. &lt;p&gt;And on its new course, the U.S. will exceed its 2030 Paris commitment&amp;nbsp;&lt;a href="https://www.carbonbrief.org/chart-trumps-big-beautiful-bill-blows-us-emissions-goal-by-7bn-tonnes/"&gt;by 7 billion tons&lt;/a&gt;&amp;nbsp;of climate pollution, according to an analysis by Carbon Brief.&lt;/p&gt;
  350. &lt;p&gt;&lt;img class="perfmatters-lazy entered pmloaded" title="" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/07/null.jpeg?w=2000&amp;amp;ssl=1" alt="A chart showing the expected rise in household energy expenditures by 2035" width="550" data-recalc-dims="1" data-src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/07/null.jpeg?w=2000&amp;amp;ssl=1" data-ll-status="loaded" /&gt;&lt;em&gt;Average U.S. household annual energy costs under continued Biden administration policies (green), the proposed House budget bill (blue), and the Senate bill that Trump signed into law (gray). (Image credit:&amp;nbsp;&lt;a href="https://zenodo.org/records/15801701"&gt;Princeton REPEAT&lt;/a&gt;&amp;nbsp;/ CC BY 4.0)&lt;/em&gt;&lt;/p&gt;
  351. &lt;p&gt;Given&amp;nbsp;&lt;a href="https://thehill.com/homenews/senate/5379224-senate-passes-trump-gop-megabill/"&gt;the slimmest of margins&lt;/a&gt;&amp;nbsp;by which the bill passed the Senate, any Republican senator could have sent the bill back to the drawing board by simply voting no. Sen. Murkowski instead chose to cast the deciding vote after extracting a variety of concessions for her state and clean energy incentives, before&amp;nbsp;&lt;a href="https://x.com/lisamurkowski/status/1940124362625175934"&gt;pleading with the House&lt;/a&gt;&amp;nbsp;to further fix the bill whose passage she had ensured.&lt;/p&gt;
  352. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;A bill everyone dislikes, except Chinese manufacturers&lt;/span&gt;&lt;/h4&gt;
  353. &lt;p&gt;Because of the sprawling nature of the big budget law, it has something for just about everyone to dislike. And indeed, polls have consistently found that&amp;nbsp;&lt;a href="https://www.pewresearch.org/short-reads/2025/06/17/how-americans-view-the-gops-budget-and-tax-bill/"&gt;Americans oppose the bill by a nearly two-to-one margin&lt;/a&gt;.&lt;/p&gt;
  354. &lt;p&gt;Whether it be higher energy costs, lost domestic manufacturing, jobs, and economic growth, the ballooning of the national debt, energy scarcity, drastic cuts to the social safety net,&amp;nbsp;&lt;a href="https://www.cbo.gov/publication/61469?sfmc_id=6532a27325b3640666bbdd30"&gt;exacerbated income inequality&lt;/a&gt;, or an extra 2 billion tons of climate pollution, there may only be one group that loves the big budget bill. As Energy Innovation&amp;rsquo;s Senior Director of Modeling and Analysis Robbie Orvis&amp;nbsp;&lt;a href="https://bsky.app/profile/robbieorvis.bsky.social/post/3lt2saempfs27"&gt;put it&lt;/a&gt;:&lt;/p&gt;
  355. &lt;p&gt;&amp;ldquo;To sum it up, this bill is a GIFT to China, which must be smiling right now watching what&amp;rsquo;s happening. We are gifting them the industries of the future, making the U.S. an eminently harder place to invest in, and decreasing our energy security.&amp;rdquo;&lt;/p&gt;</description>
  356. <link>https://skepticalscience.com/obbb-china-gift.html</link>
  357. <guid>https://skepticalscience.com/obbb-china-gift.html</guid>
  358. <pubDate>Wed, 9 Jul 2025 14:46:21 EST</pubDate>
  359. </item>  <item>
  360. <title>The great acceleration debate</title>
  361. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://www.theclimatebrink.com/p/the-great-acceleration-debate"&gt;re-post from the Climate Brink&lt;/a&gt;&lt;/p&gt;
  362. &lt;p&gt;The publication of an article titled &amp;ldquo;The World Is Warming Up. And It&amp;rsquo;s Happening Faster&amp;rdquo; by the New York Times kicked off a pretty heated debate among climate scientists over the evidence of acceleration and how strong a claim can be made based on the evidence today.&lt;/p&gt;
  363. &lt;p&gt;The NYT included the illustrative figure below, which draws simple ordinary least squares trends over three time periods: 1880-1970, 1970-2010, and 2010-present (May 2025). It appears to show a notable acceleration over the past 15 years compared to the rate of warming that characterized the post-1970 &amp;ldquo;modern warm period&amp;rdquo; when climate change began to notably take off alongside human emissions of CO2 and other greenhouse gases.&lt;/p&gt;
  364. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!c8xG!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fd00c21f3-895b-45f9-950a-ed1f8f5078f1_1448x1152.png" alt="" width="550" height="438" /&gt;&lt;/p&gt;
  365. &lt;p&gt;However, 15 years is a relatively short period of time; while the timeseries currently ends just after a weak La Nina event, there are concerns that the strong El Nino of 2023/2024 could bias the trend upward. More broadly, there is a lingering spectre of the hiatus haunting these discussions, when the climate science community arguably over-indexed on short term variability to make too much of an apparent slowdown in global warming between 1998 and 2012.&lt;/p&gt;
  366. &lt;p&gt;So, is there real evidence of an acceleration, or are we failing to learn from the past and overhyping short-term variability?&lt;/p&gt;
  367. &lt;p&gt;As I discuss below, it is my view that this is structurally different from the debate during the hiatus years; not because the evidence is much stronger in the surface temperature record alone (though arguably it is), but because so many other lines of evidence &amp;ndash; climate models, ocean heat content, and changes in earth energy imbalance &amp;ndash; also suggest an acceleration.&lt;/p&gt;
  368. &lt;!--more--&gt;
  369. &lt;h3&gt;Evidence from surface temperature observations&lt;/h3&gt;
  370. &lt;p&gt;Let's start by looking at global surface temperature records, and if they suggest any systematic change in warming rate in recent years from the ~0.19C per decade that characterized the post-1970 period.&lt;/p&gt;
  371. &lt;p&gt;The figure below shows global mean surface temperature records from Berkeley Earth, as well as the rate of warming between 1970 and 2010 extended forward through present. It also includes the two-sigma range of observations around this trend. This gives us a good sense of where we would expect temperatures to fall if global warming continued unchanged at its post-1970 rate.&lt;/p&gt;
  372. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!HL9b!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fa8d80f84-928f-425c-9f95-747bff166f5b_2160x1152.png" alt="" width="550" height="294" /&gt;&lt;/p&gt;
  373. &lt;p&gt;&lt;em&gt;Global annual temperature anomalies from Berkeley Earth, with the 1970-2009 trend and two-sigma uncertainties extended through present.&lt;/em&gt;&lt;/p&gt;
  374. &lt;p&gt;Here we see that recent years have been notably above the long-term trend; of the ten years since 2015, only two of them (2021 and 2022) were below the long-term trend . Three years of the past decade &amp;ndash; 2016, 2023 and 2024 &amp;ndash; were outside the 95th percentile range.&lt;/p&gt;
  375. &lt;p&gt;Looking at annual anomalies can be illustrative, but more powerful statistical tests of changes and trends are available to use. One of these &amp;ndash; piecewise-linear fits &amp;ndash; is used in a new preprint by Stefan Rahmstorf and Grant Foster.&lt;/p&gt;
  376. &lt;p&gt;The figure below uses the paper&amp;rsquo;s approach on the Berkeley Earth data (via Grant&amp;rsquo;s blog Open Mind), and shows a notable increase in the rate of warming post-2010 compared to the 1970-2010 warming rate.&lt;/p&gt;
  377. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!v8JH!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F06b1bf4a-f0e4-48a8-81af-8ef83cfbf604_829x552.png" alt="" width="550" height="366" /&gt;&lt;/p&gt;
  378. &lt;p&gt;&lt;em&gt;Trends in Berkeley Earth temperatures using both lowess-smoothing and piecewise-linear fits to the data. Figure from Open Mind.&lt;/em&gt;&lt;/p&gt;
  379. &lt;p&gt;While this increase in the rate of warming is significant at the 90% confidence level, it falls a bit short of the 95% confidence level usually required to claim statistical significance. That being said, a 90% chance of something happening is still &amp;ldquo;very likely&amp;rdquo; in the language conventions of the IPCC.&lt;/p&gt;
  380. &lt;p&gt;Rahmstorf and Foster do find much stronger (&amp;gt;95%) statistical significance of trend changes when they remove the effects of short-term variability &amp;ndash; El Nino and La Nina events, volcanic eruptions, and changes in the solar cycle. The change in trends on their adjusted data is strongly significant. Its worth noting that this approach had the opposite effect during the hiatus years: removing natural variability made the apparent hiatus largely evaporate, while it strengthens evidence of acceleration.&lt;/p&gt;
  381. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!y6de!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fcec8ce32-66f9-4b06-8a09-30f4f9e774c4_829x552.png" alt="" width="550" height="366" /&gt;&lt;/p&gt;
  382. &lt;p&gt;Trends in Berkeley Earth temperatures with natural variability removed following Foster and Rahmstorf 2011, using both lowess-smoothing and piecewise-linear fits to the data. Figure from Open Mind.&lt;/p&gt;
  383. &lt;p&gt;However, removing the effects of natural variability is a bit more of an art than a science. There are a number of choice in how to assess the magnitude of various factors, account for lags, and other issues that could impact the results.&lt;/p&gt;
  384. &lt;p&gt;Another recent paper in Nature Communications Earth &amp;amp; Environment came to a different result. They used changepoint models to try and detect if there was an increase in trends in recent years. While they found strong evidence of a break in trends around 1970, they failed to detect anything more recent in the data.&lt;/p&gt;
  385. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!fMye!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Feb1138ca-7cb3-4723-9712-8e21b7d6d4ab_1438x524.png" alt="" width="550" height="200" /&gt;&lt;/p&gt;
  386. &lt;p&gt;However, their approach would require an increase in the trend of 85% after 2010 in order to be detectable, and our expectation of the change in the rate of warming is well below that. They also did not include 2024 global temperatures, which may have changed the results a bit.&lt;/p&gt;
  387. &lt;p&gt;My view is that surface temperature observations suggest an acceleration over the past two decades relative to the rate of warming experienced since 1970, but are not by themselves fully definitive. Surface temperatures are also an imperfect proxy for the actual warming of the Earth system, as they represent a relatively small sliver (&amp;lt;5%) of the total amount of heat trapped by greenhouse gases and are subject to significant year-to-year natural variability from El Nino / La Nina cycles and other events.&lt;/p&gt;
  388. &lt;p&gt;Thankfully, however, we have more than just surface temperatures to help us answer this question. Both climate models (including those updated with the latest radiative forcing estimates) and observations of other parts of the climate system like Earth&amp;rsquo;s energy imbalance (EEI) and ocean heat content can help us better understand what is happening here.&lt;/p&gt;
  389. &lt;h3&gt;Evidence and expectations from modeling&lt;/h3&gt;
  390. &lt;p&gt;Climate models broadly expect a more rapid rate of warming than has characterized the post-1970 period. While future warming rates depend in large part on the choice of future emissions scenario, we see a faster rate of warming in current-policy-type scenarios like SSP2-4.5, as shown in the figure below (you can find more details in my Carbon Brief article on the topic last year):&lt;/p&gt;
  391. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!xLNV!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fa0045ffd-6548-4e98-ba7b-1412fb3bd151_1892x1372.png" alt="" width="550" height="399" /&gt;&lt;/p&gt;
  392. &lt;p&gt;&lt;em&gt;Comparison of climate model projects (1970-2050) to observations (1970-2024), with the observational trend (red line) extended forward. Figure updated from one originally featured at Carbon Brief.&lt;/em&gt;&lt;/p&gt;
  393. &lt;p&gt;Here we see that the IPCC&amp;rsquo;s assessed warming projections (which give less weight to &amp;ldquo;hot models&amp;rdquo; in CMIP6) show more warming (~0.24C/decade, with a range of 0.17C to 0.34C) than observations (~0.2C per decade from 1970-2024). The same is true for the full CMIP6 ensemble (~0.29C/decade, with a range of 0.2C to 0.4C) as well as James Hansen&amp;rsquo;s projections (0.32C/decade, with a range of 0.27C to 0.36C).&lt;/p&gt;
  394. &lt;p&gt;This means that under a current policy scenario, we would largely expect a higher rate of warming for observations to be in-line with climate model projections. To put it another way, it would be a bit surprising if we did not see some acceleration.&lt;/p&gt;
  395. &lt;p&gt;We can also use simple climate models like FaIR combined with up-to-date radiative forcing estimates to assess how the human contribution to warming has changed over time. This is analogous to the approach taken in the recent Forster et al 2025 paper, which argued that the rate of human-induced warming has increased from ~0.19C post-1970 to 0.27C over the past decade, roughly a 40% increase.&lt;/p&gt;
  396. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!W9fW!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F856c7134-b479-4384-9b20-848378f10da0_2052x1362.png" alt="" width="550" height="365" /&gt;&lt;/p&gt;
  397. &lt;p&gt;&lt;em&gt;Drivers of decadal warming rates between 1970-1979 and 2015-2024, excluding natural factors like volcanoes and solar cycle variation. Adapted from earlier work by Dr Chris Smith.&lt;/em&gt;&lt;/p&gt;
  398. &lt;p&gt;This analysis suggests that human-driven warming rates have been roughly constant at a bit below 0.2C since the 1970s, with a declining contribution of other GHGs (mainly halocarbons phased out after the Montreal protocol) compensating for continued increases in CO2 emissions. However, dramatic cuts in global aerosol emissions &amp;ndash; primarily reductions in sulfur dioxide emissions &amp;ndash; have reduced aerosol cooling and unmasked additional warming from greenhouse gases. This suggests that the recent increase in the rate of warming is primarily attributable to declines in aerosols.&lt;/p&gt;
  399. &lt;p&gt;For more details in how changes in aerosol emissions have impacted the magnitude and rate of warming, see my recent Carbon Brief analysis.&lt;/p&gt;
  400. &lt;h3&gt;Evidence from other climate observations&lt;/h3&gt;
  401. &lt;p&gt;So far we have moderately strong but not conclusive evidence from global surface temperatures, as well as evidence from climate models that we should expect an acceleration in warming given whats been happening with aerosols and other climate forcings.&lt;/p&gt;
  402. &lt;p&gt;We also have other relevant climate observations we can look at: ocean heat content (OHC) and earth&amp;rsquo;s energy imbalance (EEI). Both of these provide a more comprehensive (albeit shorter) view of changes to the climate system. EEI directly measures how much heat is being trapped, while ocean heat content measures where the vast majority of the heat (&amp;gt;90%) is accumulating.&lt;/p&gt;
  403. &lt;p&gt;The figure below shows ocean heat content from the Chinese Institute for Atmospheric Physics. Unlike surface temperatures, its measured in zettajoules (ZJ &amp;ndash; billion trillion joules), as the actual temperature changes of the ocean vary dramatically with depth.&lt;/p&gt;
  404. &lt;p&gt;The figure below shows the annual OHC values and uncertainty in the top plot, and the rate of change in the bottom plot. A 10-year lowess smoother is used to remove year-to-year variability and isolate longer-term changes.&lt;/p&gt;
  405. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!GIzS!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5787754d-28eb-403a-aef0-3188132a27b4_1898x1356.png" alt="" width="550" height="393" /&gt;&lt;/p&gt;
  406. &lt;p&gt;Unlike surface temperatures, ocean heat content increases pretty monotonically, with nearly every year setting a new record. There is also evidence of acceleration in recent years, with the period from 2020 onward seeing the largest year-to-year increases in ocean heat content on record. While the rate of OHC increase was also high around the year 2000 (~12 ZJ / year), its about 25% higher (~15 ZJ / year) today.&lt;/p&gt;
  407. &lt;p&gt;Earth energy imbalance has also increased sharply in recent years, with a trend of around 0.45 w/m^2 per decade. EEI as a metric is analogous to the rate of change in the system; a constant positive EEI should be associated with a constant rate of warming of the climate system, while any increase in EEI should be reflected in an increase in the rate of warming.&lt;/p&gt;
  408. &lt;p&gt;&lt;img src="https://substackcdn.com/image/fetch/$s_!BLjH!,w_1456,c_limit,f_webp,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F761c36f4-234e-4ac9-908c-0177e9b837a3_2128x1275.jpeg" alt="" width="550" height="329" /&gt;&lt;/p&gt;
  409. &lt;p&gt;A recent paper by Dr. Chris Merchant and colleagues also makes the case for a detectable acceleration by combining measures of EEI with surface temperature observations.&lt;/p&gt;
  410. &lt;p&gt;The increase in EEI also appears to be substantially faster than expected in most climate models. Though it is worth noting that there are some disagreements between the magnitude of EEI changes and the observed increases in OHCs (the two should nominally agree as &amp;gt;90% of the additional heat trapped is being absorbed by the oceans), which suggests that potential uncertainties in measurements of EEI should not be discounted.&lt;/p&gt;
  411. &lt;h3&gt;Consilience of evidence&lt;/h3&gt;
  412. &lt;p&gt;If we were solely relying on drawing trend lines through cherry-picked periods in surface temperature records, I too would be pretty skeptical about making strong claims regarding a recent acceleration in warming.&lt;/p&gt;
  413. &lt;p&gt;But we don&amp;rsquo;t just have surface temperatures:&lt;/p&gt;
  414. &lt;p&gt;Acceleration in surface temperatures is more readily apparent and significant when removing natural variability.&lt;/p&gt;
  415. &lt;p&gt;Our climate models expect a faster rate of warming under current policy scenarios.&lt;/p&gt;
  416. &lt;p&gt;We have a clear mechanism in declining aerosol emissions to explain a recent acceleration.&lt;/p&gt;
  417. &lt;p&gt;Acceleration is apparent in both ocean heat content and earth energy imbalance measurements.&lt;/p&gt;
  418. &lt;p&gt;In my view this consilience of evidence tips the scale toward pretty clear acceleration in recent years. I hope I am wrong &amp;ndash; I&amp;rsquo;d prefer to live in a world where the rate of warming was flat or falling &amp;ndash; but the evidence is becoming too strong to ignore.&lt;/p&gt;</description>
  419. <link>https://skepticalscience.com/great-acceleration-debate.html</link>
  420. <guid>https://skepticalscience.com/great-acceleration-debate.html</guid>
  421. <pubDate>Mon, 7 Jul 2025 15:18:00 EST</pubDate>
  422. </item>  <item>
  423. <title>Fact brief - Is global warming just due to El Niño?</title>
  424. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  425. &lt;h3&gt;Is global warming just due to El Ni&amp;ntilde;o?&lt;/h3&gt;
  426. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-No-200px.jpg" alt="No" width="200" height="59" /&gt;El Ni&amp;ntilde;o Southern Oscillation is a short-term and cyclical weather phenomenon caused by alternating wind patterns that result in heat exchange between the ocean and the atmosphere; it cannot explain long-term warming.&lt;/p&gt;
  427. &lt;p&gt;El&amp;nbsp;Ni&amp;ntilde;o originates when westward moving trade winds weaken, allowing warm surface waters to shift east across the tropical Pacific. This reverses the La Ni&amp;ntilde;a pattern, where trade winds push warm surface water toward Asia, upwelling cold water off the coast of South America.&lt;/p&gt;
  428. &lt;p&gt;During El Ni&amp;ntilde;o, heat is transferred from the ocean to the atmosphere, causing warming, while La Ni&amp;ntilde;a occurs when heat moves from the atmosphere to the ocean, causing cooling. Energy is moved around the climate system without adding any heat.&lt;/p&gt;
  429. &lt;p&gt;In contrast, climate science research indicates human-caused CO&lt;sub&gt;2&lt;/sub&gt; is the primary driver of today&amp;rsquo;s warming. Human activities that increase greenhouse concentrations in the atmosphere cause less heat to escape the atmosphere, resulting in additional and non-cyclical warming.&lt;/p&gt;
  430. &lt;p&gt;&lt;a href="https://sks.to/elnino" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/is-global-warming-just-due-to-el-nino/" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  431. &lt;hr /&gt;
  432. &lt;p&gt;This fact brief is responsive to quotes such as &lt;a href="https://archive.md/GPUiJ#selection-359.0-359.325:~:text=%E2%80%9CThe%20close%20relationship,and%20solar%20changes.%E2%80%9D" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  433. &lt;hr /&gt;
  434. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  435. &lt;p&gt;NOAA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250628121746/https://www.climate.gov/news-features/blogs/enso/what-el-nino-southern-oscillation-enso-nutshell" target="_blank"&gt;What is the El Ni&amp;ntilde;o&amp;ndash;Southern Oscillation (ENSO) in a nutshell?&lt;/a&gt;&lt;/p&gt;
  436. &lt;p&gt;NOAA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250203021825/https://www.climate.gov/news-features/understanding-climate/can-we-blame-el-ni%C3%B1o" target="_blank"&gt;Can We Blame El Ni&amp;ntilde;o?&lt;/a&gt;&lt;/p&gt;
  437. &lt;p&gt;Journal of Geophysical Research&amp;nbsp;&lt;a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2009JD012960" target="_blank"&gt;Comment on &amp;ldquo;Influence of the Southern Oscillation on tropospheric temperature&amp;rdquo; by J. D. McLean, C. R. de Freitas, and R. M. Carter&lt;/a&gt;&lt;/p&gt;
  438. &lt;!--more--&gt;
  439. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer "yes/no" answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://gigafact.org/skeptical-science" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  440. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact Quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  441. <link>https://skepticalscience.com/fact-brief-elnino.html</link>
  442. <guid>https://skepticalscience.com/fact-brief-elnino.html</guid>
  443. <pubDate>Tue, 8 Jul 2025 10:36:12 EST</pubDate>
  444. </item>  <item>
  445. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #27</title>
  446. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 27 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 29, 2025 thru Sat, July 5, 2025.&lt;/div&gt;
  447. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  448. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (4 articles)&lt;/strong&gt;&lt;/p&gt;
  449. &lt;ul&gt;
  450. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/food-and-agriculture/food-prices-climate-agriculture-feedback-loop-research-calories-land-clearing/" target="_blank"&gt;What does climate change mean for agriculture? Less food, and more emissions&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;New research sheds light on how rising temperatures are squeezing farmers and raising prices for consumers.&lt;/em&gt; Grist, Frida Garza, Jun 30, 2025.&lt;/li&gt;
  451. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.bbc.com/news/articles/c2k1103vljqo" target="_blank"&gt;How unusual is this UK heat and is climate change to blame?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A second spell of UK temperatures well over 30C before the end of June - how unusual is this and how much is climate change to blame?&lt;/em&gt; BBC News, Mark Poynting, Jun 30, 2025.&lt;/li&gt;
  452. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/climate-change-has-doubled-the-worlds-heatwaves-how-africa-is-affected-258594" target="_blank"&gt;Climate change has doubled the world's heat waves: How Africa is affected&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Conversation, Joyce Kimutai, Jul 02, 2025.&lt;/li&gt;
  453. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/JJXNhzSQk5I?si=NaknJPN0RfqdxmIx" target="_blank"&gt;We didn&amp;rsquo;t know East Antarctica was melting like this&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Dr Gilbz on Youtube, Ella Gilbert, July 4, 2025.&lt;/li&gt;
  454. &lt;/ul&gt;
  455. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (4 articles)&lt;/strong&gt;&lt;/p&gt;
  456. &lt;ul&gt;
  457. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/stage/2025/jun/28/the-herds-stampede-in-soho-puppet-animals-climate-crisis-london" target="_blank"&gt;Stampede in Soho: puppet animals on an epic trek bring wonder and warning to London streets&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Public art project The Herds is passing through capital on 20,000km journey from Congo Basin to Arctic Circle, inspiring climate action&lt;/em&gt; The Guardian, Chris Wiegand, Jun 28, 2025.&lt;/li&gt;
  458. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.brandonsun.com/opinion/2025/06/30/schools-failing-in-climate-education" target="_blank"&gt;Schools failing in climate education&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A survey reveals a disconnect between what Canadian parents and kids want to know about climate change vs. how the need is addressed in schools.&lt;/em&gt; Brandon Sun, Karen S. Acton, Jun 30, 2025.&lt;/li&gt;
  459. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/01072025/us-global-change-research-program-website-goes-dark/" target="_blank"&gt;An Important Archive of Congressionally-Mandated Climate Change Reports Just Went Dark&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Climate scientists are alarmed by the Trump administration&amp;rsquo;s latest attack on climate change research.&lt;/em&gt; Inside Climate News, Lauren Dalban, Jul 01, 2025.&lt;/li&gt;
  460. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/jul/01/climate-change-reports-removed-trump" target="_blank"&gt;Key climate change reports removed from US government websites&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The national climate assessments help state and local governments prepare for the impacts of a warming world.&lt;/em&gt; The Guardian, Associated Press, Jul 01, 2025.&lt;/li&gt;
  461. &lt;/ul&gt;
  462. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (4 articles)&lt;/strong&gt;&lt;/p&gt;
  463. &lt;ul&gt;
  464. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.desmog.com/2025/07/01/alex-epstein-fossil-fuel-philosopher-trump-megabill-clean-energy-cuts/" target="_blank"&gt;Who`s the Fossil Fuel-Backed "Philosopher" Shaping Trump`s Megabill Clean Energy Cuts?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Is a bachelor's degree in philosophy sufficent to become an energy policy expert? Desmog explores this question. &lt;/em&gt; DeSmog, Sharon Kelly, Jul 01, 2025.&lt;/li&gt;
  465. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.latimes.com/environment/story/2025-07-01/trump-us-climate-website" target="_blank"&gt;Trump administration shuts down U.S. website on climate change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The U.S. Global Change Research Program&amp;rsquo;s website, globalchange.gov, was taken down along with information on how global warming is affecting the country.&lt;/em&gt; Los Angeles Times, Ian James, Noah Haggerty, Jul 01, 2025.&lt;/li&gt;
  466. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/trump-uprooted-a-major-climate-effort-scientists-are-fighting-back/" target="_blank"&gt;Trump uprooted a major climate effort. Scientists are fighting back.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The future of the National Climate Assessment is uncertain, so researchers are looking to write an alternative version that could serve as a substitute.&lt;/em&gt; E&amp;amp;E News, Chelsea Harvey, Jul 02, 2025.&lt;/li&gt;
  467. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/07/trumps-climate-research-cuts-are-unpopular-even-with-republicans/" target="_blank"&gt;Trump`s climate research cuts are unpopular, even with Republicans&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Recent polling shows that nearly 80% of registered U.S. voters want government agencies to keep researching and sharing global warming data. The administration is dismantling both.&lt;/em&gt; Yale Climate Connections, Karin Kirk, Jul 03, 2025.&lt;/li&gt;
  468. &lt;/ul&gt;
  469. &lt;!--more--&gt;
  470. &lt;p&gt;&lt;strong&gt;Climate Science and Research (3 articles)&lt;/strong&gt;&lt;/p&gt;
  471. &lt;ul&gt;
  472. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theclimatebrink.com/p/the-great-acceleration-debate" target="_blank"&gt;The great acceleration debate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Why the consilience of evidence points toward acceleration&lt;/em&gt; The Climate Brink, Zeke Hausfather, Jun 30, 2025.&lt;/li&gt;
  473. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/policy/energy-environment/5380169-noaa-climate-change-research-trump-doge-funding-cuts/" target="_blank"&gt;Trump administration wants to axe all of NOAA's climate research&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The Trump administration wants to zero out climate research at the National Oceanic and Atmospheric Administration (NOAA), according to a newly released budget document. &lt;/em&gt; TheHill.com, Rachel Frazin, Jul 01, 2025.&lt;/li&gt;
  474. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_27.html" target="_blank"&gt;Skeptical Science New Research for Week #27 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;130 articles in 56 journals by 891 contributing authors in the latest edition of our weekly climate research survey. &lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Jul 03, 2025.&lt;/li&gt;
  475. &lt;/ul&gt;
  476. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (3 articles)&lt;/strong&gt;&lt;/p&gt;
  477. &lt;ul&gt;
  478. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://observatory.ipi.media/case_studies/parasites-or-system-whores-how-the-truth-about-global-heating-provokes-hatred-of-climate-journalists-and-weather-presenters/" target="_blank"&gt;&amp;ldquo;Parasites or system whores&amp;rdquo;: How the truth about global heating provokes hatred of climate journalists and weather presenters&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Observatory, Christian Jakob &amp;amp; Jean-Philipp Baeck, June 28, 2025.&lt;/li&gt;
  479. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-driver.html" target="_blank"&gt;Fact brief - Are human CO2 emissions driving current global warming?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, Sue Bin Park, Jul 01, 2025.&lt;/li&gt;
  480. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/trumps-science-guidelines-could-amplify-climate-skeptics/" target="_blank"&gt;Trump&amp;rsquo;s science guidelines could amplify climate skeptics&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The new White House rules put more power in the hands of political appointees.&lt;/em&gt; E&amp;amp;E News, Scott Waldman, Jul 03, 2025.&lt;/li&gt;
  481. &lt;/ul&gt;
  482. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Solutions (2 articles)&lt;/strong&gt;&lt;/p&gt;
  483. &lt;ul&gt;
  484. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.ted.com/talks/al_gore_why_climate_action_is_unstoppable_and_climate_realism_is_a_myth" target="_blank"&gt;Why climate action is unstoppable &amp;mdash; and "climate realism" is a myth&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Nobel Laureate Al Gore thoroughly dismantles the fossil fuel industry&amp;rsquo;s narrative of ''climate realism,'' contrasting their misleading claims with the remarkable advancements in renewable energy. &lt;/em&gt; TED, Al Gore, June 15, 2025.&lt;/li&gt;
  485. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://science.feedback.org/whos-afraid-of-the-electric-car-the-narrative-war-delaying-climate-action-in-europe/" target="_blank"&gt;Who&amp;rsquo;s afraid of the electric car? The Narrative War Delaying Climate Action in Europe&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Science Feedback, Editor: Charles Terroille, July 2, 2025.&lt;/li&gt;
  486. &lt;/ul&gt;
  487. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (2 articles)&lt;/strong&gt;&lt;/p&gt;
  488. &lt;ul&gt;
  489. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/27062025/systematically-failed-civil-societys-latest-attempt-to-reform-un-climate-talks/" target="_blank"&gt;`Systematically Failed`: Civil Society`s Latest Attempt to Reform UN Climate Talks&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A new statement signed by more than 200 groups focuses on five major changes the coalition believes would mean faster, fairer climate action.&lt;/em&gt; Inside Climate News, Ryan Krugman, Jun 27, 2025.&lt;/li&gt;
  490. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.conservation.org/blog/a-climate-ally-needs-support-but-at-what-cost" target="_blank"&gt;A climate ally needs support - but at what cost?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Conservation International study finds key detail on restoring the world&amp;rsquo;s mangroves: a price tag.&lt;/em&gt; Climate Change, Mary Kate McCoy, Jul 03, 2025.&lt;/li&gt;
  491. &lt;/ul&gt;
  492. &lt;p&gt;&lt;strong&gt;Health Aspects of Climate Change (1 article)&lt;/strong&gt;&lt;/p&gt;
  493. &lt;ul&gt;
  494. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/us-news/2025/jun/29/lone-star-ticks-increase-climate-crisis" target="_blank"&gt;`Explosive increase` of ticks that cause meat allergy in US due to climate crisis&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Unusually aggressive lone star ticks, common in the south-east, are spreading to areas previously too cold for them&lt;/em&gt; The Guardian, Oliver Milman, Jun 29, 2025.&lt;/li&gt;
  495. &lt;/ul&gt;
  496. &lt;p&gt;&lt;strong&gt;Miscellaneous (4 articles)&lt;/strong&gt;&lt;/p&gt;
  497. &lt;ul&gt;
  498. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.thecooldown.com/green-business/mark-zuckerberg-yacht-svalbard-norway/" target="_blank"&gt;Mark Zuckerberg hit with backlash after pulling into remote port in $300 million superyacht: 'He's thinking wrong'&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Freeloading from the future: Mark Zuckerberg's holiday requires emitting 40 tons of CO2 per hour. &lt;/em&gt; The Cool Down, Alexis McDonell, June 25, 2025.&lt;/li&gt;
  499. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.youtube.com/playlist?list=PLDDEU7mKb6z0RD8V9eXw8TH_qJ1Jtb5u_" target="_blank"&gt;Playlist for the 100 hours of the Weather and Climate Livestream&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Youtube, WCLivestream, June 28, 2025.&lt;/li&gt;
  500. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_26.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #26&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 28 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 22, 2025 thru Sat, June 28, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler &amp;amp; Doug Bostrom, Jun 29, 2025.&lt;/li&gt;
  501. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theatlantic.com/science/archive/2025/07/hurricane-science-noaa-cuts/683398/?gift=w2hbEf3JROTUmsXaSUzB4WuzuimysqR_PbTAI7mFvFg&amp;amp;utm_source=copy-link&amp;amp;utm_medium=social&amp;amp;utm_campaign=share" target="_blank"&gt;Hurricane Science Was Great While It Lasted&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The U.S. is hacking away at support for state-of-the-art forecasting.&lt;/em&gt; The Atlantic, Zo&amp;euml; Schlanger, Jul 02, 2025.&lt;/li&gt;
  502. &lt;/ul&gt;
  503. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  504. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_27.html</link>
  505. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_27.html</guid>
  506. <pubDate>Sun, 6 Jul 2025 10:47:57 EST</pubDate>
  507. </item>  <item>
  508. <title>Skeptical Science New Research for Week #27 2025</title>
  509. <description>&lt;h3&gt;&lt;span&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/span&gt;&lt;/h3&gt;
  510. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1002/joc.70014" target="_blank"&gt;The Emergence of Near-Permanent Marine&amp;nbsp;&lt;span id="skstip36" class="skstip beginner"&gt;Heat&lt;/span&gt;wave State in the Tropical Indian Ocean During 2023&amp;ndash;2024&lt;/a&gt;&lt;/strong&gt;&lt;span&gt;, Soumya,&amp;nbsp;&lt;/span&gt;&lt;em&gt;International Journal of Climatology&lt;/em&gt;&lt;/span&gt;&amp;nbsp;&lt;/p&gt;
  511. &lt;blockquote&gt;
  512. &lt;p&gt;&lt;em&gt;In 2023/24, global mean surface temperatures exceeded 1.5&amp;deg;C above pre-industrial levels, and the Tropical Indian Ocean (TIO) experienced a record-breaking basin mean anomalous warming of 0.88&amp;deg;C. This unprecedented warming in the TIO is linked to the severe and long-lasting marine heatwave (MHW) events ever recorded in the region, reconciling with the ongoing long-term warming and internal climate variabilities. The MHW events of 2023/24 were primarily centred in the Arabian Sea (AS) and southwestern TIO regions, with mean intensities of 0.73&amp;deg;C and 0.89&amp;deg;C, respectively. The prolonged MHW event developed in the AS region in August 2023 and in the southwestern TIO in July 2023 due to increased oceanic heat gain associated with increased insolation and reduced latent heat loss. The MHW event in the AS was sustained throughout the remainder of the year and the following year by subsurface warming due to the convergence of surface winds in the AS and suppressed cooling by vertical processes. In the southwestern TIO, the event intensified and lasted till December 2024, driven by thermocline warming induced by downwelling Rossby waves, triggered by intensified easterlies associated with an anomalously westward extended cold tongue in the equatorial Indian Ocean, linked to the co-occurrence of strong El Ni&amp;ntilde;o and extreme equatorial positive Indian Ocean Dipole (PIOD) events. The extreme warming of the TIO during 2023/24 underscores the ongoing impact of climate change on global ocean surface warming.&lt;/em&gt;&lt;/p&gt;
  513. &lt;/blockquote&gt;
  514. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2025gl115235" target="_blank"&gt;Glaciers in Western Canada-Conterminous US and Switzerland Experience Unprecedented Mass Loss Over the Last Four Years (2021&amp;ndash;2024)&lt;/a&gt;&lt;/strong&gt;, Menounos et al.,&amp;nbsp;&lt;em&gt;Geophysical Research Letters&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  515. &lt;blockquote&gt;
  516. &lt;p&gt;&lt;em&gt;Over the period 2021&amp;ndash;2024, glaciers in Western Canada and the conterminous US (WCAN-US), and Switzerland respectively lost mass at rates of 22.2&amp;nbsp;&amp;plusmn;&amp;nbsp;9.0 and 1.5&amp;nbsp;&amp;plusmn;&amp;nbsp;0.3&amp;nbsp;Gt&amp;nbsp;yr&amp;minus;1&amp;nbsp;representing a twofold increase in mass loss compared to the period 2010&amp;ndash;2020. Since 2020, total ice volume was depleted by 12% (WCAN-US) and 13% (Switzerland). Meteorological conditions that favored high rates of mass loss included low winter snow accumulation, early-season heat waves, and prolonged warm, dry conditions. High transient snow lines, and impurity loading due to wildfires (WCAN-US) or Saharan dust (Switzerland) darkened glaciers and thereby increased mass loss via greater absorbed shortwave radiation available for melt. This ice-albedo feedback will lead to continued high rates of thinning unless recently exposed dark ice and firn at high elevations is buried by seasonal snowfall. Physical models that simulate impurity deposition and movement through firn and ice are needed to improve future projections of glacier mass change.&lt;/em&gt;&lt;/p&gt;
  517. &lt;/blockquote&gt;
  518. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1073/pnas.2425501122" target="_blank"&gt;Early warning signs of salt marsh drowning indicated by widespread vulnerability from declining belowground plant biomass&lt;/a&gt;&lt;/strong&gt;, Runion et al.,&amp;nbsp;&lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  519. &lt;blockquote&gt;
  520. &lt;p&gt;&lt;em&gt;Intensifying stressors are weakening resilience in ecosystems across the globe. Here, we show that belowground biomass (BGB), a proxy for salt marsh health, has decreased over a large area of coastal marshes since 2014, indicating growing vulnerability to sea-level rise (SLR)-induced drowning. Using observational modeling, we show a shift in plant biomass allocation, away from belowground resources, which are critical for resilience, toward higher aboveground stocks. Marsh drowning is likely underway, and the window for action may be short lived.&lt;/em&gt;&lt;/p&gt;
  521. &lt;/blockquote&gt;
  522. &lt;h3&gt;From this week's government/NGO section:&lt;/h3&gt;
  523. &lt;p&gt;&lt;strong&gt;&lt;a href="https://theicct.org/wp-content/uploads/2025/06/ID-349-%E2%80%93-Private-jets_report_final.pdf" target="_blank"&gt;Air and greenhouse gas pollution from private jets, 2023&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Daneil Sitompul and Dan Rutherford,&amp;nbsp;&lt;strong&gt;International Council on Clean Transportation&lt;/strong&gt;&lt;/p&gt;
  524. &lt;blockquote&gt;While there are several high-fidelity emission inventories for commercial aviation, data on greenhouse gas (GHG) and air pollution from general aviation aircraft, notably private jets activity, remain limited. The authors fill this gap by estimating how much, and where, air and GHG pollution was emitted globally by private jets in 2023. The authors used both a top-down and bottom-up emissions inventory for private jet flights using a variety of data sources, including global flight trajectories, airport coordinates, and engine emission databases.&lt;/blockquote&gt;
  525. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.prod.website-files.com/660df44c73d9da2a5912020a/685b92e448fd57d38330281c_CCAG_NDCs%20as%20Levers%20For%20Prosperity_Health_Resilience.pdf" target="_blank"&gt;NDCs as levers for prosperity, health and resilience&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Denton et al,&amp;nbsp;&lt;strong&gt;Climate Crisis Advisory Group&lt;/strong&gt;&lt;/p&gt;
  526. &lt;blockquote&gt;Current Nationally Determined Contributions (NDCs) are not meeting the urgency or scale of the climate crisis. On the present course, they leave the world heading towards 3&amp;deg;C of warming &amp;ndash; well beyond the 1.5&amp;deg;C target set in the Paris Agreement. This report positions NDCs as strategic national tools to drive inclusive growth, resilience, and public well-being. The authors present 10 transformative recommendations to help countries embed climate ambition into national development strategies. These are grouped under four themes: driving prosperity and stability, building healthy and resilient communities, ensuring effective and equitable implementation, and accelerating action and ambition. Collectively, they show how NDCs can become levers for green investment, job creation, and systemic reform &amp;ndash; offering a pathway from climate risk to shared, sustainable prosperity. Governments must use the NDC cycle as an opportunity not only to ratchet ambition, but to make climate action a cornerstone of economic and social policy.&lt;/blockquote&gt;
  527. &lt;h3&gt;130 articles in 56 journals by 891 contributing authors&lt;/h3&gt;
  528. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  529. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024av001399" target="_blank"&gt;A Wavier Polar Jet Stream Contributed to the Mid-20th Century Winter Warming Hole in the United States&lt;/a&gt;, Chalif et al., &lt;em&gt;AGU Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024av001399" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024av001399&lt;/p&gt;
  530. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jc022027" target="_blank"&gt;A Weakened AMOC Could Cause Southern Ocean Temperature and Sea-Ice Change on Multidecadal Timescales&lt;/a&gt;, Diamond et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jc022027" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jc022027&lt;/p&gt;
  531. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108208" target="_blank"&gt;Characteristics and mechanisms of summer long-lived heatwaves in Western North America: Perspective from Rossby wave train&lt;/a&gt;, Qiang et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108208&lt;/p&gt;
  532. &lt;!--more--&gt;
  533. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043186" target="_blank"&gt;Climate Feedbacks Derived From Spatial Gradients in Recent Climatology&lt;/a&gt;, Goodwin et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd043186" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd043186&lt;/p&gt;
  534. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd042715" target="_blank"&gt;Meteorological Impact of Glacier Retreat and Proglacial Lake Temperature in Western Norway&lt;/a&gt;, Haualand et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd042715" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd042715&lt;/p&gt;
  535. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  536. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-24-0026.1" target="_blank"&gt;Assessment of the Role of Anthropogenic Climate Change on an Unprecedented Heatwave Event over the Eastern Tibetan Plateau during August 2022&lt;/a&gt;, Chen et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-24-0026.1&lt;/p&gt;
  537. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100787" target="_blank"&gt;Attribution of Heat Extremes and its Health Effects in Yangtze River Basin in Late Summer 2024&lt;/a&gt;, Ren et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100787" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100787&lt;/p&gt;
  538. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110688" target="_blank"&gt;Decreasing frequency of low and moderate fire weather days may be contributing to large wildfire occurrence in the northern Sierra Nevada&lt;/a&gt;, Collins, &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110688&lt;/p&gt;
  539. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd041986" target="_blank"&gt;Fingerprint-Based Attribution and Constrained Projection of Global Risk of Daily Compound Hot Extremes&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2024jd041986&lt;/p&gt;
  540. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102528" target="_blank"&gt;Firestorm in California: The new reality for wildland-urban interface regions&lt;/a&gt;, Amiri et al., &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2025.102528" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2025.102528&lt;/p&gt;
  541. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/07055900.2025.2521501" target="_blank"&gt;Heat Wave Trends in Canadian Regions&lt;/a&gt;, Kirchmeier-Young et al., &lt;em&gt;Atmosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/07055900.2025.2521501" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/07055900.2025.2521501&lt;/p&gt;
  542. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70014" target="_blank"&gt;The Emergence of Near-Permanent Marine Heatwave State in the Tropical Indian Ocean During 2023&amp;ndash;2024&lt;/a&gt;, Soumya, &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70014&lt;/p&gt;
  543. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-05494-z" target="_blank"&gt;Warming and salinity changes of the upper ocean Caribbean through-flow since 1960&lt;/a&gt;, Gradone et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-05494-z&lt;/p&gt;
  544. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  545. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-291" target="_blank"&gt;A 1-km daily high-accuracy meteorological dataset of air temperature, atmospheric pressure, relative humidity, and sunshine duration across China (1961&amp;ndash;2021)&lt;/a&gt;, Zhao et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-291&lt;/p&gt;
  546. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-17-2953-2025" target="_blank"&gt;An updated reconstruction of Antarctic near-surface air temperatures at monthly intervals since 1958&lt;/a&gt;, Bromwich et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-17-2953-2025&lt;/p&gt;
  547. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-18-3819-2025" target="_blank"&gt;The third Met Office Unified Model&amp;ndash;JULES Regional Atmosphere and Land Configuration, RAL3&lt;/a&gt;, Bush et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-18-3819-2025&lt;/p&gt;
  548. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-23-0199.1" target="_blank"&gt;Urban Heat Island Effects in U.S. Summer Surface Temperature Data, 1895&amp;ndash;2023&lt;/a&gt;, Spencer et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-23-0199.1&lt;/p&gt;
  549. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  550. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043887" target="_blank"&gt;Anthropogenic Impacts on Asian Drought Trends: Distinct Effects of Greenhouse Gases and Aerosols&lt;/a&gt;, Zhang et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2025jd043887&lt;/p&gt;
  551. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl115407" target="_blank"&gt;Enhanced Eastern Pacific Warming Weakens ENSO Asymmetry Post-2100 Under Persistent Greenhouse Warming&lt;/a&gt;, Geng &amp;amp; Cai, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl115407" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl115407&lt;/p&gt;
  552. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/asl.1305" target="_blank"&gt;Evaluation and Projection of Precipitation and Precipitation Extremes in the Source Region of the Yangtze and Yellow Rivers Based on CMIP6 Model Optimization and Statistical Downscaling&lt;/a&gt;, Li et al., &lt;em&gt;Atmospheric Science Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/asl.1305" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/asl.1305&lt;/p&gt;
  553. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8930" target="_blank"&gt;Future Precipitation Change in West Africa Using NEX-GDDP-CMIP6 Models Based on Multiple Machine Learning Algorithms&lt;/a&gt;, Dioha et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8930&lt;/p&gt;
  554. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  555. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-18-4009-2025" target="_blank"&gt;Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing&lt;/a&gt;, Schlund et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-18-4009-2025&lt;/p&gt;
  556. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  557. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02491-y" target="_blank"&gt;Consistent responses to black carbon and carbon dioxide at global and 100&amp;thinsp;m model resolutions&lt;/a&gt;, Stjern et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02491-y&lt;/p&gt;
  558. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108214" target="_blank"&gt;Evaluation of convectively coupled Kelvin waves in CMIP6 coupled climate models&lt;/a&gt;, Ji et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108214&lt;/p&gt;
  559. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70011" target="_blank"&gt;Evaluation of the Performance of HighResMIP CMIP6 in Simulating Extreme Precipitation in Madagascar&lt;/a&gt;, Rabezanahary Tanteliniaina et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70011&lt;/p&gt;
  560. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd044020" target="_blank"&gt;How Do Differences in the Simulation of Present-Day Clouds Affect Cloud Feedbacks?&lt;/a&gt;, Aerenson &amp;amp; Marchand, &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jd044020" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd044020&lt;/p&gt;
  561. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-24-0114.1" target="_blank"&gt;Potential for Machine Learning Emulators to Augment Regional Climate Simulations in Provision of Local Climate Change Information&lt;/a&gt;, Kendon et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-24-0114.1&lt;/p&gt;
  562. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-24-0114.1" target="_blank"&gt;Potential for Machine Learning Emulators to Augment Regional Climate Simulations in Provision of Local Climate Change Information&lt;/a&gt;, Kendon et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-24-0114.1&lt;/p&gt;
  563. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116492" target="_blank"&gt;&amp;ldquo;Which Projections Do I Use?&amp;rdquo; Strategies for Climate Model Ensemble Subset Selection Based on Regional Stakeholder Needs&lt;/a&gt;, Wootten et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116492" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116492&lt;/p&gt;
  564. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  565. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/tc-19-2263-2025" target="_blank"&gt;Bathymetry-constrained warm-mode melt estimates derived from analysing oceanic gateways in Antarctica&lt;/a&gt;, Nicola et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-19-2263-2025&lt;/p&gt;
  566. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/wcas-d-24-0150.1" target="_blank"&gt;Environmental Impacts from Projected Permafrost Thaw in Alaska: Defining Knowledge Gaps, Data Needs, and Research Priorities&lt;/a&gt;, Spero et al., &lt;em&gt;Weather, Climate, and Society&lt;/em&gt; 10.1175/wcas-d-24-0150.1&lt;/p&gt;
  567. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl115235" target="_blank"&gt;Glaciers in Western Canada-Conterminous US and Switzerland Experience Unprecedented Mass Loss Over the Last Four Years (2021&amp;ndash;2024)&lt;/a&gt;, Menounos et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl115235" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl115235&lt;/p&gt;
  568. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl113982" target="_blank"&gt;Ice Front and M&amp;eacute;lange Dynamics at Kangerlussuaq Glacier, Eastern Greenland, Since 1981, and Future Stability&lt;/a&gt;, Lippert et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl113982" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl113982&lt;/p&gt;
  569. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1093/pnasnexus/pgaf164" target="_blank"&gt;Impacts of Antarctic summer sea-ice extremes&lt;/a&gt;, Doddridge et al., &lt;em&gt;PNAS Nexus&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1093/pnasnexus/pgaf164" target="_blank"&gt; Open Access&lt;/a&gt; 10.1093/pnasnexus/pgaf164&lt;/p&gt;
  570. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01713-4" target="_blank"&gt;Large-scale ice-shelf calving events follow prolonged amplifications in flexure&lt;/a&gt;, Teder et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41561" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41561-025-01713-4&lt;/p&gt;
  571. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.006" target="_blank"&gt;Mass Balance reconstruction of a reference glacier in Central Asia during 2000&amp;minus;2023: Integrating simulation and &lt;em&gt;in-situ&lt;/em&gt; measurements&lt;/a&gt;, WANG et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.006" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.006&lt;/p&gt;
  572. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2024-526" target="_blank"&gt;Permafrost-wildfire interactions: Active layer thickness estimates for paired burned and unburned sites in northern high-latitudes&lt;/a&gt;, Talucci et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2024-526&lt;/p&gt;
  573. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/tc-19-2289-2025" target="_blank"&gt;Role of elevation feedbacks and ice sheet&amp;ndash;climate interactions on future Greenland ice sheet melt&lt;/a&gt;, Feenstra et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-19-2289-2025&lt;/p&gt;
  574. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.rse.2025.114881" target="_blank"&gt;Shortened thawing and freezing intervals in the northern hemisphere since 1990 from sites observations and remote sensing&lt;/a&gt;, Yang et al., &lt;em&gt;Remote Sensing of Environment&lt;/em&gt; 10.1016/j.rse.2025.114881&lt;/p&gt;
  575. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-17-3047-2025" target="_blank"&gt;Smoothed monthly Greenland ice sheet elevation changes during 2003&amp;ndash;2023&lt;/a&gt;, Khan et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-17-3047-2025&lt;/p&gt;
  576. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-2354" target="_blank"&gt;The demise of the world's largest piedmont glacier: a probabilistic forecast&lt;/a&gt;, Brinkerhoff et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-2354&lt;/p&gt;
  577. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  578. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s44367-025-00013-3" target="_blank"&gt;Paleoshoreline to Anthropocene Coast: assessing coastal stability and vulnerability in response to sea level changes&lt;/a&gt;, Rafeeque et al., &lt;em&gt;Journal of Disaster Science and Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s44367" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s44367-025-00013-3&lt;/p&gt;
  579. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  580. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60381-5" target="_blank"&gt;Arctic speleothems reveal nearly permafrost-free Northern Hemisphere in the late Miocene&lt;/a&gt;, Vaks et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60381-5&lt;/p&gt;
  581. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60396-y" target="_blank"&gt;Early Triassic super-greenhouse climate driven by vegetation collapse&lt;/a&gt;, Xu et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60396-y&lt;/p&gt;
  582. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60939-3" target="_blank"&gt;Millennial-timescale thermogenic CO2 release preceding the Paleocene-Eocene Thermal Maximum&lt;/a&gt;, Jiang et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60939-3&lt;/p&gt;
  583. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61147-9" target="_blank"&gt;Plume-induced emissions of deep methane linked to the end-Guadalupian mass extinction&lt;/a&gt;, Liu et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-61147-9&lt;/p&gt;
  584. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02485-w" target="_blank"&gt;Polar wander leads to large differences in past climate reconstructions&lt;/a&gt;, Leonard et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02485-w&lt;/p&gt;
  585. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  586. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ele.70165" target="_blank"&gt;Chronic Heat Tolerance Reveals Overestimated Thermal Safety Margins and Increased Vulnerability in Marine Fish Populations&lt;/a&gt;, Molina et al., &lt;em&gt;Ecology Letters&lt;/em&gt; 10.1111/ele.70165&lt;/p&gt;
  587. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000543" target="_blank"&gt;Climate vulnerability assessment of fish and invertebrates in the U.S. South Atlantic large marine ecosystem&lt;/a&gt;, Craig et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000543" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000543&lt;/p&gt;
  588. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2425501122" target="_blank"&gt;Early warning signs of salt marsh drowning indicated by widespread vulnerability from declining belowground plant biomass&lt;/a&gt;, Runion et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2425501122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2425501122&lt;/p&gt;
  589. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gh001323" target="_blank"&gt;Fungal Spore Seasons Advanced Across the US Over Two Decades of Climate Change&lt;/a&gt;, Wu et al., &lt;em&gt;GeoHealth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gh001323" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gh001323&lt;/p&gt;
  590. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2420059122" target="_blank"&gt;High tree diversity exposed to unprecedented macroclimatic conditions even under minimal anthropogenic climate change&lt;/a&gt;, Boonman et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2420059122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2420059122&lt;/p&gt;
  591. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl115616" target="_blank"&gt;Increased Drought Impacts on Vegetation Productivity in Drylands Under Climate Change&lt;/a&gt;, Chen et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl115616" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl115616&lt;/p&gt;
  592. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1386632" target="_blank"&gt;Modeling climate change impacts on the potential distribution of bighorn sheep in Mexico&lt;/a&gt;, Zamora-Maldonado et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1386632" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1386632&lt;/p&gt;
  593. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41559-025-02788-3" target="_blank"&gt;More realistic plankton simulation models will improve projections of ocean ecosystem responses to global change&lt;/a&gt;, Flynn et al., &lt;em&gt;Nature Ecology &amp;amp; Evolution&lt;/em&gt; 10.1038/s41559-025-02788-3&lt;/p&gt;
  594. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104136" target="_blank"&gt;Reconciling wildlife governance in a changing climate: A systematic review of mule deer management in St&amp;rsquo;&amp;aacute;t&amp;rsquo;imc Territory&lt;/a&gt;, Andrascik &amp;amp; Grenz, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104136" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104136&lt;/p&gt;
  595. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/1365-2745.70088" target="_blank"&gt;Soil carbon sequestration: Facilitated effect of extrafloral nectary trees in a diverse subtropical forest&lt;/a&gt;, Pan et al., &lt;em&gt;Journal of Ecology&lt;/em&gt; 10.1111/1365-2745.70088&lt;/p&gt;
  596. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/1365-2745.70095" target="_blank"&gt;Warming enhances the negative impact of shrubs on community stability via reducing species asynchrony&lt;/a&gt;, Wang et al., &lt;em&gt;Journal of Ecology&lt;/em&gt; 10.1111/1365-2745.70095&lt;/p&gt;
  597. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2418392122" target="_blank"&gt;Winters restrict a climate change&amp;ndash;driven butterfly range expansion despite rapid evolution of seasonal timing traits&lt;/a&gt;, Ittonen et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2418392122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2418392122&lt;/p&gt;
  598. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  599. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-3103-2025" target="_blank"&gt;Amplified bottom water acidification rates on the Bering Sea shelf from 1970&amp;ndash;2022&lt;/a&gt;, Pilcher et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-3103-2025&lt;/p&gt;
  600. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jc022493" target="_blank"&gt;Anthropogenic Carbon Dynamics: Concentrations, Transports, and Trends in the Western North Atlantic Subtropical Gyre&lt;/a&gt;, Santana?Toscano et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jc022493" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jc022493&lt;/p&gt;
  601. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jc022251" target="_blank"&gt;Drivers and Variability of Intensified Subsurface Ocean Acidification Trends at Station ALOHA&lt;/a&gt;, Knor et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jc022251" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jc022251&lt;/p&gt;
  602. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-348" target="_blank"&gt;Global Emissions and Abundances of Chemically and Radiatively Important Trace Gases from the AGAGE Network&lt;/a&gt;, Western et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-348&lt;/p&gt;
  603. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-17-2873-2025" target="_blank"&gt;Global patterns and drivers of soil dissolved organic carbon concentrations&lt;/a&gt;, Ren &amp;amp; Cai Cai Cai, &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-17-2873-2025&lt;/p&gt;
  604. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110704" target="_blank"&gt;Hysteretic temperature sensitivity in wetland CH&lt;sub&gt;4&lt;/sub&gt; emission modeling&lt;/a&gt;, Chen et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110704&lt;/p&gt;
  605. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/acp-25-6445-2025" target="_blank"&gt;Inverse modelling of New Zealand's carbon dioxide balance estimates a larger than expected carbon sink&lt;/a&gt;, Bukosa et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/acp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/acp-25-6445-2025&lt;/p&gt;
  606. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2361" target="_blank"&gt;Probabilistic Assessment of Carbon Intensity in Selected Oil and Gas Fields in Ghana&lt;/a&gt;, Sokama?Neuyam et al., &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; 10.1002/ghg.2361&lt;/p&gt;
  607. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  608. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fevo.2025.1614198" target="_blank"&gt;The carbon source-sink function of Hulun Lake, a large shallow eutrophic lake in northern China&lt;/a&gt;, Zhang et al., &lt;em&gt;Frontiers in Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fevo.2025.1614198" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fevo.2025.1614198&lt;/p&gt;
  609. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  610. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2521118" target="_blank"&gt;Exploring key dimensions of policy instruments for carbon dioxide removal&lt;/a&gt;, Winkler et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2521118" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2521118&lt;/p&gt;
  611. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s12665-025-12390-2" target="_blank"&gt;Optimisation of CO2 storage in saline aquifers: a field-scale mechanistic study on injection strategies, pressure management, and long-term containment&lt;/a&gt;, Dutta et al., &lt;em&gt;Environmental Earth Sciences&lt;/em&gt; 10.1007/s12665-025-12390-2&lt;/p&gt;
  612. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  613. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17583004.2025.2525932" target="_blank"&gt;Assessing climate risks to Net Zero power system in Great Britain&lt;/a&gt;, Kuriakose et al., &lt;em&gt;Carbon Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/17583004.2025.2525932" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17583004.2025.2525932&lt;/p&gt;
  614. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102673" target="_blank"&gt;How could your intention to purchase electric vehicle be stimulated? A behavioral spillover perspective based on pro-environmental attitude-behavior (in)congruence&lt;/a&gt;, Fu, &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102673&lt;/p&gt;
  615. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104195" target="_blank"&gt;Integrated modelling and ontologies of energy futures: The decarbonisation of maritime transport&lt;/a&gt;, Gould &amp;amp; Finiguerra, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104195" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104195&lt;/p&gt;
  616. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  617. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000643" target="_blank"&gt;Political ideology and views toward solar geoengineering in the United States&lt;/a&gt;, Magistro et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000643" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000643&lt;/p&gt;
  618. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  619. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2510500" target="_blank"&gt;Did the pandemic undermine climate concern in Europe? a re-assessment of the Finite Pool of Worry&lt;/a&gt;, Shao, &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2510500&lt;/p&gt;
  620. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102656" target="_blank"&gt;Young children's global climate change salience and comprehension: The effect of parental perception and communication&lt;/a&gt;, Carballo-Losada et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2025.102656" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102656&lt;/p&gt;
  621. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  622. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104896" target="_blank"&gt;A strong El Ni&amp;ntilde;o significantly affects CH&lt;sub&gt;4,&lt;/sub&gt; CO&lt;sub&gt;2&lt;/sub&gt;, H&lt;sub&gt;2&lt;/sub&gt;O and energy fluxes as well as grain yield in a Thai rainfed rice field&lt;/a&gt;, Setsungnern et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104896&lt;/p&gt;
  623. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1594324" target="_blank"&gt;Characterizing timber harvest occurrence and intensity to inform forest carbon management across the eastern United States&lt;/a&gt;, Russell et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1594324" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1594324&lt;/p&gt;
  624. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02504-w" target="_blank"&gt;Climate adaptation through rice northward expansion aggravated groundwater overexploitation in Northeast China&lt;/a&gt;, Liang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02504-w&lt;/p&gt;
  625. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100725" target="_blank"&gt;Climate and weather services can enhance Ethiopian farmers&amp;rsquo; resilience to climate change: Economy-wide impact analysis&lt;/a&gt;, Tamru et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100725" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100725&lt;/p&gt;
  626. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1487503" target="_blank"&gt;Climate change and forestry carbon sink: a literature review and visualization perspective&lt;/a&gt;, Zhang et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1487503" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1487503&lt;/p&gt;
  627. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1634195" target="_blank"&gt;Climate shocks and price dynamics: the role of Shinano River in transmitting ENSO effects to Japanese rice markets&lt;/a&gt;, Zhu, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1634195" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1634195&lt;/p&gt;
  628. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2521486" target="_blank"&gt;Determinants of transformative climate change adaptation in rural Zimbabwe: an afrocentric analysis&lt;/a&gt;, Tirivangasi &amp;amp; Nyahunda, &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2521486" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2521486&lt;/p&gt;
  629. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/acp-25-6299-2025" target="_blank"&gt;Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM)&lt;/a&gt;, Curcoll et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/acp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/acp-25-6299-2025&lt;/p&gt;
  630. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  631. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  632. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s12524-025-02245-5" target="_blank"&gt;Assessing Surface Water Resilience in India&amp;rsquo;s Largest Tech City: Remote Sensing Insights into Urbanization and Climate Change Impacts&lt;/a&gt;, Shukla et al., &lt;em&gt;Journal of the Indian Society of Remote Sensing&lt;/em&gt; 10.1007/s12524-025-02245-5&lt;/p&gt;
  633. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-24-0026.1" target="_blank"&gt;Assessment of the Role of Anthropogenic Climate Change on an Unprecedented Heatwave Event over the Eastern Tibetan Plateau during August 2022&lt;/a&gt;, Chen et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-24-0026.1&lt;/p&gt;
  634. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100787" target="_blank"&gt;Attribution of Heat Extremes and its Health Effects in Yangtze River Basin in Late Summer 2024&lt;/a&gt;, Ren et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100787" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100787&lt;/p&gt;
  635. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110688" target="_blank"&gt;Decreasing frequency of low and moderate fire weather days may be contributing to large wildfire occurrence in the northern Sierra Nevada&lt;/a&gt;, Collins, &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110688&lt;/p&gt;
  636. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd041986" target="_blank"&gt;Fingerprint-Based Attribution and Constrained Projection of Global Risk of Daily Compound Hot Extremes&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2024jd041986&lt;/p&gt;
  637. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102528" target="_blank"&gt;Firestorm in California: The new reality for wildland-urban interface regions&lt;/a&gt;, Amiri et al., &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2025.102528" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2025.102528&lt;/p&gt;
  638. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/07055900.2025.2521501" target="_blank"&gt;Heat Wave Trends in Canadian Regions&lt;/a&gt;, Kirchmeier-Young et al., &lt;em&gt;Atmosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/07055900.2025.2521501" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/07055900.2025.2521501&lt;/p&gt;
  639. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70014" target="_blank"&gt;The Emergence of Near-Permanent Marine Heatwave State in the Tropical Indian Ocean During 2023&amp;ndash;2024&lt;/a&gt;, Soumya, &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70014&lt;/p&gt;
  640. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108325" target="_blank"&gt;Growing threat of climate-induced abrupt dry-wet transitions in Northern China&lt;/a&gt;, Ji et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108325&lt;/p&gt;
  641. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70008" target="_blank"&gt;Impact of Climate Change on Consecutive Dry Days in Taiwan&lt;/a&gt;, Shanka et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/joc.70008" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/joc.70008&lt;/p&gt;
  642. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  643. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116454" target="_blank"&gt;Increased Socioeconomic Impacts With Future Intensifying Flash Droughts in China&lt;/a&gt;, Li et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116454" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116454&lt;/p&gt;
  644. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61011-w" target="_blank"&gt;Occupational carbon footprints and exposure to climate transition risks&lt;/a&gt;, Zhang et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-61011-w&lt;/p&gt;
  645. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1550389" target="_blank"&gt;The effect of shadow economy, life expectancy, education, and income on CO2 emissions: an analysis of BRICS countries&lt;/a&gt;, Sart et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1550389" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1550389&lt;/p&gt;
  646. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  647. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102652" target="_blank"&gt;Adulthood Nature Exposure and Urban Living Are Associated with Climate Policy Support, Mediated by Climate Change Beliefs: A Structural Equation Modeling Study&lt;/a&gt;, Suko et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102652&lt;/p&gt;
  648. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110632" target="_blank"&gt;Assessing the impact of climate indices on corn yield in the continental USA using machine learning approach&lt;/a&gt;, Sabut et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110632&lt;/p&gt;
  649. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101779" target="_blank"&gt;Climate commitments and energy transition pledges in Latin America: Where is the region headed?&lt;/a&gt;, Lazaro et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101779&lt;/p&gt;
  650. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2521485" target="_blank"&gt;Climate policy landscape and networks in China from 2000 to 2022&lt;/a&gt;, Yu et al., &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2521485&lt;/p&gt;
  651. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2523521" target="_blank"&gt;Climate policy upscaling: the role of policy design in removing barriers to stringency&lt;/a&gt;, Buffier et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2523521" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2523521&lt;/p&gt;
  652. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000668" target="_blank"&gt;Confronting challenges and opportunities in climate policy and governance&lt;/a&gt;, Hsueh et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000668" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000668&lt;/p&gt;
  653. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2521325" target="_blank"&gt;Down to Extract with Zac Efron and Ewan McGregor: How Streaming Travel Docuseries and Sustainability Discourses Map Racial Geographies in Central America&lt;/a&gt;, Rossi, &lt;em&gt;Environmental Communication&lt;/em&gt; 10.1080/17524032.2025.2521325&lt;/p&gt;
  654. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1088/2634-4505/ade3fa" target="_blank"&gt;Empirical assessment of the relationship between teleworking frequency and residential energy use in the U.S.: multilevel modeling and time use comparisons&lt;/a&gt;, Han et al., &lt;em&gt;Environmental Research: Infrastructure and Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1088/2634" target="_blank"&gt; Open Access&lt;/a&gt; 10.1088/2634-4505/ade3fa&lt;/p&gt;
  655. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2525508" target="_blank"&gt;Empowering change: implementation of civil society climate actions in Southeast Asia&lt;/a&gt;, Ba &amp;amp; Sun, &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2525508&lt;/p&gt;
  656. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000663" target="_blank"&gt;Enhancing the understanding of the contribution of anthropogenic land system management to the achievement of climate neutrality&lt;/a&gt;, Sanz, &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000663" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000663&lt;/p&gt;
  657. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102673" target="_blank"&gt;How could your intention to purchase electric vehicle be stimulated? A behavioral spillover perspective based on pro-environmental attitude-behavior (in)congruence&lt;/a&gt;, Fu, &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; 10.1016/j.jenvp.2025.102673&lt;/p&gt;
  658. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.03.006" target="_blank"&gt;Quantification of selected SDGs in the context of China's climate mitigation pathway&lt;/a&gt;, HE et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.03.006" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.03.006&lt;/p&gt;
  659. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41893-025-01589-7" target="_blank"&gt;Restoring credibility in carbon offsets through systematic ex post evaluation&lt;/a&gt;, Delacote et al., &lt;em&gt;Nature Sustainability&lt;/em&gt; 10.1038/s41893-025-01589-7&lt;/p&gt;
  660. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61106-4" target="_blank"&gt;Risks of relying on uncertain carbon dioxide removal in climate policy&lt;/a&gt;, Bindl et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-61106-4&lt;/p&gt;
  661. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  662. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1566104" target="_blank"&gt;A climate of public readiness: climate adaptation action&lt;/a&gt;, Beery &amp;amp; Bergstrom, &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1566104" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1566104&lt;/p&gt;
  663. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17565529.2025.2514027" target="_blank"&gt;A review of the climate change-disaster-conflict nexus and humanitarian framing of complex displacement contexts&lt;/a&gt;, See et al., &lt;em&gt;Climate and Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/17565529.2025.2514027" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17565529.2025.2514027&lt;/p&gt;
  664. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000556" target="_blank"&gt;Bridging the gap: Promoting gender equity in climate change adaptation in the global south&lt;/a&gt;, Prakash et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000556" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000556&lt;/p&gt;
  665. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102484" target="_blank"&gt;Enhancing citizen climate resilience identification: A customization methodology to tailor comfort metrics to individual preferences&lt;/a&gt;, Palomo Amores et al., &lt;em&gt;Urban Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.uclim.2025.102484" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.uclim.2025.102484&lt;/p&gt;
  666. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1521507" target="_blank"&gt;Feature importance of climate vulnerability indicators with gradient boosting across five global cities&lt;/a&gt;, Cano Pecharroman et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1521507" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1521507&lt;/p&gt;
  667. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1598908" target="_blank"&gt;Institutional dynamics in climate change adaptation &amp;ndash; a bibliometric analysis&lt;/a&gt;, Jaisridhar et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1598908" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1598908&lt;/p&gt;
  668. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61394-w" target="_blank"&gt;Mainstreaming the local climate zone framework for climate-resilient cities&lt;/a&gt;, Yang et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-61394-w&lt;/p&gt;
  669. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-61285-0" target="_blank"&gt;Priorities for consent-based and well-supported climate relocations&lt;/a&gt;, Bower et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-61285-0&lt;/p&gt;
  670. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1465223" target="_blank"&gt;Refugees and host communities&amp;rsquo; vulnerability to climate and disaster risks in Rwanda&lt;/a&gt;, Dampha et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1465223" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1465223&lt;/p&gt;
  671. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fevo.2025.1536445" target="_blank"&gt;Risk and adaptation of socio-ecological systems to global change in the dry forests of Northeastern South America&lt;/a&gt;, Niemeyer et al., &lt;em&gt;Frontiers in Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fevo.2025.1536445" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fevo.2025.1536445&lt;/p&gt;
  672. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104150" target="_blank"&gt;Risk tolerance and climate change adaptation: A need for transparency in policy assumptions and implications&lt;/a&gt;, Brown, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104150" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104150&lt;/p&gt;
  673. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102500" target="_blank"&gt;Towards climate-responsive communities: Exploring the nonlinear relationship between residential morphology and land surface temperature&lt;/a&gt;, Ma et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102500&lt;/p&gt;
  674. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/wcc.70011" target="_blank"&gt;Using Cultural Heritage in Climate Adaptation: Fields of Application and Functions&lt;/a&gt;, Erbach, &lt;em&gt;WIREs Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/wcc.70011" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/wcc.70011&lt;/p&gt;
  675. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17565529.2025.2509816" target="_blank"&gt;Weather information sources, sharing platforms, and trustworthiness for climate change adaptation in Bangladesh, India, and Nepal&lt;/a&gt;, Chapagain et al., &lt;em&gt;Climate and Development&lt;/em&gt; 10.1080/17565529.2025.2509816&lt;/p&gt;
  676. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  677. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1611715" target="_blank"&gt;Future overheating risk in prisons in England and Wales using the UK climate projections&lt;/a&gt;, Sanderson et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1611715" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1611715&lt;/p&gt;
  678. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102670" target="_blank"&gt;Identifying impacts of extreme weather events on mental health in the Republic of Ireland using the Impact of Event Scale-Revised (IES-R) index and machine learning&lt;/a&gt;, Batool et al., &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2025.102670" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102670&lt;/p&gt;
  679. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  680. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000658" target="_blank"&gt;Challenges of pluralizing knowledge(s) in climate related decision-making&lt;/a&gt;, Mansur et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000658" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000658&lt;/p&gt;
  681. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jc022209" target="_blank"&gt;Drivers of Water Mass Volume Changes in the Nordic Seas (2005&amp;ndash;2020)&lt;/a&gt;, Almeida et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jc022209" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jc022209&lt;/p&gt;
  682. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/09644016.2025.2526906" target="_blank"&gt;The shame of the world in ordinary climate politics&lt;/a&gt;, Dillet, &lt;em&gt;Environmental Politics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/09644016.2025.2526906" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/09644016.2025.2526906&lt;/p&gt;
  683. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  684. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1177/20530196251334762" target="_blank"&gt;Losing glaciers: A call for emotional engagement and expanded collaboration in research on the ecological crisis&lt;/a&gt;, Varutti et al., &lt;em&gt;The Anthropocene Review&lt;/em&gt; 10.1177/20530196251334762&lt;/p&gt;
  685. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2506023122" target="_blank"&gt;Women climate scientists are connected, productive, and successful but have shorter careers&lt;/a&gt;, Martin et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2506023122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2506023122&lt;/p&gt;
  686. &lt;hr /&gt;
  687. &lt;h3&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  688. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.prod.website-files.com/660df44c73d9da2a5912020a/685b92e448fd57d38330281c_CCAG_NDCs%20as%20Levers%20For%20Prosperity_Health_Resilience.pdf" target="_blank"&gt;NDCs as levers for prosperity, health and resilience&lt;/a&gt;, &lt;/strong&gt;Denton et al, &lt;strong&gt;Climate Crisis Advisory Group&lt;/strong&gt;&lt;/p&gt;
  689. &lt;blockquote&gt;Current Nationally Determined Contributions (NDCs) are not meeting the urgency or scale of the climate crisis. On the present course, they leave the world heading towards 3&amp;deg;C of warming &amp;ndash; well beyond the 1.5&amp;deg;C target set in the Paris Agreement. This report positions NDCs as strategic national tools to drive inclusive growth, resilience, and public well-being. The authors present 10 transformative recommendations to help countries embed climate ambition into national development strategies. These are grouped under four themes: driving prosperity and stability, building healthy and resilient communities, ensuring effective and equitable implementation, and accelerating action and ambition. Collectively, they show how NDCs can become levers for green investment, job creation, and systemic reform &amp;ndash; offering a pathway from climate risk to shared, sustainable prosperity. Governments must use the NDC cycle as an opportunity not only to ratchet ambition, but to make climate action a cornerstone of economic and social policy.&lt;/blockquote&gt;
  690. &lt;p&gt;&lt;strong&gt;&lt;a href="https://deltacouncil.ca.gov/pdf/delta-plan/2025-06-26-delta-adapts-adaptation-plan.pdf" target="_blank"&gt;Delta Adapts: Creating a Climate Resilient Future. Sacramento-San Joaquin Delta Climate Change Adaptation Plan&lt;/a&gt;, &lt;/strong&gt;Vandever et al., &lt;strong&gt;Delta Stewardship Council&lt;/strong&gt;&lt;/p&gt;
  691. &lt;blockquote&gt;Through the adaptation plan, the Delta Stewardship Council established a model for science-based decision-making, coordination, and collaboration between the many partners in the Delta that can serve as a model for adapting to climate change. Delta Adapts builds on the Delta Plan through a first-ever comprehensive, regional approach to climate resilience and a commitment to collaborating on adaptation activities across federal, state, local, and regional levels for the Delta and Suisun Marsh (collectively, &amp;ldquo;the Delta&amp;rdquo;).&lt;/blockquote&gt;
  692. &lt;p&gt;&lt;strong&gt;&lt;a href="https://theicct.org/wp-content/uploads/2025/06/ID-349-%E2%80%93-Private-jets_report_final.pdf" target="_blank"&gt;Air and greenhouse gas pollution from private jets, 2023&lt;/a&gt;, &lt;/strong&gt;Daneil Sitompul and Dan Rutherford, &lt;strong&gt;International Council on Clean Transportation&lt;/strong&gt;&lt;/p&gt;
  693. &lt;blockquote&gt;While there are several high-fidelity emission inventories for commercial aviation, data on greenhouse gas (GHG) and air pollution from general aviation aircraft, notably private jets activity, remain limited. The authors fill this gap by estimating how much, and where, air and GHG pollution was emitted globally by private jets in 2023. The authors used both a top-down and bottom-up emissions inventory for private jet flights using a variety of data sources, including global flight trajectories, airport coordinates, and engine emission databases.&lt;/blockquote&gt;
  694. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.callendar.tech/en/post/two-trillion-dollars-question-short-term-climate-risks-global-infrastructure?referral=business-feed" target="_blank"&gt;The 2 Trillion Dollars Question. A Review of Short-Term Climate Risks for Global Infrastructures&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Callendar&lt;/strong&gt;&lt;/p&gt;
  695. &lt;blockquote&gt;Based on data from the Global Infrastructure Risk Model and Resilience Index (GIRI), the authors estimate that infrastructure assets worldwide face nearly $2 trillion in direct losses over the next decade due to climate-related hazards such as floods, heavy rainfall, storm surge and wind. In Europe, $338 billion could be lost in climate-related damage to infrastructure over the next 10 years, primarily affecting roads and railways ($174 billion), power infrastructure ($110 billion) and telecommunications ($46 billion). France is the most exposed European country and the fifth most exposed country globally. Adapting existing infrastructure often remains excessively complex, costly, or, in some cases, simply impossible. This is why timing is critical. A large share of the world&amp;rsquo;s infrastructure is now approaching, or has already exceeded, its intended lifespan. Roads, bridges, pipelines and power grids built during the mid-20th century are due for renewal. This creates a once-in-a-lifetime opportunity: when assets are already scheduled for rehabilitation or replacement, integrating climate resilience can be achieved at marginal additional cost, while significantly reducing future risks and delivering long-term co-benefits.&lt;/blockquote&gt;
  696. &lt;p&gt;&lt;strong&gt;&lt;a href="http://reports.gettyimages.com/VisualGPS-Visualizing-Sustainability-Report.pdf" target="_blank"&gt;Sustainability at the Crossroads Visualizing Sustainability&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Getty Images&lt;/strong&gt;&lt;/p&gt;
  697. &lt;blockquote&gt;Based on consumer research conducted over the last year, consumer attitudes toward sustainability have become increasingly complex. This research highlights a key tension; while consumers expect businesses to lead on climate action, they are also wary of empty promises and greenwashing. The data&amp;mdash;featured throughout the report&amp;mdash;highlights how consumer expectations around sustainability continue to evolve. While transparency and accountability remain important, the data indicates that brands are also navigating new challenges in communicating progress with today&amp;rsquo;s climate-conscious consumers. Climate change continues to be a universal concern, but concern for sustainability trails by a wide margin&amp;hellip;despite the relation. Extreme weather events, such as heat waves, floods, and fires which impact daily life, are most likely contributing to the strong global concern. While sustainability, which is less tangible, barely makes it into the top 10, even in eco-friendly Germany.&lt;/blockquote&gt;
  698. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.theccc.org.uk/wp-content/uploads/2025/06/Progress-in-reducing-emissions-2025-report-to-Parliament.pdf" target="_blank"&gt;Progress in reducing emissions 2025 report to Parliament&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Climate Change Committee&lt;/strong&gt;&lt;/p&gt;
  699. &lt;blockquote&gt;Emissions in the UK have been steadily decreasing, with levels in 2024 50.4% below those in 1990. The UK&amp;rsquo;s territorial emissions, including international aviation and shipping, were 413.7 MtCO2e in 2024, a 2.5% reduction from 2023, which marks the tenth consecutive year of sustained reduction in emissions, excluding the COVID-19 pandemic years 2020 and 2021. The emissions reduction in 2024 was driven by the electricity supply and industry sectors, with the UK&amp;rsquo;s last coal-fired electricity power station, Ratcliffe-on-Soar, closing in October 2024. This was partially offset by an increase in emissions from flying. As a result of this increase, aviation now contributes a greater share of total UK emissions than the entire electricity supply sector. Continued emissions growth in this sector could put future targets at risk. Over 80% of the required emissions savings between now and 2030 need to come from sectors other than energy supply.&lt;/blockquote&gt;
  700. &lt;hr /&gt;
  701. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  702. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  703. &lt;h3&gt;Suggestions&lt;/h3&gt;
  704. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  705. &lt;h3&gt;Previous edition&lt;/h3&gt;
  706. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_26.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  707. <link>https://skepticalscience.com/new_research_2025_27.html</link>
  708. <guid>https://skepticalscience.com/new_research_2025_27.html</guid>
  709. <pubDate>Thu, 3 Jul 2025 14:54:40 EST</pubDate>
  710. </item>  <item>
  711. <title>Take advantage of these tax credits before Congress kills them</title>
  712. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/06/take-advantage-of-these-tax-credits-before-congress-kills-them/"&gt;re-post from Yale Climate Connections by Samantha Harrington&lt;/a&gt;&lt;/p&gt;
  713. &lt;p class="has-drop-cap"&gt;Republicans in the U.S. Senate are working to pass their version of the budget reconciliation bill before Congress goes on holiday for July 4. As it stands, the bill would terminate most clean energy tax credits long before their original phase-out date in 2032.&lt;/p&gt;
  714. &lt;p&gt;The tax credits, which include money back on electric cars, electric appliances, energy efficiency improvements, and more, have a lot of public support. In&amp;nbsp;&lt;a href="https://climatecommunication.yale.edu/publications/climate-change-in-the-american-mind-politics-policy-fall-2024/toc/5/"&gt;a December 2024 survey&lt;/a&gt;, researchers at the Yale Program on Climate Change Communication, the publisher of this site, found that 91% of liberal Democrats, 70% of moderate or conservative Democrats, 42% of liberal or moderate Republicans, and 28% of conservative Republicans support tax rebates for electric vehicles. A Yale Climate Connections analysis found that&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/03/clean-energy-generates-major-economic-benefits-especially-in-red-states/"&gt;red states stood to benefit the most&lt;/a&gt;&amp;nbsp;from the law&amp;rsquo;s incentives to individuals and businesses.&amp;nbsp;&lt;/p&gt;
  715. &lt;p&gt;Some hoped that the Senate would save tax credits that the Republican-controlled House of Representatives proposed cutting in&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/06/two-major-ways-the-trump-administration-is-making-hurricane-evacuations-more-difficult/"&gt;their version of the budget bill that passed in May&lt;/a&gt;, but that has not been the case for consumer tax credits for EVs or home improvements. That said, senators have&amp;nbsp;&lt;a href="https://talkingpointsmemo.com/live-blog/backlash-over-big-beautiful-continues-in-congress"&gt;not yet voted on the bill&lt;/a&gt;, and because the Senate made substantial changes, the bill will need to return to the House before heading to President Donald Trump&amp;rsquo;s desk for his signature. So there is still time for constituents to let members of Congress know their thoughts about the proposed legislation.&lt;/p&gt;
  716. &lt;p&gt;If the Senate version of the bill does become law as-is, the credits won&amp;rsquo;t expire immediately. For the most part, consumers will have 180 days to take advantage of the credits before they&amp;rsquo;re fully terminated.&amp;nbsp;&lt;/p&gt;
  717. &lt;!--more--&gt;
  718. &lt;h3 class="wp-block-heading"&gt;Replace your combustion engine car with a new or used EV&lt;/h3&gt;
  719. &lt;p&gt;As the bill currently exists in the Senate, EV tax credits would expire either&amp;nbsp;&lt;a href="https://taxlawcenter.org/blog/senate-finance-bill-modifies-the-house-passed-approach-to-clean-energy-credits-but-also-includes-drastic-cuts-and-unworkable-rules"&gt;90 (for used cars) or 180 days (for new cars) after the bill becomes law&lt;/a&gt;. That means there&amp;rsquo;s still time to get up to $4,000 in the form of a tax credit for a used EV and $7,500 for a new one.&lt;/p&gt;
  720. &lt;p&gt;The clean vehicle credit is worth $7,500 and applies to new vehicles that:&lt;/p&gt;
  721. &lt;ul class="wp-block-list"&gt;
  722. &lt;li&gt;Are electric vehicles with batteries of at least seven kilowatt-hours or are hydrogen fuel cell vehicles&lt;/li&gt;
  723. &lt;li&gt;Cost less than $80,000 for vans, SUVs, and pickup trucks, or under $55,000 for all other vehicles&lt;/li&gt;
  724. &lt;li&gt;Completed assembly in the U.S., Canada, or Mexico.&amp;nbsp;&lt;/li&gt;
  725. &lt;li&gt;Meet requirements related to where battery components are manufactured and the source of critical minerals used in the batteries.&amp;nbsp;&lt;/li&gt;
  726. &lt;/ul&gt;
  727. &lt;p&gt;To qualify for the tax credit, the adjusted gross income of the person or people purchasing the car must be under $300,000 if their tax status is married filing jointly, under $225,000 for head of household status, or under $150,000 for single or married filing separately status.&lt;/p&gt;
  728. &lt;p&gt;If you&amp;rsquo;re interested in buying a used car, similar restrictions apply &amp;mdash; but with lower income and vehicle cost thresholds. Your adjusted gross income must be under $150,000 if your tax status is married filing jointly, or under $75,000 if your filing status is single or married filing separately.&lt;/p&gt;
  729. &lt;p&gt;For a vehicle to qualify for the credit for previously owned clean vehicles, it must also:&lt;/p&gt;
  730. &lt;ul class="wp-block-list"&gt;
  731. &lt;li&gt;Meet the requirements for a clean vehicle used in the clean vehicle credit&lt;/li&gt;
  732. &lt;li&gt;Have a model year at least two years earlier than the date of sale&lt;/li&gt;
  733. &lt;li&gt;Weigh less than 14,000 pounds&lt;/li&gt;
  734. &lt;li&gt;Cost less than $25,000.&lt;/li&gt;
  735. &lt;/ul&gt;
  736. &lt;p&gt;This credit is for either $4,000 or 30% of the cost of the vehicle, whichever is smaller.&lt;/p&gt;
  737. &lt;p&gt;If you own a business or nonprofit, you might also want to consider buying an EV for that organization. The&amp;nbsp;&lt;a href="https://www.irs.gov/credits-deductions/commercial-clean-vehicle-credit"&gt;commercial clean vehicles credit&lt;/a&gt;&amp;nbsp;gives businesses and tax-exempt organizations (like churches, universities, and other nonprofits) money back for purchasing a qualified vehicle. Businesses can get a $7,500 credit for a small vehicle or up to $40,000 for a large vehicle like a school bus or semitruck.&lt;/p&gt;
  738. &lt;h4 class="wp-block-heading"&gt;Put an EV charging station in your home or small business&lt;/h4&gt;
  739. &lt;p&gt;Currently, the&amp;nbsp;&lt;a href="https://www.irs.gov/credits-deductions/alternative-fuel-vehicle-refueling-property-credit"&gt;alternative fuel vehicle refueling property credit&lt;/a&gt;&amp;nbsp;allows individuals and businesses that install EV charging stations to get up to 30% (up to a maximum of $1,000 for individuals and $100,000 for businesses) off the cost of the project in the form of tax credits. The Senate bill would kill this credit, and if passed, the credit would&amp;nbsp;&lt;a href="https://heatmap.news/politics/senate-finance-big-beautiful-bill-ira?utm_campaign=heatmap_am&amp;amp;utm_medium=email&amp;amp;_hsenc=p2ANqtz--KNkLzfKu4vsTcvWp8nsF44hrBeTdjTLdshFibbj6qQcjjrLL50m3AjA0h3BlxDCG8faRTZc5Rc_53brole49dgjKG6A&amp;amp;_hsmi=367124679&amp;amp;utm_content=367124679&amp;amp;utm_source=hs_email"&gt;end one year from the passage date&lt;/a&gt;.&lt;/p&gt;
  740. &lt;h4 class="wp-block-heading"&gt;Improve your home&amp;rsquo;s energy efficiency with new windows, insulation, and doors&lt;/h4&gt;
  741. &lt;p&gt;Currently, the&amp;nbsp;&lt;a href="https://www.irs.gov/credits-deductions/energy-efficient-home-improvement-credit"&gt;energy efficient home improvement credit&lt;/a&gt;&amp;nbsp;gives homeowners who make qualifying purchases like energy efficient windows, home energy audits, heat pumps, and a tax credit worth 30% of the cost up to $1,200 for energy-efficient property costs and certain energy-efficient home improvements. The cap resets each year, which will be handy if the tax credit manages to survive into 2026. The bill would terminate the credits 180 days after the bill passes.&amp;nbsp;&lt;/p&gt;
  742. &lt;p&gt;&lt;strong&gt;Energy audit&lt;/strong&gt;&lt;/p&gt;
  743. &lt;p&gt;Home energy audits help you understand how much energy your home uses and improvements that can reduce that use. The energy-efficient home improvement tax credit will help cover the cost of home energy audits. The credit covers 30% of the cost of a home energy audit and is capped at $150.&lt;/p&gt;
  744. &lt;p&gt;&amp;ldquo;A home energy assessment should be your first step before making energy-saving home improvements, as well as before adding a renewable energy system to your home,&amp;rdquo; according to the&amp;nbsp;&lt;a href="https://www.energy.gov/energysaver/home-energy-assessments#:~:text=A%20professional%20home%20energy%20assessment,and%20non%2Dtoxic%20smoke%20pens."&gt;U.S. Department of Energy&lt;/a&gt;.&lt;/p&gt;
  745. &lt;p&gt;&lt;strong&gt;New wiring&lt;/strong&gt;&lt;/p&gt;
  746. &lt;p&gt;The tax credit also applies to rewiring if you have an older home that isn&amp;rsquo;t prepared to support new electric appliances. Contact a trusted electrician or contractor and tell them that you&amp;rsquo;re hoping to replace your gas furnace or other appliances with their electricity-based equivalents in the near future. Ask if those upgrades will require a new electric panel or wiring.&amp;nbsp;&lt;/p&gt;
  747. &lt;p&gt;&lt;span&gt;Improve insulation in your home&lt;/span&gt;&lt;/p&gt;
  748. &lt;p&gt;A well-insulated home stays warmer in the winter and cooler in the summer. Improving your home&amp;rsquo;s insulation reduces your heating and cooling needs, potentially enabling you to purchase a smaller, cheaper rooftop solar system if you go that route.&lt;/p&gt;
  749. &lt;p&gt;&lt;span&gt;New windows and exterior doors&lt;/span&gt;&lt;/p&gt;
  750. &lt;p&gt;With the tax credit, homeowners can get up to $250 back per exterior door ($500 total), and $600 total back for exterior windows and skylights.&lt;/p&gt;
  751. &lt;h4 class="wp-block-heading"&gt;Replace your furnace, AC, and water heater with a heat pump&lt;/h4&gt;
  752. &lt;p&gt;Heat pumps can both cool and heat your home. In the summer, they pull heat from the air of your home and move it outside. In the winter, they pull heat from the outdoor air into your home to warm it. Heat pumps are more energy-efficient than conventional air conditioning or heating, and they run on electricity rather than natural gas or oil.&amp;nbsp;&lt;/p&gt;
  753. &lt;p&gt;Homeowners can receive up to $2,000 per year for qualified heat pumps, water heaters, biomass stoves, or biomass boilers. This $2,000 is separate from the $1,200 cap on other home improvements.&lt;/p&gt;
  754. &lt;p&gt;&lt;a href="https://www.energy.gov/energysaver/heat-pump-systems"&gt;Several different kinds of heat pumps&lt;/a&gt;&amp;nbsp;are available, so work with your contractor or energy efficiency professionals to determine which type makes the most sense for your climate and living situation.&lt;/p&gt;
  755. &lt;h4 class="wp-block-heading"&gt;Get a renewable energy system to power your home&lt;/h4&gt;
  756. &lt;p&gt;Not every home is suitable for a renewable energy system, but if your property can support one, the residential clean energy credit can help you pay for it &amp;mdash; for now. Systems that qualify for&amp;nbsp;&lt;a href="https://irc.bloombergtax.com/public/uscode/doc/irc/section_25d"&gt;the credit&lt;/a&gt;&amp;nbsp;include:&lt;/p&gt;
  757. &lt;ul class="wp-block-list"&gt;
  758. &lt;li&gt;Home solar&lt;/li&gt;
  759. &lt;li&gt;Qualified battery storage&lt;/li&gt;
  760. &lt;li&gt;Solar water heating&lt;/li&gt;
  761. &lt;li&gt;Fuel cells&lt;/li&gt;
  762. &lt;li&gt;Geothermal heat pumps&lt;/li&gt;
  763. &lt;li&gt;Small wind energy&lt;/li&gt;
  764. &lt;/ul&gt;
  765. &lt;p&gt;The residential clean energy tax credit amount is 30% of the cost of a qualifying system, including installation. As written by the Senate, this credit would expire 180 days after the bill is passed.&lt;/p&gt;
  766. &lt;h4 class="wp-block-heading"&gt;Savings will ripple through energy bills&lt;/h4&gt;
  767. &lt;p&gt;In order to get these tax credits before they&amp;rsquo;re terminated, consumers will have to pony up large amounts of money on short notice. But in addition to getting money back on taxes, more efficient homes and cars can lead to savings on energy bills. Congress&amp;rsquo; budget reconciliation bill, as written, is predicted to increase energy costs as the once-booming renewable energy industry faces cancelled investments and projects. For consumers who can afford it, the next few months might just be the best time to make energy efficiency investments.&lt;/p&gt;</description>
  768. <link>https://skepticalscience.com/take-tax-credits-before-congress-kills.html</link>
  769. <guid>https://skepticalscience.com/take-tax-credits-before-congress-kills.html</guid>
  770. <pubDate>Wed, 2 Jul 2025 16:15:03 EST</pubDate>
  771. </item>  <item>
  772. <title>What do the latest WMO temperature projections imply for 1.5C?</title>
  773. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://www.theclimatebrink.com/p/what-do-the-latest-wmo-temperature"&gt;re-post from the Climate Brink&lt;/a&gt;&lt;/p&gt;
  774. &lt;p&gt;&lt;span&gt;The WMO recently published their WMO&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://wmo.int/files/wmo-global-annual-decadal-climate-update-2025-2029"&gt;Global Annual to Decadal Climate Update&lt;/a&gt;&lt;span&gt;&amp;nbsp;that covers the period from 2025 to 2029. This is a regular assessment of near-term dynamic model projections that assess both the forced climate response and short-term natural variability (e.g.&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table"&gt;ENSO&lt;/a&gt;&lt;span&gt;&amp;nbsp;and&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.gfdl.noaa.gov/multidecadal-climate-changes/"&gt;AMV&lt;/a&gt;&lt;span&gt;).&lt;/span&gt;&lt;/p&gt;
  775. &lt;p&gt;This new update forecasts relatively high global temperatures to likely continue through 2029, with the central estimate form most years similar to what was seen in 2023 and 2024. The figure below shows the 2025-2029 forecast in blue, as well as a &amp;ldquo;hindcast&amp;rdquo; of past model performance (green) compared to observations (black).&lt;/p&gt;
  776. &lt;div class="captioned-image-container"&gt;
  777. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/$s_!70BN!,w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F92942c4b-9b67-443d-8769-c743df6e69fc_1954x1052.png" alt="" width="550" height="296" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/92942c4b-9b67-443d-8769-c743df6e69fc_1954x1052.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:784,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:696923,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:false,&amp;quot;topImage&amp;quot;:true,&amp;quot;internalRedirect&amp;quot;:&amp;quot;https://www.theclimatebrink.com/i/165369936?img=https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F92942c4b-9b67-443d-8769-c743df6e69fc_1954x1052.png&amp;quot;,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  778. &lt;em&gt;Figure 4 from the&amp;nbsp;&lt;a rel="" href="https://wmo.int/sites/default/files/2025-05/WMO_GADCU_2025-2029_Final.pdf"&gt;WMO report&lt;/a&gt;.&lt;/em&gt;&lt;/div&gt;
  779. &lt;p&gt;Despite the central estimate being high, large uncertainties remain; it is hard for these near-term climate projections to firmly rule out temperatures either as low as what was experienced in 2020, or temperatures considerably higher than 2023 and 2024.&lt;/p&gt;
  780. &lt;p&gt;&lt;span&gt;If we use the central estimates from the report, however, they would likely imply a crossing date for 1.5C (using the IPCC&amp;rsquo;s 20-year centered mean approach) that would be earlier than&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/analysis-what-record-global-heat-means-for-breaching-the-1-5c-warming-limit/"&gt;previously expected&lt;/a&gt;&lt;span&gt;.&lt;/span&gt;&lt;/p&gt;
  781. &lt;!--more--&gt;
  782. &lt;h3 class="header-anchor-post"&gt;Implications for 1.5C exceedance&lt;/h3&gt;
  783. &lt;p&gt;The recent IPCC AR6 report included two different estimates of crossing years for 1.5C: ScenarioMIP, which gave a best-estimate of 2031 (with a range of 2021 to 2046) under the current-policies-continue SSP2-4.5 emissions scenario, and the SSP2-4.5 Assessed Warming Projections which gave a best-estimate of 2031 (2024 to 2043).&lt;/p&gt;
  784. &lt;p&gt;&lt;span&gt;In addition, I&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/analysis-what-record-global-heat-means-for-breaching-the-1-5c-warming-limit/"&gt;published an analysis&lt;/a&gt;&lt;span&gt;&amp;nbsp;in mid 2024 that combined observations and models using a recent baseline, and found a similar best-estimate exceedance date of 2030 (2028 to 2036).&lt;/span&gt;&lt;/p&gt;
  785. &lt;p&gt;If we use the WMO projections instead, and assume that global warming continues at the historical rate since 1970 of 0.2C per decade after 2029, we get an exceedance date of 2028 as shown in the figure below.&lt;/p&gt;
  786. &lt;div class="captioned-image-container"&gt;
  787. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/$s_!_7x9!,w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F1db79bc4-57b1-4831-a1f6-e61d379a0f15_5947x2937.png" alt="" width="550" height="272" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/1db79bc4-57b1-4831-a1f6-e61d379a0f15_5947x2937.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:719,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:442154,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:&amp;quot;https://www.theclimatebrink.com/i/165369936?img=https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F1db79bc4-57b1-4831-a1f6-e61d379a0f15_5947x2937.png&amp;quot;,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  788. &lt;/div&gt;
  789. &lt;p&gt;However, this depends on a pretty big set of assumptions. The uncertainty in the WMO forecast is quite large, which could easily move the exceedance date earlier or later. We might not see steady warming after 2029; natural variability could contribute to a plateauing rather than a continued warming. In that case, as shown in the figure below, we would still have an exceedance year in 2030 rather than 2028.&lt;/p&gt;
  790. &lt;div class="captioned-image-container"&gt;
  791. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/$s_!lyjV!,w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe796194c-7f97-4871-8fea-c5632380a5e9_5947x2937.png" alt="" width="550" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/e796194c-7f97-4871-8fea-c5632380a5e9_5947x2937.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:719,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:405228,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:&amp;quot;https://www.theclimatebrink.com/i/165369936?img=https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe796194c-7f97-4871-8fea-c5632380a5e9_5947x2937.png&amp;quot;,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  792. &lt;/div&gt;
  793. &lt;p&gt;I personally think that flat global temperatures for a decade after 2029 is rather unlikely, and the new WMO forecast would definitely favor an earlier date the previously thought.&lt;/p&gt;
  794. &lt;p&gt;&lt;span&gt;Its worth noting that the 2028 estimate here is a tad later than the 2027 value I mentioned in an&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.washingtonpost.com/climate-environment/2025/05/29/15degrees-celsius-world-meteorological-organization/"&gt;interview with the Washington Post&lt;/a&gt;&lt;span&gt;&amp;nbsp;a few weeks back. I had yet to digitize the underlying data (which, as an aside, the WMO should really provide alongside their report!) and was relying on a&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.ft.com/content/1bf97b4f-786a-4277-8901-df84a6971488"&gt;Financial Times figure&lt;/a&gt;&lt;span&gt;&amp;nbsp;that incorrectly implied that the 5-year central estimate mean would be 1.6C from 2025-2029, rather than the 1.55C that is actually in the WMO report.&lt;/span&gt;&lt;/p&gt;
  795. &lt;p&gt;However, the implied exceedance year using the properly digitized values (coupled with a conservative post-2029 warming trend) still leads to a notable reduction in exceedance (2028) year compared with prior estimates (~2030).&lt;/p&gt;</description>
  796. <link>https://skepticalscience.com/latest-wmo-15-C.html</link>
  797. <guid>https://skepticalscience.com/latest-wmo-15-C.html</guid>
  798. <pubDate>Mon, 30 Jun 2025 14:52:06 EST</pubDate>
  799. </item>  <item>
  800. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #26</title>
  801. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 28 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 22, 2025 thru Sat, June 28, 2025.&lt;/div&gt;
  802. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  803. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (10 articles)&lt;/strong&gt;&lt;/p&gt;
  804. &lt;ul&gt;
  805. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://science.feedback.org/heatwave-england-bring-temperatures-above-32c-89-6f-study-finds-climate-change-made-this-100-times-more-likely/" target="_blank"&gt;Heatwave in England to bring temperatures above 32&amp;deg;C (89.6&amp;deg;F) &amp;ndash; study finds climate change made this 100 times more likely&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Science Feedback, Editor: Darrik Burns, June 20, 2025.&lt;/li&gt;
  806. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.winnipegfreepress.com/opinion/analysis/2025/06/21/wildfires-climate-change-cause-and-effect" target="_blank"&gt;Wildfires: climate change cause and effect&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Canadians think about a recent object lesson on climate change. &lt;/em&gt; Winnipeg Free Press, David McLaughlin, Jun 21, 2025.&lt;/li&gt;
  807. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/its-hot-fossil-fuels-made-it-hotter" target="_blank"&gt;It's hot. Fossil fuels made it hotter.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;And it'll still be the coldest summer of your life if Trump's "Big, Beautiful Bill" passes this week.&lt;/em&gt; HEATED, Emily Atkin, Jun 23, 2025.&lt;/li&gt;
  808. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-06-tree-species-climate-threat-modest.html" target="_blank"&gt;Most tree species face serious climate threat even under modest warming, study reveals&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org - latest science and technology news stories, Spanish National Research Council, Jun 24, 2025.&lt;/li&gt;
  809. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://news.climate.columbia.edu/2025/06/25/global-climate-risk-index-ranks-188-countries-by-vulnerability-and-access-to-finance/" target="_blank"&gt;Global Climate Risk Index Ranks 188 Countries by Vulnerability and Access to Finance&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; State of the Planet, Columbia Climate School, Jun 25, 2025.&lt;/li&gt;
  810. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.conservation.org/blog/can-mongolia-s-oldest-traditions-survive-a-changing-climate" target="_blank"&gt;Can Mongolia`s oldest traditions survive a changing climate?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Conservation International is helping herders restore the Mongolian steppe.&lt;/em&gt; Climate Change, Will McCarry, Jun 25, 2025.&lt;/li&gt;
  811. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/06/unprecedented-june-heat-along-the-northeast-urban-corridor-brought-to-you-by-climate-change/" target="_blank"&gt;Unprecedented June heat along the Northeast urban corridor, brought to you by climate change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Cities from Philly to Boston break the 100-degree mark, in some cases way ahead of schedule. &lt;/em&gt; Yale Climate Connections, Bob Henson, Jun 25, 2025.&lt;/li&gt;
  812. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/06/26/climate/climate-heat-intensity.html?unlocked_article_code=1.R08.jgSK.WP2y3kQAD7mb&amp;amp;smid=url-share" target="_blank"&gt;Global Warming Is Speeding Up and the World Is Feeling the Effects&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; New York Times, Sachi Kitajima Mulkey, Claire Brown and Mira Rojanasakul, Jun 26, 2025.&lt;/li&gt;
  813. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/ng-interactive/2025/jun/27/tipping-points-antarctica-arctic-sea-ice-polar-scientist" target="_blank"&gt;`It looks more likely with each day we burn fossil fuels`: polar scientist on Antarctic tipping points&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Despite working on polar science for the British Antarctic Survey for 20 years, Louise Sime finds the magnitude of potential sea-level rise hard to comprehend&lt;/em&gt; The Guardian, Jonathan Watts, Jun 27, 2025.&lt;/li&gt;
  814. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/06/27/climate/a-special-climate-visa-people-in-tuvalu-are-applying-fast.html?unlocked_article_code=1.SU8.j2Cs.jgp_DMNeWkS7&amp;amp;smid=url-share" target="_blank"&gt;A Special `Climate` Visa? People in Tuvalu Are Applying Fast.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Nearly half the citizens of the tiny Pacific Island nation have already applied in a lottery for Australian visas amid an existential threat from global warming and sea-level rise.&lt;/em&gt; NYT &amp;gt; Science, Max Bearak, Jun 28, 2025.&lt;/li&gt;
  815. &lt;/ul&gt;
  816. &lt;!--more--&gt;
  817. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (4 articles)&lt;/strong&gt;&lt;/p&gt;
  818. &lt;ul&gt;
  819. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/ng-interactive/2025/jun/24/tipping-points-climate-crisis-expert-doomerism-wealth" target="_blank"&gt;`This is a fight for life`: climate expert on tipping points, doomerism and using wealth as a shield&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Founding director of End Climate Silence Dr. Genevieve Guenther talks to the Guardian about the need to discuss catastrophic risks when communicating about the climate crisis.&lt;/em&gt; The Guardian, Jonathan Watts, Jun 24, 2025.&lt;/li&gt;
  820. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/uk-news/2025/jun/26/met-office-should-name-storms-after-fossil-fuel-companies-say-campaigners" target="_blank"&gt;Met Office should name storms after fossil fuel companies, say campaigners&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Storm naming competition raises idea to remind public of link between fossil fuels and extreme weather&lt;/em&gt; The Guardian, Helena Horton, Jun 26, 2025.&lt;/li&gt;
  821. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://cleantechnica.com/2025/06/27/as-a-climate-messenger-you-need-to-build-trust/" target="_blank"&gt;As A Climate Messenger, You Need To Build Trust&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; CleanTechnica, Carolyn Fortuna, Jun 27, 2025.&lt;/li&gt;
  822. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/opinion/energy-environment/5371565-humor-science-advocacy-campaign/" target="_blank"&gt;An inconvenient joke? The case for comedy in the climate crisis.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; TheHill.com, Michael Oppenheimer, opinion contributor, Jun 27, 2025.&lt;/li&gt;
  823. &lt;/ul&gt;
  824. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (3 articles)&lt;/strong&gt;&lt;/p&gt;
  825. &lt;ul&gt;
  826. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/OrcaypKuuZg?si=HdU2q6kgzBqAnJy7" target="_blank"&gt;Silencing Science: Trump's War on Our Climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; ClimateAdam on Youtube, Adam Levy, June 20, 2025.&lt;/li&gt;
  827. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thestarphoenix.com/opinion/opinion-on-moral-dissonance-in-times-of-climate-change" target="_blank"&gt;Opinion: On moral dissonance in times of climate change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Ruminations on inspired by recent research on climate anxiety, and how the reasons for that anxiety are ignored by leadership. &lt;/em&gt; Saskatoon StarPhoenix, Steve Bartlett, Jun 21, 2025.&lt;/li&gt;
  828. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/us-news/2025/jun/28/noaa-cuts-hurricane-forecasting-climate" target="_blank"&gt;Sudden loss of key US satellite data could send hurricane forecasting back `decades`&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists left scrambling amid hurricane season after defense department says it will drop irreplaceable program&lt;/em&gt; US news The Guardian, Eric Holthaus, Jun 28, 2025.&lt;/li&gt;
  829. &lt;/ul&gt;
  830. &lt;p&gt;&lt;strong&gt;Climate Science and Research (3 articles)&lt;/strong&gt;&lt;/p&gt;
  831. &lt;ul&gt;
  832. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/ClimateAdam-silencing-science-trump-war-on-our-climate.html" target="_blank"&gt;Climate Adam - Silencing Science: Trump's War on Our Climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Adam Levy speaks with climate scientists directly affected by the US administration's war for climate ignorance. &lt;/em&gt; Skeptical Science, Climate Adam, Jun 25, 2025.&lt;/li&gt;
  833. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-06-ocean-patterns-key-accurate-tropical.html" target="_blank"&gt;Ocean warming patterns key to accurate tropical cyclone climate projections&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Chinese Academy of Sciences, Jun 26, 2025.&lt;/li&gt;
  834. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_26.html" target="_blank"&gt;Skeptical Science New Research for Week #26 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;As evidenced in this week's collection, the pipeline of US federally funded climate research is slowing to a trickle.&lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Jun 26, 2025.&lt;/li&gt;
  835. &lt;/ul&gt;
  836. &lt;p&gt;&lt;strong&gt;Miscellaneous (3 articles)&lt;/strong&gt;&lt;/p&gt;
  837. &lt;ul&gt;
  838. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_25.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #25&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 15, 2025 thru Sat, June 21, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler &amp;amp; Doug Bostrom, Jun 22, 2025.&lt;/li&gt;
  839. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://arstechnica.com/science/2025/06/ars-live-climate-science-in-an-increasingly-hot-world/" target="_blank"&gt;Ars Live: What`s up with the sudden surge in temperatures?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Science - Ars Technica, John Timmer, Jun 25, 2025.&lt;/li&gt;
  840. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.ipie.info/research/sr2025-1" target="_blank"&gt;Information Integrity about Climate Science: A Systematic Review&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; International Panel on the Information Environment, Elbeyi et al., 06/2025.&lt;/li&gt;
  841. &lt;/ul&gt;
  842. &lt;p&gt;&lt;strong&gt;Climate Law and Justice (2 articles)&lt;/strong&gt;&lt;/p&gt;
  843. &lt;ul&gt;
  844. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/06/22/climate/oil-industry-anti-slapp-climate-lawsuits.html?unlocked_article_code=1.Q08.fQEZ.MOLDqHZa58dM&amp;amp;smid=url-share" target="_blank"&gt;Oil Companies Fight Climate Lawsuits by Citing Free Speech&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The firms say their First Amendment rights are being violated when cities and states sue and accuse them of spreading misinformation about climate change.&lt;/em&gt; NYT, Karen Zraick and Sachi Kitajima Mulkey, Jun 22, 2025.&lt;/li&gt;
  845. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/28062025/class-action-lawsuit-against-epa-to-restore-climate-environmental-grants/" target="_blank"&gt;A Class-Action Lawsuit Aims to Restore Climate and Environmental Grants&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The lawsuit claims the Trump administration violated the separation of powers when it ordered the cancellation of $3 billion in grants for community-based projects.&lt;/em&gt; Inside Climate News, Amy Green, Jun 28, 2025.&lt;/li&gt;
  846. &lt;/ul&gt;
  847. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (1 article)&lt;/strong&gt;&lt;/p&gt;
  848. &lt;ul&gt;
  849. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://reportearth.substack.com/p/nearer-and-nearer-to-the-15c-carbon" target="_blank"&gt;Nearer and nearer to the 1.5C carbon limit&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Carbon conundrums, confusions, and complexities.&lt;/em&gt; ReportEarth, Chris Mooney, June 22, 2025.&lt;/li&gt;
  850. &lt;/ul&gt;
  851. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (1 article)&lt;/strong&gt;&lt;/p&gt;
  852. &lt;ul&gt;
  853. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.climatechangenews.com/2025/06/20/how-sophisticated-climate-misinformation-gets-to-the-heart-of-power/" target="_blank"&gt;How `sophisticated` climate misinformation gets to the heart of power&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The fossil fuel industry and right-wing populists are increasingly targeting key policy-makers through backdoor channels, according to a new report&lt;/em&gt; Climate Home News, Matteo Civillini, Jun 20, 2025.&lt;/li&gt;
  854. &lt;/ul&gt;
  855. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Solutions (1 article)&lt;/strong&gt;&lt;/p&gt;
  856. &lt;ul&gt;
  857. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/rebutting-33-false-claims-about-solar-wind-ev-recap.html" target="_blank"&gt;Rebutting 33 False Claims About Solar, Wind, and Electric Vehicles - Recap&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The how and why of Skeptical Science's collaboration with the Sabin Center for Climate Change Law to adapt a collection of rebuttals against 33 harmful myths about climate solutions. &lt;/em&gt; Skeptical Science, Baerbel Winkler, Jun 24, 2025.&lt;/li&gt;
  858. &lt;/ul&gt;
  859. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  860. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_26.html</link>
  861. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_26.html</guid>
  862. <pubDate>Sun, 29 Jun 2025 10:49:44 EST</pubDate>
  863. </item>  <item>
  864. <title>Fact brief - Are human CO2 emissions driving current global warming?</title>
  865. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  866. &lt;h3&gt;Are human CO&lt;sub&gt;2&lt;/sub&gt; emissions driving current global warming?&lt;/h3&gt;
  867. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Yes-200px.jpg" alt="Yes" width="200" height="59" /&gt;While many natural factors influence Earth&amp;rsquo;s climate, human emissions of heat-trapping carbon dioxide are driving today&amp;rsquo;s global warming.&lt;/p&gt;
  868. &lt;p&gt;Scientists have conducted detailed studies of climate &amp;ldquo;forcings,&amp;rdquo; or the factors impacting global temperatures, especially with the past 50 years of satellite data. Long-term natural forcings, such as changes in Earth&amp;rsquo;s orbit or tectonic movement, take tens of thousands of years. They cannot explain the pace of recent warming.&lt;/p&gt;
  869. &lt;p&gt;More immediate, smaller-impact changes occur in shorter-term cycles and cancel out over time. Solar cycles and weather patterns such as El Nino and El Nina manifest as irregular oscillations in temperature graphs.&lt;/p&gt;
  870. &lt;p&gt;In contrast, human CO&lt;sub&gt;2&lt;/sub&gt; emissions have increased by 50% in less than 200 years, from 290 ppm to 430 ppm. Today&amp;rsquo;s global temperatures are 1.5&amp;deg;C (2.6&amp;deg;F) warmer than the pre-industrial average. The long-term upward trend in today&amp;rsquo;s temperatures can only be explained by the concurrent human-caused rise in atmospheric CO&lt;sub&gt;2&lt;/sub&gt;.&lt;/p&gt;
  871. &lt;p&gt;&lt;a href="https://sks.to/driver" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/are-human-co2-emissions-driving-current-global-warming/" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  872. &lt;hr /&gt;
  873. &lt;p&gt;This fact brief is responsive to quotes such as &lt;a href="https://archive.md/L39dK#selection-649.0-649.322" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  874. &lt;hr /&gt;
  875. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  876. &lt;p&gt;NASA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250625182600/https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121" target="_blank"&gt;Carbon Dioxide&lt;/a&gt;&lt;/p&gt;
  877. &lt;p&gt;NASA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250625182547/https://climate.nasa.gov/vital-signs/global-temperature/?intent=121" target="_blank"&gt;Global Temperature&lt;/a&gt;&lt;/p&gt;
  878. &lt;p&gt;NASA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250427001905/https://earthobservatory.nasa.gov/features/GlobalWarming/page4.php" target="_blank"&gt;Is current warming natural?&lt;/a&gt;&lt;/p&gt;
  879. &lt;p&gt;EPA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250620233744/https://www.epa.gov/climatechange-science/causes-climate-change" target="_blank"&gt;Causes of Climate Change&lt;/a&gt;&lt;/p&gt;
  880. &lt;p&gt;U.S. Global Change Research Program&amp;nbsp;&lt;a href="https://nca2018.globalchange.gov/chapter/2/"&gt;FOURTH NATIONAL CLIMATE ASSESSMENT&lt;/a&gt;&lt;/p&gt;
  881. &lt;!--more--&gt;
  882. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer "yes/no" answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://gigafact.org/skeptical-science" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  883. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact Quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  884. <link>https://skepticalscience.com/fact-brief-driver.html</link>
  885. <guid>https://skepticalscience.com/fact-brief-driver.html</guid>
  886. <pubDate>Tue, 1 Jul 2025 10:13:18 EST</pubDate>
  887. </item>  <item>
  888. <title>Skeptical Science New Research for Week #26 2025</title>
  889. <description>&lt;h3&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/h3&gt;
  890. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1073/pnas.2411904122" target="_blank"&gt;Increased sea-level contribution from northwestern Greenland for models that reproduce observations&lt;/a&gt;&lt;/strong&gt;, Badgeley et al.,&amp;nbsp;&lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt;&lt;/p&gt;
  891. &lt;blockquote&gt;
  892. &lt;p&gt;&lt;em&gt;The Greenland Ice Sheet has been thinning over the past several decades and is expected to contribute significantly to sea-level rise over the coming century. Ice flow models that make these projections, however, tend to underestimate the amount of mass lost from the ice sheet compared to observations, which complicates adaptation and mitigation planning in coastal regions. Here, we constrain a model of northwestern Greenland with a time series of satellite-derived surface velocity data and time-dependent physics to infer unknown ice properties. The model reproduces observed mass loss over the past 13 y within uncertainty. This model&amp;mdash;constrained by more data&amp;mdash;leads to about 8 to 17% greater sea-level rise contribution from this region by 2100.&lt;/em&gt;&lt;/p&gt;
  893. &lt;/blockquote&gt;
  894. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;&lt;/strong&gt;, Mascaro et al.,&amp;nbsp;&lt;em&gt;Geophysical Research Letters&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  895. &lt;blockquote&gt;
  896. &lt;p&gt;&lt;em&gt;The magnitude and frequency of heavy precipitation are expected to increase under warming temperatures caused by climate change. These trends have emerged in observational records but with much larger evidence on a daily rather than a subdaily scale. Here, we quantify long-term changes in heavy precipitation frequency in the United States using hourly observations in 1949&amp;ndash;2020 from 332 gauges. We demonstrate that, when analyzed collectively, the frequencies of heavy precipitation at multiple durations from hourly to daily exhibit an increase that cannot be explained by natural climate variability. Upward trends are significant at &amp;sim;20%&amp;ndash;40% of the gauges throughout the country except for the coastal western and southeastern regions, with higher percentages for longer durations. We also show that the frequency of hourly heavy precipitation has mainly grown after &amp;sim;2000, thus explaining the limited evidence of trends at the subdaily scale reported in past studies.&lt;/em&gt;&lt;/p&gt;
  897. &lt;p&gt;&lt;sup&gt;&lt;span&gt;&lt;span&gt;&lt;em&gt;Giuseppe Mascaro thanks funding from the U.S. National Science Foundation (NSF) awards #2212702: &amp;ldquo;CAS-Climate: A Novel Process-Driven Method for Flood Frequency Analysis Based on Mixed Distributions&amp;rdquo; and #2221803: &amp;ldquo;Collaborative Research: CAS&amp;mdash;Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms.&amp;rdquo;&lt;/em&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/sup&gt;&lt;/p&gt;
  898. &lt;/blockquote&gt;
  899. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02447-2" target="_blank"&gt;Battery electric vehicles show the lowest carbon footprints among passenger cars across 1.5&amp;ndash;3.0&amp;thinsp;&amp;deg;C energy decarbonisation pathways&lt;/a&gt;&lt;/strong&gt;, &amp;Scaron;imaitis et al.,&amp;nbsp;&lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  900. &lt;blockquote&gt;
  901. &lt;p&gt;&lt;em&gt;Passenger car carbon footprints are highly sensitive to future energy systems, a factor often overlooked in life cycle assessment. We use a time-dependent prospective life cycle assessment to enhance carbon footprints under four 1.5&amp;ndash;3.0&amp;thinsp;&amp;deg;C decarbonisation pathways for electricity, fuel, and hydrogen from an energy-based integrated assessment model. Across 5000 comparative cases, battery electric vehicles consistently have the lowest carbon footprints compared to hybrid, plug-in hybrid, and fuel-cell vehicles. For example, battery electric vehicles show an average 32 to 47% lower footprint than hybrid combustion in 3.0&amp;thinsp;&amp;deg;C and 1.5&amp;thinsp;&amp;deg;C climate-compatible futures, respectively. This is driven by greater projected decarbonisation of electricity compared to fossil-dominated fuels and hydrogen. Battery electric vehicles meaningfully retain their advantage for mileages over 100,000&amp;thinsp;km, even in regions with carbon-intensive electricity since these are anticipated to decarbonise the most. Although our study supports battery electric vehicles as the most reliable climate-mitigation option for passenger cars, reducing their high manufacturing footprint remains important.&lt;/em&gt;&lt;/p&gt;
  902. &lt;/blockquote&gt;
  903. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000666" target="_blank"&gt;Can dissent be meaningfully measured in an overwhelming consensus? A citation network case study in climate change research&lt;/a&gt;&lt;/strong&gt;, Grunert,&amp;nbsp;&lt;em&gt;PLOS Clim&amp;nbsp;ate&lt;/em&gt;&lt;/p&gt;
  904. &lt;blockquote&gt;
  905. &lt;p&gt;&lt;span&gt;&lt;em&gt;In scientific discourse, the prevalence of overwhelming consensus obscures the presence of dissenting views as well as their characteristics. This paper explores the potential to meaningfully measure dissent within the context of such a consensus, using climate change research as a case study. Using citation analysis to explore the dynamics of scientific publications and the reception of dissenting opinions, this project questions whether there may be a methodological framework for quantifying dissent. This study employs analysis of citation networks to assess the visibility and impact of minority viewpoints, as well as the viability of such a study. The findings indicate that because dissent in climate change research is miniscule such measurements are limited. Despite that finding, researchers on the fringe of scientific consensus have an outsized impact on social viewpoints. This project has potential to disrupt the ways researchers critically consider the relevance of dissenting research in their own fields, and to think of ways to embrace the impact of research that expands their fields&lt;/em&gt;.&lt;/span&gt;&lt;/p&gt;
  906. &lt;/blockquote&gt;
  907. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/d41586-025-01966-4" target="_blank"&gt;In the face of anti-science politics, silence is not without cost&lt;/a&gt;&lt;/strong&gt;, Editors,&amp;nbsp;&lt;em&gt;Nature&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  908. &lt;blockquote&gt;
  909. &lt;p&gt;&lt;span&gt;&lt;em&gt;&lt;span&gt;We recognize that not all scientific leaders are in a position&amp;nbsp;&lt;/span&gt;&lt;a href="https://www.nature.com/articles/d41586-025-00562-w" data-track="click" data-label="https://www.nature.com/articles/d41586-025-00562-w" data-track-category="body text link"&gt;to be able to speak out&lt;/a&gt;&lt;span&gt;, particularly those in countries where doing so could incur a penalty &amp;mdash; or even punishment. That is why our call is to international scientific organizations. Academies in countries where the freedom to dissent is protected should also make their concerns known. All need to be aware that silence is also not without cost.&lt;/span&gt;&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  910. &lt;/blockquote&gt;
  911. &lt;h3&gt;From this week's government/NGO &lt;a href="#gov-ngo" target="_blank"&gt;section&lt;/a&gt;:&lt;/h3&gt;
  912. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.prod.website-files.com/643ecb10be528d2c1da863cb/68541b1613026bbfd94181b9_SR2025.1%20-%20Information%20Integrity%20about%20Climate%20Science.pdf" target="_blank"&gt;Information Integrity about Climate Science: A Systematic Review&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Elbeyi et al.,&amp;nbsp;&lt;strong&gt;International Panel on the Information Environment&lt;/strong&gt;&lt;/p&gt;
  913. &lt;blockquote&gt;The human response to the climate crisis is being obstructed and delayed by the production and circulation of misleading information about the nature of climate change and the available solutions. The authors found that powerful actors&amp;mdash;including corporations, governments, and political parties&amp;mdash;intentionally spread inaccurate or misleading narratives about anthropogenic climate change. These narratives circulate across digital, broadcast, and interpersonal communication channels. The result is a decline in public trust, diminished policy coordination, and a feedback loop between scientific denialism and political inaction.&lt;/blockquote&gt;
  914. &lt;p&gt;&lt;strong&gt;&lt;a href="https://globalenergymonitor.org/wp-content/uploads/2025/06/GEM-coal-to-solar-June-2025.pdf" target="_blank"&gt;Bright side of the mine. Solar&amp;rsquo;s opportunity to reclaim coal&amp;rsquo;s footprint&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Cheng Cheng Wu and Ryan Driskell-Tate,&amp;nbsp;&lt;strong&gt;Global Energy Monitor&lt;/strong&gt;&lt;/p&gt;
  915. &lt;blockquote&gt;The authors conducted a worldwide survey of surface coal mines closed in the last five years (since 2020) and those forecasted to close over the next five (by the end of 2030). The first-time analysis shows that over 300 surface coal mines recently out of commission could house around 103 GW of photovoltaic (PV) solar capacity, and upcoming closures of large operations could host an additional 185 GW of solar across 127 sites (see Methodology). These abandoned coal mines are predisposed to renewables siting with grid-adjacent and even pre-cleared acreage. If these potential solar projects came to fruition, the world could build almost 300 GW of solar capacity on mined out lands by the end of 2030. Uptake on that scale is equal to 15% of the solar that has already been built globally and would add enough solar capacity to inch the world one step closer to tripling renewables before the end of the decade.&lt;/blockquote&gt;
  916. &lt;h3&gt;138 articles in 56 journals by 793 contributing authors&lt;/h3&gt;
  917. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  918. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60385-1" target="_blank"&gt;Combined emergent constraints on future extreme precipitation changes&lt;/a&gt;, Shiogama et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60385-1&lt;/p&gt;
  919. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  920. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02449-0" target="_blank"&gt;Climate-induced losses of surface water and total water storage in Northeast Asia&lt;/a&gt;, Zhang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02449-0&lt;/p&gt;
  921. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;, Mascaro et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114292&lt;/p&gt;
  922. &lt;!--more--&gt;
  923. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt;Increased frequency of planetary wave resonance events over the past half-century&lt;/a&gt;, Li et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2504482122&lt;/p&gt;
  924. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  925. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  926. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  927. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-283" target="_blank"&gt;A comprehensive 22-year global GNSS climate data record from 5085 stations&lt;/a&gt;, Wang et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-283&lt;/p&gt;
  928. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10661-025-14207-y" target="_blank"&gt;A holistic overview of the applications of GRACE-observed terrestrial water storage in hydrology and climate science&lt;/a&gt;, Khorrami &amp;amp; G&amp;uuml;nd&amp;uuml;z, &lt;em&gt;Environmental Monitoring and Assessment&lt;/em&gt; 10.1007/s10661-025-14207-y&lt;/p&gt;
  929. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/07055900.2025.2516796" target="_blank"&gt;Canada&amp;rsquo;s Fourth Generation of Homogenized Surface Air Temperature and its Trends for 1948&amp;ndash;2023&lt;/a&gt;, Wan et al., &lt;em&gt;Atmosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/07055900.2025.2516796" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/07055900.2025.2516796&lt;/p&gt;
  930. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106587" target="_blank"&gt;From TIROS-1 to the AI Age: 65 Years of Satellite Meteorology and the Legacy of Earth Observation&lt;/a&gt;, Varotsos, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106587&lt;/p&gt;
  931. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jhm-d-24-0145.1" target="_blank"&gt;Improved Global Estimates of Terrestrial Evapotranspiration Using the MODIS and VIIRS Sensors&lt;/a&gt;, Endsley et al., &lt;em&gt;Journal of Hydrometeorology&lt;/em&gt; 10.1175/jhm-d-24-0145.1&lt;/p&gt;
  932. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106586" target="_blank"&gt;Trends and Variability in Global Ocean Heat Content Time Series Data for the period 2005-2035&lt;/a&gt;, Bilgili, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106586&lt;/p&gt;
  933. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  934. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108302" target="_blank"&gt;A comprehensive review on the recent changes in Indian summer monsoon rainfall and its relations with global climate drivers based on the CMIP6 simulations&lt;/a&gt;, Varikoden et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108302&lt;/p&gt;
  935. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043646" target="_blank"&gt;Atmospheric Excitation of Length of Day Inferred From 21st Century Climate Projections&lt;/a&gt;, B&amp;ouml;hm &amp;amp; Salstein Salstein Salstein Salstein, &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jd043646" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd043646&lt;/p&gt;
  936. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106569" target="_blank"&gt;Exploring the Influence of Anthropogenic forcing on Meteorological Drought pattern in East Africa: An Analysis Using CMIP6 Models&lt;/a&gt;, YOHANNES et al., &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106569&lt;/p&gt;
  937. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70005" target="_blank"&gt;Future Climate Changes on the Qinghai&amp;ndash;Tibetan Plateau Under CMIP6 Global Climate Models&lt;/a&gt;, Karim et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70005&lt;/p&gt;
  938. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-3713" target="_blank"&gt;The future North Atlantic jet stream and storm track: relative contributions from sea ice and sea surface temperature changes&lt;/a&gt;, K&amp;ouml;hler et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-3713&lt;/p&gt;
  939. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  940. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  941. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108301" target="_blank"&gt;Assessing and reducing uncertainties in future mean and extreme precipitation projections over China&lt;/a&gt;, Hou et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108301&lt;/p&gt;
  942. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025av001698" target="_blank"&gt;Assessment of Abrupt Shifts in CMIP6 Models Using Edge Detection&lt;/a&gt;, Terpstra et al., &lt;em&gt;AGU Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025av001698" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025av001698&lt;/p&gt;
  943. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02481-0" target="_blank"&gt;European compound flood-heat-flood events associated with Omega patterns cannot be easily reproduced by a fully coupled model&lt;/a&gt;, Guo et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02481-0&lt;/p&gt;
  944. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043059" target="_blank"&gt;Exposing Process-Level Biases in a Global Cloud Permitting Model With ARM Observations&lt;/a&gt;, Bogenschutz et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd043059" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd043059&lt;/p&gt;
  945. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116307" target="_blank"&gt;Fingerprints of AMOC Decline Are Sensitive to External and Mechanistic Forcing&lt;/a&gt;, McMonigal et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116307" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116307&lt;/p&gt;
  946. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jc022212" target="_blank"&gt;Longshore Sediment Transport and Morphological Changes Under Climate Change&amp;mdash;A Comparison Between CMIP5- and CMIP6-Derived Forcings and the Use of Wave Climate Bias Correction&lt;/a&gt;, Vieira da Silva et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jc022212" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jc022212&lt;/p&gt;
  947. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adt0647" target="_blank"&gt;Observed trend in Earth energy imbalance may provide a constraint for low climate sensitivity models&lt;/a&gt;, Myhre et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adt0647&lt;/p&gt;
  948. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-3442" target="_blank"&gt;Stratification and overturning circulation are intertwined controls on ocean heat uptake efficiency in climate models&lt;/a&gt;, Vogt et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-3442&lt;/p&gt;
  949. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-18-3681-2025" target="_blank"&gt;Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching&lt;/a&gt;, Bonnet et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-18-3681-2025&lt;/p&gt;
  950. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  951. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-59992-9" target="_blank"&gt;Atlantic water recirculation in the northern Barents Sea affects winter sea ice extent&lt;/a&gt;, Heukamp et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-59992-9&lt;/p&gt;
  952. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108268" target="_blank"&gt;Impact of Autumn Arctic Sea Ice concentration on Siberian High: Insights from causal relationship&lt;/a&gt;, Lin &amp;amp; Wang Wang, &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108268&lt;/p&gt;
  953. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl112585" target="_blank"&gt;Mapping the Composition of Antarctic Ice Shelves as a Metric for Their Susceptibility to Future Climate Change&lt;/a&gt;, Vi&amp;scaron;njevi? et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl112585" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl112585&lt;/p&gt;
  954. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/feart.2025.1601249" target="_blank"&gt;Monitoring recent (2018&amp;ndash;2023) glacier and rock glacier changes in Central Patagonia using high-resolution Pl&amp;eacute;iades and ALOS PRISM satellite data&lt;/a&gt;, Falaschi et al., &lt;em&gt;Frontiers in Earth Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/feart.2025.1601249" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/feart.2025.1601249&lt;/p&gt;
  955. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043124" target="_blank"&gt;The First Firn Core From the Cordillera Darwin Icefield: Implications for Future Ice Core Research&lt;/a&gt;, Tetzner et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd043124" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd043124&lt;/p&gt;
  956. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-18-3635-2025" target="_blank"&gt;The Utrecht Finite Volume Ice-Sheet Model (UFEMISM version 2.0) &amp;ndash; part 1: description and idealised experiments&lt;/a&gt;, Berends et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-18-3635-2025&lt;/p&gt;
  957. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/tc-19-2115-2025" target="_blank"&gt;Toward a marginal Arctic sea ice cover: changes to freezing, melting and dynamics&lt;/a&gt;, Frew et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-19-2115-2025&lt;/p&gt;
  958. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  959. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt;Economic impacts of sea level rise on China&amp;rsquo;s coastal provinces under different adaptation strategies&lt;/a&gt;, Wang et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.005&lt;/p&gt;
  960. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2411904122" target="_blank"&gt;Increased sea-level contribution from northwestern Greenland for models that reproduce observations&lt;/a&gt;, Badgeley et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2411904122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2411904122&lt;/p&gt;
  961. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106580" target="_blank"&gt;Long-Term Sea Level and Climate Variability at Tide Gauge Stations: A Study from T&amp;uuml;rkiye&lt;/a&gt;, Erko&amp;ccedil; &amp;amp; Do?an, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106580&lt;/p&gt;
  962. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-300" target="_blank"&gt;Reconstructing sea level rise at global 945 tide gauges since 1900&lt;/a&gt;, Mu et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-300&lt;/p&gt;
  963. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  964. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2505795122" target="_blank"&gt;European mammal turnover driven by a global rapid warming event preceding the Paleocene&amp;ndash;Eocene Thermal Maximum&lt;/a&gt;, Tabuce et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2505795122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2505795122&lt;/p&gt;
  965. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adv2549" target="_blank"&gt;Global cooling drove diversification and warming caused extinction among Carboniferous-Permian fusuline foraminifera&lt;/a&gt;, Zhang et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.adv2549" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.adv2549&lt;/p&gt;
  966. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/bor.70021" target="_blank"&gt;Processes and palaeo-environmental changes in the Arctic from past to present (PalaeoArc) &amp;ndash; introduction&lt;/a&gt;, Lys&amp;aring; et al., &lt;em&gt;Boreas&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/bor.70021" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/bor.70021&lt;/p&gt;
  967. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043219" target="_blank"&gt;Toarcian Greenhouse Warming Shifted Climate Belts Poleward With Global Change Implications&lt;/a&gt;, Wang et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2024jd043219&lt;/p&gt;
  968. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  969. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70306" target="_blank"&gt;A Global Meta-Analysis of Passive Experimental Warming Effects on Plant Traits and Community Properties&lt;/a&gt;, Dobson &amp;amp; Zarnetske, &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70306" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70306&lt;/p&gt;
  970. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71664" target="_blank"&gt;Assessing Climate Change Impacts on Distribution Dynamics of Lysimachia Christinae in China Through MaxEnt Modeling&lt;/a&gt;, Xiang et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71664" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71664&lt;/p&gt;
  971. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adw4495" target="_blank"&gt;Climate change redefines sea turtle hotspots: Vessel strike risks and gaps in protected areas&lt;/a&gt;, Duquesne &amp;amp; Fournier, &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adw4495&lt;/p&gt;
  972. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-05621-w" target="_blank"&gt;Effects of marine heat waves and cold spells on a polar shallow water ecosystem&lt;/a&gt;, Fischer et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-05621-w&lt;/p&gt;
  973. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adr9715" target="_blank"&gt;Greener green and bluer blue: Ocean poleward greening over the past two decades&lt;/a&gt;, Zhao et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adr9715&lt;/p&gt;
  974. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126326" target="_blank"&gt;Growth rates and responses to climate and aridity of Algerian Atlas pistachio populations&lt;/a&gt;, Ifticene-Habani et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; 10.1016/j.dendro.2025.126326&lt;/p&gt;
  975. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71661" target="_blank"&gt;Impact of Multiple Climate Stressors on Early Life Stages of North Pacific Kelp Species&lt;/a&gt;, Drakard et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71661" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71661&lt;/p&gt;
  976. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005888" target="_blank"&gt;Increasing Cumulative Impacts of Droughts Under Climate Change Does Not Alter the Ecosystem Resilience in India&lt;/a&gt;, Bejagam &amp;amp; Sharma, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005888" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005888&lt;/p&gt;
  977. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71580" target="_blank"&gt;Present and Future of the White-Tailed Laurel Pigeon (Columba junoniae) on Gran Canaria Island&lt;/a&gt;, Albaladejo?Robles et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71580" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71580&lt;/p&gt;
  978. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  979. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70138" target="_blank"&gt;Sex-specific trade-offs influence thermoregulation under climate change&lt;/a&gt;, Levine et al., &lt;em&gt;Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecy.70138" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecy.70138&lt;/p&gt;
  980. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70253" target="_blank"&gt;Sustaining Species of the Future: Climatic Nuclei for Climate Change Adaptation&lt;/a&gt;, McLaughlin et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70253&lt;/p&gt;
  981. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt;Synergies Between Agricultural Production and Shorebird Conservation With Climate Change in the Central Valley, California, With Optimized Water Allocation and Multi-Benefit Land Use&lt;/a&gt;, Li et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70304&lt;/p&gt;
  982. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70290" target="_blank"&gt;Temporary Absence of Warming in the Northern Weddell Sea Validates Expected Responses of Antarctic Seals to Sea Ice Change&lt;/a&gt;, Dunn et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70290" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70290&lt;/p&gt;
  983. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adv8031" target="_blank"&gt;The future of baleen whales: Recoveries, environmental constraints, and climate change&lt;/a&gt;, Stewart et al., &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adv8031&lt;/p&gt;
  984. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02423-w" target="_blank"&gt;Various responses of global heterotrophic respiration to variations in soil moisture and temperature enhance the positive feedback on atmospheric warming&lt;/a&gt;, Zeng et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02423-w&lt;/p&gt;
  985. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/geb.70080" target="_blank"&gt;Warming Enhances the Effects of Acidification on Aquatic Biota: A Global Meta-Analysis&lt;/a&gt;, Jian et al., &lt;em&gt;Global Ecology and Biogeography&lt;/em&gt; 10.1111/geb.70080&lt;/p&gt;
  986. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005003" target="_blank"&gt;Wetland Gain and Loss in the Mississippi River Bird-Foot Delta&lt;/a&gt;, Yang et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005003" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005003&lt;/p&gt;
  987. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70296" target="_blank"&gt;Which Body Size Metrics Should Be Used for Assessing Temperature Impacts on Fish Growth and Size?&lt;/a&gt;, Audzijonyte et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70296&lt;/p&gt;
  988. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  989. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1427376" target="_blank"&gt;Carbon estimation of old-growth bald cypress knees using mobile LiDAR&lt;/a&gt;, Tajudeen et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1427376" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1427376&lt;/p&gt;
  990. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gb008382" target="_blank"&gt;Influence of Wave-Induced Variability on Ocean Carbon Uptake&lt;/a&gt;, Rustogi et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gb008382" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gb008382&lt;/p&gt;
  991. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70301" target="_blank"&gt;Microbiome Adaptation Could Amplify Modeled Projections of Global Soil Carbon Loss With Climate Warming&lt;/a&gt;, Abs et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70301" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70301&lt;/p&gt;
  992. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-2889-2025" target="_blank"&gt;Observations of methane net sinks in the upland Arctic tundra&lt;/a&gt;, Donateo et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-2889-2025&lt;/p&gt;
  993. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef004946" target="_blank"&gt;Response of China's Terrestrial Carbon Uptake to Shift in Nitrogen Deposition&lt;/a&gt;, Zhang et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef004946" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef004946&lt;/p&gt;
  994. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  995. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02395-x" target="_blank"&gt;Sea ice controls net ocean uptake of carbon dioxide by regulating wintertime stratification&lt;/a&gt;, Droste et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02395-x&lt;/p&gt;
  996. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  997. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106577" target="_blank"&gt;Tracking the Future of Global N&lt;sub&gt;2&lt;/sub&gt;O Gas Emissions with Data-Driven Forecasts&lt;/a&gt;, &amp;Ouml;NDER, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106577&lt;/p&gt;
  998. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70309" target="_blank"&gt;Warming Weakens Soil Nitrogen Stabilization Pathways Driving Proportional Carbon Losses in Subarctic Ecosystems&lt;/a&gt;, Mara&amp;ntilde;&amp;oacute;n?Jim&amp;eacute;nez et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70309" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70309&lt;/p&gt;
  999. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  1000. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02394-y" target="_blank"&gt;Carbon offsetting of fossil fuel emissions through afforestation is limited by financial viability and spatial requirements&lt;/a&gt;, Naef et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02394-y&lt;/p&gt;
  1001. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef005924" target="_blank"&gt;Characterizing the Effects of Policy Instruments on Cost and Deployment Trajectories of Direct Air Capture in the U.S. Energy System&lt;/a&gt;, Kanyako &amp;amp; Craig, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef005924" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef005924&lt;/p&gt;
  1002. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02355-5" target="_blank"&gt;Protect young secondary forests for optimum carbon removal&lt;/a&gt;, Robinson et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02355-5&lt;/p&gt;
  1003. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2358" target="_blank"&gt;Simulations on Carbon Dioxide Sequestration Into Coal Seams Within an Effective Area: A Case Study in the Eastern Section of Songji Uplift, China&lt;/a&gt;, Zou et al., &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; 10.1002/ghg.2358&lt;/p&gt;
  1004. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2278" target="_blank"&gt;Synergies of storing hydrogen at the crest of CO2${rm CO}&amp;amp;{2}$ or other gas storage&lt;/a&gt;, Rhouma et al., &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ghg.2278" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ghg.2278" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/ghg.2278&lt;/p&gt;
  1005. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  1006. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02447-2" target="_blank"&gt;Battery electric vehicles show the lowest carbon footprints among passenger cars across 1.5&amp;ndash;3.0&amp;thinsp;&amp;deg;C energy decarbonisation pathways&lt;/a&gt;, &amp;Scaron;imaitis et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02447-2&lt;/p&gt;
  1007. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101771" target="_blank"&gt;Household preferences for rooftop solar photovoltaic systems: Evidence from a survey-based study in five Indonesian cities&lt;/a&gt;, Afifi et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101771&lt;/p&gt;
  1008. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101732" target="_blank"&gt;Hydropower-driven electric vehicle infrastructure in the Himalayan region: Integration dynamics and strategic SWOT analysis for sustainable transportation&lt;/a&gt;, Singh et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101732&lt;/p&gt;
  1009. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s42757-024-0223-0" target="_blank"&gt;Numerical assessment of emergency ammonia underwater discharge from a platform supply vessel&lt;/a&gt;, Avgerinos et al., &lt;em&gt;Experimental and Computational Multiphase Flow&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s42757" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s42757-024-0223-0&lt;/p&gt;
  1010. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02437-4" target="_blank"&gt;Offshore wave and wind energy development in the Southern Hemisphere will remain optimal between 20&amp;deg;E and 180&amp;deg;E by 2100&lt;/a&gt;, Zhao et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02437-4&lt;/p&gt;
  1011. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09266-7" target="_blank"&gt;Strategies for climate-resilient global wind and solar power systems&lt;/a&gt;, Zheng et al., &lt;em&gt;Nature&lt;/em&gt; 10.1038/s41586-025-09266-7&lt;/p&gt;
  1012. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101775" target="_blank"&gt;Sustainable ethanol production: CO&lt;sub&gt;2&lt;/sub&gt; emission analysis and feedstock strategies through life cycle assessment&lt;/a&gt;, Kumar &amp;amp; Sinha, &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101775&lt;/p&gt;
  1013. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  1014. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-2749-2025" target="_blank"&gt;Ocean alkalinity enhancement in an open-ocean ecosystem: biogeochemical responses and carbon storage durability&lt;/a&gt;, Paul et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-2749-2025&lt;/p&gt;
  1015. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd044163" target="_blank"&gt;Regional and Seasonal Hydrological Changes With and Without Stratospheric Aerosol Intervention Under High Greenhouse Gas Climates&lt;/a&gt;, Rezaei et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.22541/essoar.174708323.34069174/v1" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd044163&lt;/p&gt;
  1016. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02466-z" target="_blank"&gt;Stratospheric aerosol injection can weaken the carbon dioxide greenhouse effect&lt;/a&gt;, He et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02466-z&lt;/p&gt;
  1017. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Aerosols&lt;/strong&gt;&lt;/p&gt;
  1018. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108267" target="_blank"&gt;A review of aerosol-cloud interactions: Mechanisms, climate effects, and observation methods&lt;/a&gt;, Li et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108267&lt;/p&gt;
  1019. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  1020. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000666" target="_blank"&gt;Can dissent be meaningfully measured in an overwhelming consensus? A citation network case study in climate change research&lt;/a&gt;, Grunert, &lt;em&gt;PLOS Clim ate&amp;nbsp;&lt;/em&gt;&lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000666" target="_blank"&gt;Open Access&lt;/a&gt; 10.1371/journal.pclm.0000666&lt;/p&gt;
  1021. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.47205/jdss.2021(2-iv)74" target="_blank"&gt;Climate anxiety - impairment and/or activation? Exploring the roles of mindfulness and emotion regulation&lt;/a&gt;, , &lt;em&gt;Journal of Development and Social Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://jdss.org.pk/issues/v2/4/water" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://jdss.org.pk/issues/v2/4/water-sharing-issues-in-pakistan-impacts-on-inter-provincial-relations.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.47205/jdss.2021(2-iv)74&lt;/p&gt;
  1022. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103015" target="_blank"&gt;Climate change anxiety: A meta-analysis&lt;/a&gt;, K&amp;uuml;hner et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103015" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103015&lt;/p&gt;
  1023. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rsos.242148" target="_blank"&gt;Countering AI-generated misinformation with pre-emptive source discreditation and debunking&lt;/a&gt;, Spearing et al., &lt;em&gt;Royal Society Open Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rsos.242148" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rsos.242148&lt;/p&gt;
  1024. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/09644016.2025.2522516" target="_blank"&gt;Fluid hope in a climate emergency: Lessons from an English citizens&amp;rsquo; jury&lt;/a&gt;, Lewis, &lt;em&gt;Environmental Politics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/09644016.2025.2522516" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/09644016.2025.2522516&lt;/p&gt;
  1025. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02369-z" target="_blank"&gt;Social strategies to engage video gamers in climate action&lt;/a&gt;, Carman et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02369-z&lt;/p&gt;
  1026. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1027. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000655" target="_blank"&gt;An in-depth approach on ecological and social processes improve quantifying the climatic impact of food production&lt;/a&gt;, del Prado et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000655" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000655&lt;/p&gt;
  1028. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.2139/ssrn.4173669" target="_blank"&gt;Climate information services enhance farmers&amp;rsquo; resilience to climate change: Impacts on agricultural productivity&lt;/a&gt;, Tamru et al., &lt;em&gt;SSRN Electronic Journal&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.2139/ssrn.4173669&lt;/p&gt;
  1029. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01724-1" target="_blank"&gt;Climate-driven global cropland changes and consequent feedbacks&lt;/a&gt;, You et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01724-1&lt;/p&gt;
  1030. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02459-y" target="_blank"&gt;Increased irrigation could mitigate future warming-induced maize yield losses in the Ogallala Aquifer&lt;/a&gt;, Zhang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02459-y&lt;/p&gt;
  1031. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01731-2" target="_blank"&gt;Large CO&lt;sub&gt;2&lt;/sub&gt; removal potential of woody debris preservation in managed forests&lt;/a&gt;, Luo et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01731-2&lt;/p&gt;
  1032. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  1033. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104962" target="_blank"&gt;Projected increase in global compound agricultural drought and hot events under climate change&lt;/a&gt;, Shi et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104962&lt;/p&gt;
  1034. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt;Synergies Between Agricultural Production and Shorebird Conservation With Climate Change in the Central Valley, California, With Optimized Water Allocation and Multi-Benefit Land Use&lt;/a&gt;, Li et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70304&lt;/p&gt;
  1035. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1561655" target="_blank"&gt;Synergistic research on planter performance optimization and green low-carbon agricultural transformation under climate risk&lt;/a&gt;, Shi et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1561655" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1561655&lt;/p&gt;
  1036. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1037. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70009" target="_blank"&gt;Changing Rainfall Patterns and Their Climatic Drivers in One of the Rainiest Places on Earth, Debundscha, Gulf of Guinea&lt;/a&gt;, Nkiaka &amp;amp; Tume, &lt;em&gt;International Journal of Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/joc.70009" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/joc.70009&lt;/p&gt;
  1038. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8840" target="_blank"&gt;Climatological Context of the Severe Rain-on-Snow Flooding Event of March 2019 in Eastern Nebraska&lt;/a&gt;, Suriano et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8840&lt;/p&gt;
  1039. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02449-0" target="_blank"&gt;Climate-induced losses of surface water and total water storage in Northeast Asia&lt;/a&gt;, Zhang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02449-0&lt;/p&gt;
  1040. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;, Mascaro et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114292&lt;/p&gt;
  1041. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt;Increased frequency of planetary wave resonance events over the past half-century&lt;/a&gt;, Li et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2504482122&lt;/p&gt;
  1042. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02457-0" target="_blank"&gt;Dynamics-constrained rainfall projection reveals substantial increase in population exposure to unprecedented floods in the North China Plain&lt;/a&gt;, Yang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02457-0&lt;/p&gt;
  1043. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jhm-d-24-0089.1" target="_blank"&gt;How Will Precipitation Characteristics Associated with Tropical Cyclones in Diverse Synoptic Environments in the Southeast United States Respond to Climate Change?&lt;/a&gt;, Hollinger Beatty et al., &lt;em&gt;Journal of Hydrometeorology&lt;/em&gt; 10.1175/jhm-d-24-0089.1&lt;/p&gt;
  1044. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8827" target="_blank"&gt;Widespread Multi-Year Droughts in Italy: Identification and Causes of Development&lt;/a&gt;, Pascale &amp;amp; Ragone Ragone, &lt;em&gt;International Journal of Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/joc.8827" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/joc.8827&lt;/p&gt;
  1045. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  1046. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2507213" target="_blank"&gt;Assessing the costs of fossil dependency: an integrated model for carbon costs across economic sectors in China and Germany&lt;/a&gt;, Vet?n&amp;eacute; M&amp;oacute;zner et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2507213" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2507213&lt;/p&gt;
  1047. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adx1950" target="_blank"&gt;Climate adaptation finance: From paper commitments to climate risk reduction&lt;/a&gt;, Verschuur et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adx1950&lt;/p&gt;
  1048. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10668-025-06433-8" target="_blank"&gt;Do the United States'fiscal decentralization, money supply, and environmental policies promote the clean energy transition?&lt;/a&gt;, Haseeb et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s10668" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s10668-025-06433-8&lt;/p&gt;
  1049. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.2139/ssrn.5291999" target="_blank"&gt;Renewable energy consumption and international trade: Does climate policy stringency matter?&lt;/a&gt;, Nouira et al., &lt;em&gt;SSRN Electronic Journal&lt;/em&gt; 10.2139/ssrn.5291999&lt;/p&gt;
  1050. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103008" target="_blank"&gt;The labour and resource use requirements of a good life for all&lt;/a&gt;, McElroy &amp;amp; O&amp;rsquo;Neill, &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103008" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103008&lt;/p&gt;
  1051. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  1052. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101753" target="_blank"&gt;Barriers to energy transition: Comparing developing with developed countries&lt;/a&gt;, Pereira et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.esd.2025.101753" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.esd.2025.101753&lt;/p&gt;
  1053. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.04.018" target="_blank"&gt;Bidirectional allocation method of provincial carbon emission allowances under China's 2030 carbon peak target: From equity and efficiency perspective&lt;/a&gt;, Yang et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.04.018" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.04.018&lt;/p&gt;
  1054. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104165" target="_blank"&gt;Determinants of institutional change towards a sustainable energy transition in Ghana: A political economy analysis of solar photovoltaics&lt;/a&gt;, Agbaam et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104165" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104165&lt;/p&gt;
  1055. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114725" target="_blank"&gt;Electrification, flexibility or both? Emerging trends in European energy policy&lt;/a&gt;, Mellot et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114725" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114725&lt;/p&gt;
  1056. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.47205/jdss.2021(2-iv)74" target="_blank"&gt;Global analysis of constraints to natural climate solution implementation&lt;/a&gt;, , &lt;em&gt;Journal of Development and Social Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://jdss.org.pk/issues/v2/4/water" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://jdss.org.pk/issues/v2/4/water-sharing-issues-in-pakistan-impacts-on-inter-provincial-relations.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.47205/jdss.2021(2-iv)74&lt;/p&gt;
  1057. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104190" target="_blank"&gt;Tackling transformational change in climate policy appraisal: experiences and perceptions of United Kingdom policy analysts&lt;/a&gt;, Lynch et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104190" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104190&lt;/p&gt;
  1058. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  1059. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41893-025-01575-z" target="_blank"&gt;Adaptive capacity for multimodal transport network resilience to extreme floods&lt;/a&gt;, Li et al., &lt;em&gt;Nature Sustainability&lt;/em&gt; 10.1038/s41893-025-01575-z&lt;/p&gt;
  1060. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-04844-1" target="_blank"&gt;Climate adaptive energy efficiency modeling using a generalized additive approach to optimize building performance across Chinese climate zones&lt;/a&gt;, Yang et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-04844-1&lt;/p&gt;
  1061. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt;Economic impacts of sea level rise on China&amp;rsquo;s coastal provinces under different adaptation strategies&lt;/a&gt;, Wang et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.005&lt;/p&gt;
  1062. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100723" target="_blank"&gt;Enhancing climate adaptation planning with limited resources: A streamlined framework for municipal climate risk assessments&lt;/a&gt;, H&amp;uuml;bner &amp;amp; Finkbeiner, &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100723" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100723&lt;/p&gt;
  1063. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1550738" target="_blank"&gt;Tackling rural water scarcity in South Africa: climate change, governance, and sustainability pathways&lt;/a&gt;, Matimolane &amp;amp; Mathivha, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1550738" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1550738&lt;/p&gt;
  1064. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1057/s41287-025-00705-9" target="_blank"&gt;Vulnerability to Adverse Climate Change: Evidence from Rural Bangladesh&lt;/a&gt;, Tian, &lt;em&gt;The European Journal of Development Research&lt;/em&gt; 10.1057/s41287-025-00705-9&lt;/p&gt;
  1065. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  1066. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000601" target="_blank"&gt;Evaluating the role of observational uncertainty in climate impact assessments: Temperature-driven yellow fever risk in South America&lt;/a&gt;, Jahn et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000601" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000601&lt;/p&gt;
  1067. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gh001406" target="_blank"&gt;Extreme Weather Events Interact With Local Contexts to Alter the Frequency of Firearm Violence and Child Maltreatment in Wayne County, Michigan&lt;/a&gt;, Sokol et al., &lt;em&gt;GeoHealth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gh001406" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gh001406&lt;/p&gt;
  1068. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gh001272" target="_blank"&gt;How Systemic Barriers Can Impact Health Inequities When Facing Climate Change Stressors: A Scoping Review of Global Differences&lt;/a&gt;, Wong et al., &lt;em&gt;GeoHealth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gh001272" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gh001272&lt;/p&gt;
  1069. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/23328940.2025.2515340" target="_blank"&gt;Insights into the impact of ambient heat exposure on the first 1000 days of life&lt;/a&gt;, Bonell, &lt;em&gt;Temperature&lt;/em&gt; 10.1080/23328940.2025.2515340&lt;/p&gt;
  1070. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gh001356" target="_blank"&gt;Time of Emergence and Future Projections of Extremes of Malaria Infections in Africa&lt;/a&gt;, Franzke &amp;amp; Parihar, &lt;em&gt;GeoHealth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gh001356" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gh001356&lt;/p&gt;
  1071. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000527" target="_blank"&gt;Unseen scars: Understanding the mental health burdens of climate change on indigenous and rural Peruvian women&lt;/a&gt;, Flores et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000527" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000527&lt;/p&gt;
  1072. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human culture&lt;/strong&gt;&lt;/p&gt;
  1073. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104127" target="_blank"&gt;Integrating cultural resources and heritage in climate action: A review of nine climate plans&lt;/a&gt;, Paloma &amp;amp; Cathy, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104127" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104127&lt;/p&gt;
  1074. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  1075. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl115973" target="_blank"&gt;Record Warmth and Unprecedented Drop in Equatorial Atlantic Sea Surface Temperatures in 2024&lt;/a&gt;, Tuchen et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl115973" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl115973&lt;/p&gt;
  1076. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  1077. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-01966-4" target="_blank"&gt;In the face of anti-science politics, silence is not without cost&lt;/a&gt;, , &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-025-01966-4&lt;/p&gt;
  1078. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70294" target="_blank"&gt;Is Antarctica Greening?&lt;/a&gt;, Colesie et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70294&lt;/p&gt;
  1079. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/bor.70021" target="_blank"&gt;Processes and palaeo-environmental changes in the Arctic from past to present (PalaeoArc) &amp;ndash; introduction&lt;/a&gt;, Lys&amp;aring; et al., &lt;em&gt;Boreas&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/bor.70021" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/bor.70021&lt;/p&gt;
  1080. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-01830-5" target="_blank"&gt;The economic effects of federal cuts to US science &amp;mdash; in 24 graphs&lt;/a&gt;, Ro, &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/d41586-025-01830-5&lt;/p&gt;
  1081. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.ady1186" target="_blank"&gt;The pursuit of 1.5&amp;deg;C endures as a legal and ethical imperative in a changing world&lt;/a&gt;, Rogelj &amp;amp; Rajamani, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.ady1186&lt;/p&gt;
  1082. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025av001808" target="_blank"&gt;What Is Endangered Now? Climate Science at the Crossroads&lt;/a&gt;, Saleska et al., &lt;em&gt;AGU Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025av001808" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025av001808&lt;/p&gt;
  1083. &lt;hr /&gt;
  1084. &lt;h3&gt;&lt;a id="gov-ngo"&gt;&lt;/a&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  1085. &lt;p&gt;&lt;strong&gt;&lt;a href="https://rice.app.box.com/s/p40p9pl2vt7tza6cju9iv8j4m1t93h3f" target="_blank"&gt;The 2025 State of Housing in Harris County and Houston&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Sherman et al, &lt;strong&gt;Kinder Institute for Urban Research, Rice University&lt;/strong&gt;&lt;/p&gt;
  1086. &lt;blockquote&gt;In addition to building on key indicators from previous years, the authors take a closer look at the impact of extreme weather and climate change on Harris County and Houston's housing affordability and neighborhood livability. Crucially, the authors find the cost of coping with and adapting to these conditions is borne most heavily by those who can least afford it. In both flood-prone communities and communities with higher land surface temperatures, a significantly larger share of residents live in poverty. Vulnerable households are consigned to risky places. Air quality continues to endanger Houstonians, particularly in predominantly Hispanic/Latino neighborhoods. Poorer communities must rely on FEMA aid, emphasizing the societal inequities that lead to uneven impacts from weather events. Housing stock in some communities is not climate-resilient. Countywide: 106,975 residential structures lack central air conditioning 40,205 lack piped-in natural gas, electrical or solar heat. Flood insurance uptake is still insufficient, given the region&amp;rsquo;s vulnerabilities. Climate-induced home insurance increases may add over $15,000 to home costs, exacerbating an already precarious housing affordability landscape.&lt;/blockquote&gt;
  1087. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.oecd.org/content/dam/oecd/en/publications/reports/2025/06/global-drought-outlook_28488e98/d492583a-en.pdf" target="_blank"&gt;Global Drought Outlook&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Organization for Economic Co-operation and Development&lt;/strong&gt;&lt;/p&gt;
  1088. &lt;blockquote&gt;Droughts are becoming more frequent, prolonged and severe with climate change, threatening water security and placing growing pressure on people, ecosystems and economies. From reduced crop yields and strained power supply and river trade to degraded landscapes and disrupted livelihoods, the impacts of droughts are on the rise &amp;ndash; and so are their costs. The authors assess how countries can strengthen drought management to adapt to a changing climate. They provide new insights into the rising human, environmental, and economic impacts of droughts and offers practical policy solutions to minimize losses, build long-term resilience, and support adaptation to a drier future.&lt;/blockquote&gt;
  1089. &lt;p&gt;&lt;strong&gt;&lt;a href="https://reports.weforum.org/docs/WEF_Fostering_Effective_Energy_Transition_2025.pdf" target="_blank"&gt;Fostering Effective Energy Transition 2025&lt;/a&gt;, &lt;/strong&gt;Arora et al., &lt;strong&gt;World Economic Forum and Accenture&lt;/strong&gt;&lt;/p&gt;
  1090. &lt;blockquote&gt;According to the authors, after several years of slow momentum, energy transition progress has accelerated. The Energy Transition Index (ETI), which benchmarks 118 countries on their current energy system performance and on the readiness of their enabling environment, finds improvements in energy equity and sustainability driven by easing energy prices, subsidy reforms, lower energy and emission intensity and increased share of clean energy. However, energy security has made more limited progress, and transition readiness momentum has slowed. Meanwhile, global energy systems are facing increasing pressure from climate change, geopolitical, economic and technological disruptions.&lt;/blockquote&gt;
  1091. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.bloomenergy.com/wp-content/uploads/2025-data-center-power-report.pdf" target="_blank"&gt;2025 Data Center Power Report Mid-Year Pulse&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Bloomenergy&lt;/strong&gt;&lt;/p&gt;
  1092. &lt;blockquote&gt;The authors provide an updated view of the evolving data center power landscape, following a more comprehensive report released earlier this year. These insights are shaped by ongoing conversations with industry leaders and a targeted survey examining shifts in power procurement strategies. The survey results indicate that interest is rising in onsite power generation as developers seek faster, more reliable and more flexible ways to meet growing data center power demands. In this environment, natural gas is emerging as a critical bridge fuel, valued for its availability, commercial viability and alignment with national and regional energy strategies. Although not identified in the survey, as noted by other commentators, fuel cells that run on natural gas are among the technologies gaining attention in this evolving landscape. The research reflects perspectives from hyperscalers, colocation developers, utilities and GPU service providers, with input from professionals ranging from mid-level managers to C-suite executives. The findings offer a timely lens into what matters most to the people shaping the future of the AI industry.&lt;/blockquote&gt;
  1093. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.prod.website-files.com/643ecb10be528d2c1da863cb/68541b1613026bbfd94181b9_SR2025.1%20-%20Information%20Integrity%20about%20Climate%20Science.pdf" target="_blank"&gt;Information Integrity about Climate Science: A Systematic Review&lt;/a&gt;, &lt;/strong&gt;Elbeyi et al., &lt;strong&gt;International Panel on the Information Environment&lt;/strong&gt;&lt;/p&gt;
  1094. &lt;blockquote&gt;The human response to the climate crisis is being obstructed and delayed by the production and circulation of misleading information about the nature of climate change and the available solutions. The authors found that powerful actors&amp;mdash;including corporations, governments, and political parties&amp;mdash;intentionally spread inaccurate or misleading narratives about anthropogenic climate change. These narratives circulate across digital, broadcast, and interpersonal communication channels. The result is a decline in public trust, diminished policy coordination, and a feedback loop between scientific denialism and political inaction.&lt;/blockquote&gt;
  1095. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.greenpeace.org/international/press-release/75582/global-survey-finds-8-out-of-10-people-support-taxing-oil-and-gas-corporations-to-pay-for-climate-damages/" target="_blank"&gt;8 in 10 people support taxing oil and gas corporations to pay for climate damages, global survey finds&lt;/a&gt;, &lt;/strong&gt;Dynata, &lt;strong&gt;Greenpeace International and Oxfam International&lt;/strong&gt;&lt;/p&gt;
  1096. &lt;blockquote&gt;A vast majority of people believe governments must tax oil, gas and coal corporations for climate-related loss and damage, and that their government is not doing enough to counter the political influence of super rich individuals and polluting industries. These are the key findings of a global survey, which reflect a broad consensus across political affiliations, income levels and age groups.&lt;/blockquote&gt;
  1097. &lt;p&gt;&lt;strong&gt;&lt;a href="https://globalenergymonitor.org/wp-content/uploads/2025/06/GEM-coal-to-solar-June-2025.pdf" target="_blank"&gt;Bright side of the mine. Solar&amp;rsquo;s opportunity to reclaim coal&amp;rsquo;s footprint&lt;/a&gt;, &lt;/strong&gt;Cheng Cheng Wu and Ryan Driskell-Tate, &lt;strong&gt;Global Energy Monitor&lt;/strong&gt;&lt;/p&gt;
  1098. &lt;blockquote&gt;The authors conducted a worldwide survey of surface coal mines closed in the last five years (since 2020) and those forecasted to close over the next five (by the end of 2030). The first-time analysis shows that over 300 surface coal mines recently out of commission could house around 103 GW of photovoltaic (PV) solar capacity, and upcoming closures of large operations could host an additional 185 GW of solar across 127 sites (see Methodology). These abandoned coal mines are predisposed to renewables siting with grid-adjacent and even pre-cleared acreage. If these potential solar projects came to fruition, the world could build almost 300 GW of solar capacity on mined out lands by the end of 2030. Uptake on that scale is equal to 15% of the solar that has already been built globally and would add enough solar capacity to inch the world one step closer to tripling renewables before the end of the decade.&lt;/blockquote&gt;
  1099. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.bis.org/bcbs/publ/d597.pdf" target="_blank"&gt;A framework for the voluntary disclosure of climate-related financial risks&lt;/a&gt;, &lt;/strong&gt;Basel Committee on Banking Supervision, &lt;strong&gt;Bank for International Settlements&lt;/strong&gt;&lt;/p&gt;
  1100. &lt;blockquote&gt;This voluntary framework for the disclosure of climate-related financial risks includes both qualitative and quantitative information. The Committee has agreed this framework will be voluntary in nature, with jurisdictions to consider whether to implement it domestically. The Committee acknowledges that the accuracy, consistency and quality of climate-related data are evolving, and therefore it is necessary to incorporate a reasonable level of flexibility into the final framework. The Committee also recognizes that multiple quantitative metrics and qualitative information may be needed to form a comprehensive picture of banks' exposure to climate-related financial risks. Users need to consider the disclosures holistically, understanding the strengths and shortcomings of the disclosed information.&lt;/blockquote&gt;
  1101. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ember-energy.org/app/uploads/2025/06/Ember-24-Hour-Solar-Electricity-June-2025-6.pdf" target="_blank"&gt;Solar electricity every hour of every day is here and it changes everything&lt;/a&gt;, &lt;/strong&gt;Kostantsa Rangelova and Dave Jones, &lt;strong&gt;Ember&lt;/strong&gt;&lt;/p&gt;
  1102. &lt;blockquote&gt;The authors unpack the concept of 24-hour electricity supply with solar generation &amp;mdash; how solar panels, paired with batteries, can deliver clean, reliable electricity around the clock. They compares cities across the world, showing how close they can get to solar electricity 24 hours across 365 days (24/365 solar generation), and at what price. Focused on project-level applications like industrial users and utility developers, the authors show how batteries are now cheap enough to unlock solar power&amp;rsquo;s full potential.&lt;/blockquote&gt;
  1103. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.scurveeconomics.org/wp-content/uploads/2025/04/Systems-archetypes-brief.pdf" target="_blank"&gt;System archetypes of the energy transition&lt;/a&gt;, &lt;/strong&gt;Sharpea et al., &lt;strong&gt;S-Curve Economics&lt;/strong&gt;&lt;/p&gt;
  1104. &lt;blockquote&gt;The authors identify 10 archetypical feedback effects that are driving system behavior through the energy transition, providing explanations, examples, and policy implications for each. They relate these to questions such as: why have electric vehicles achieved dominance over hydrogen fuel cell vehicles? Why has deployment of solar and wind energy exploded faster than even the most optimistic projections? And could declining demand for coal, oil, and gas send fossil fuel industries into a permanent downwards spiral?&lt;/blockquote&gt;
  1105. &lt;p&gt;&lt;strong&gt;&lt;a href="https://canopy.acf.org.au/m/1cae0d14963afa51/original/Financed-deforestation-banks-roles-and-responsibilities.pdf" target="_blank"&gt;Financed deforestation: banks&amp;rsquo; roles and responsibilities&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Australian Conservation Foundation&lt;/strong&gt;&lt;/p&gt;
  1106. &lt;blockquote&gt;An investigation by the authors analyzed 100 cases of deforestation detected between July 2023 and July 2024 linked to major banks through mortgages. They show that all of Australia&amp;rsquo;s big banks are continuing to loan to companies actively bulldozing the bush. Banks have a powerful role to play in either helping or exacerbating Australia's extinction crisis. Banks can either facilitate nature destruction through their lending to certain activities and sectors, or they could help prevent it by setting strict conditions in their lending for activities and sectors that have a high risk for nature destruction. Yet most are failing to assess, monitor, or act on deforestation occurring in activities or businesses they are lending to. Banks cannot claim to be managing climate or nature risk while turning a blind eye to bulldozers flattening forests in their loan books. They must contribute to internationally agreed goals to halting nature loss, forest loss and degradation by 2030.&lt;/blockquote&gt;
  1107. &lt;p&gt;&lt;strong&gt;&lt;a href="https://corporateaccountability.org/wp-content/uploads/2025/06/BUILT-TO-FAIL.pdf" target="_blank"&gt;Built to fail? World&amp;rsquo;s largest carbon offset projects unlikely to deliver promised emissions reductions despite reforms&lt;/a&gt;, &lt;/strong&gt;Rachel Rose Jackson and Adrien Tofighi-Niaki, &lt;strong&gt;Corporate Accountability&lt;/strong&gt;&lt;/p&gt;
  1108. &lt;blockquote&gt;The authors assess the most recent performance of the largest offset projects that comprise the voluntary carbon market (VCM) to help determine if it is setting the world up for galvanized climate action or exacerbating climate action failure. To do this, they analyze 47 of the largest carbon offset projects in 2024 and explores whether recent attempts to fix repeated failures of the VCM are leading to global emissions reductions.&lt;/blockquote&gt;
  1109. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.fern.org/fileadmin/uploads/fern/Documents/2025/Greenwashing_Carbon_Removal.pdf" target="_blank"&gt;Greenwashing Carbon Removal&lt;/a&gt;, &lt;/strong&gt;Fern et al.&lt;/p&gt;
  1110. &lt;blockquote&gt;Urgent action is needed to ensure the upcoming EU carbon removal rules for biomass-based activities are cost-effective and do not worsen the climate crisis. Today, 41 NGOs including Fern have sent a briefing to the political leadership of the European Commission, members of the European Parliament and EU Member States to alert them that current draft rules are not fit for purpose. They also suggest remedies.&lt;/blockquote&gt;
  1111. &lt;hr /&gt;
  1112. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  1113. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  1114. &lt;h3&gt;Suggestions&lt;/h3&gt;
  1115. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  1116. &lt;h3&gt;Previous edition&lt;/h3&gt;
  1117. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_25.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  1118. <link>https://skepticalscience.com/new_research_2025_26.html</link>
  1119. <guid>https://skepticalscience.com/new_research_2025_26.html</guid>
  1120. <pubDate>Thu, 26 Jun 2025 14:39:14 EST</pubDate>
  1121. </item>  <item>
  1122. <title>Climate Adam - Silencing Science: Trump's War on Our Climate</title>
  1123. <description>&lt;p class="greenbox"&gt;This video includes personal musings and conclusions of the creator climate scientist&amp;nbsp;&lt;a href="https://www.climateadam.co.uk/" target="_blank"&gt;Dr. Adam Levy&lt;/a&gt;. It is presented to our readers as an informed perspective. Please see video description for references (if any).&lt;/p&gt;
  1124. &lt;p&gt;Since President Trump took office in January 2025, he's declared war on climate change research. In this video, I speak with three expert scientists, who explain the devastation caused by Trump's attacks on climate researchers, institutions and reports. These assaults aren't just a huge deal in the USA, where they limit our ability to forecast extreme weather disasters. But they'll also affect our ability to be safe from climate extremes the world over - now and in the future.&amp;nbsp;&lt;/p&gt;
  1125. &lt;p&gt;Support ClimateAdam on patreon: &lt;a href="https://patreon.com/climateadam/" target="_blank"&gt;https://patreon.com/climateadam&lt;/a&gt;&lt;/p&gt;
  1126. &lt;p&gt;&lt;a href="https://www.youtube.com/watch?v=OrcaypKuuZg" target="_blank"&gt;&lt;img src="https://i.ytimg.com/vi/OrcaypKuuZg/hqdefault.jpg" data-pre-sourced="yes" data-sourced="yes" id="image1" data-original="https://i.ytimg.com/vi/OrcaypKuuZg/hqdefault.jpg" data-src="https://i.ytimg.com/vi/OrcaypKuuZg/hqdefault.jpg" alt="YouTube Video" "="" class="" style="max-width: 580px;"&gt;&lt;/a&gt;&lt;/p&gt;
  1127. &lt;!--more--&gt;</description>
  1128. <link>https://skepticalscience.com/ClimateAdam-silencing-science-trump-war-on-our-climate.html</link>
  1129. <guid>https://skepticalscience.com/ClimateAdam-silencing-science-trump-war-on-our-climate.html</guid>
  1130. <pubDate>Mon, 23 Jun 2025 10:04:24 EST</pubDate>
  1131. </item>  <item>
  1132. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #25</title>
  1133. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 15, 2025 thru Sat, June 21, 2025.&lt;/div&gt;
  1134. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  1135. &lt;p&gt;&lt;strong&gt;Climate Science and Research (6 articles)&lt;/strong&gt;&lt;/p&gt;
  1136. &lt;ul&gt;
  1137. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.newsweek.com/climate-crisis-evil-twin-coming-marine-life-2084740" target="_blank"&gt;Climate Crisis 'Evil Twin' Is Coming for Marine Life&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists have warned that the planet crossed the global boundary for ocean acidification around the year 2020, according to a new study.&lt;/em&gt; Newsweek, Thomas Westerholm, Jun 16, 2025.&lt;/li&gt;
  1138. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.pnas.org/doi/10.1073/pnas.2500829122" target="_blank"&gt;Human influence on climate detectable in the late 19th century&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A new paper describes how humans were influencing Earth's climate by cooling the stratosphere in the late 19th century. &lt;/em&gt; Proceedings of the National Academies of Sciences, Ben Santer et al. , June 16, 2025.&lt;/li&gt;
  1139. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-06-planetary-linked-wild-summer-weather.html" target="_blank"&gt;Study finds planetary waves linked to wild summer weather have tripled since 1950&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Seth Borenstein (AP), Jun 17, 2025.&lt;/li&gt;
  1140. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/06/why-imperfect-climate-models-are-more-helpful-than-you-think/" target="_blank"&gt;Why imperfect climate models are more helpful than you think&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Even flawed models are helping scientists unlock new truths about our changing planet. &lt;/em&gt; Yale Climate Connections, Ryan O&amp;rsquo;Loughlin, Jun 17, 2025.&lt;/li&gt;
  1141. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/guest-post-why-2024s-global-temperatures-were-unprecedented-but-not-surprising/" target="_blank"&gt;Guest post: Why 2024`s global temperatures were unprecedented, but not surprising&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Human-caused greenhouse gas (GHG) emissions in 2024 continued to drive global warming to record levels.&lt;/em&gt; Carbon Brief, Piers Forster and Debbie Rosen, Jun 18, 2025.&lt;/li&gt;
  1142. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_25.html" target="_blank"&gt;Skeptical Science New Research for Week #25 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Our latest listing of research on anthropogenic climate change, how it's changing our lives now, and how we'll deal with the problem we've created. &lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Jun 19, 2025.&lt;/li&gt;
  1143. &lt;/ul&gt;
  1144. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (6 articles)&lt;/strong&gt;&lt;/p&gt;
  1145. &lt;ul&gt;
  1146. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://councilonstrategicrisks.org/2025/06/11/what-the-nation-stands-to-lose-without-climate-gov/" target="_blank"&gt;What the Nation Stands to Lose Without climate.gov&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Council on Strategic Risks, Center for Climate and Security, June 11, 2025.&lt;/li&gt;
  1147. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/how-trumps-assault-on-science-is-blinding-america-to-climate-change/" target="_blank"&gt;How Trump`s assault on science is blinding America to climate change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; E&amp;amp;E News, Politico, Scott Waldman, Jun 16, 2025.&lt;/li&gt;
  1148. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/17062025/banks-continue-to-back-fossil-fuel-industry/" target="_blank"&gt;The World`s Banks are Still Betting on Fossil Fuel Industry Growth&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The biggest funders of fossil fuel expansion are U.S. banks that, like those in other countries, are retreating on their climate commitments.&lt;/em&gt; Inside Climate News, Georgina Gustin, Jun 17, 2025.&lt;/li&gt;
  1149. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.dataforprogress.org/blog/2025/6/17/voters-are-concerned-about-rising-costs-and-think-climate-change-will-financially-affect-them" target="_blank"&gt;Voters Are Concerned About Rising Costs and Think Climate Change Will Financially Affect Them&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;This report illustrates a growing split between US voters and leadership of the federal government on how matters of energy and climate are being handled. &lt;/em&gt; Data For Progress, Brynne Robbins and Elias Kemp, June 17, 2025.&lt;/li&gt;
  1150. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/policy/equilibrium-sustainability/5357564-trump-cuts-noaa-nasa-farmers-climate-change-food-supply/" target="_blank"&gt;Trump cuts to NOAA, NASA 'blinding' farmers to risks, scientists warn&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; TheHill.com, Saul Elbein, Jun 18, 2025.&lt;/li&gt;
  1151. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/noaas-climate-information-portal-to-go-silent/" target="_blank"&gt;NOAA`s climate information portal to go silent&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The Trump adminstration continues to efficiently generate synthetic ignorance. &lt;/em&gt; E&amp;amp;E, Politico, Daniel Cusick, Jun 18, 2025.&lt;/li&gt;
  1152. &lt;/ul&gt;
  1153. &lt;!--more--&gt;
  1154. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (4 articles)&lt;/strong&gt;&lt;/p&gt;
  1155. &lt;ul&gt;
  1156. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/iP2lH2EEr9I?si=bzRw8TlU5tptRWOX" target="_blank"&gt;The REAL STORY of Climate Skeptics New Favorite Graph&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Youtube, PBS Terra, May 21, 2025.&lt;/li&gt;
  1157. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://journals.ametsoc.org/view/journals/bams/106/5/BAMS-D-24-0212.1.xml" target="_blank"&gt;Warming Stripes Spark Climate Conversations: From the Ocean to the Stratosphere&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The inventors of ''Climate Stripes'' describe how this powerful climate communications tool came to be, and how the signal it captures is visible everywhere in Earth's climate system. &lt;/em&gt; Bulletin of the American Meteorological Society, Ed Hawkins et al. , May 28, 2025.&lt;/li&gt;
  1158. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thebrilliant.com/the-scientist-who-paints-the-climate/" target="_blank"&gt;The scientist who paints the climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Brilliant, Sam Illingworth, May 29, 2025.&lt;/li&gt;
  1159. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/show-your-stripes-day-2025.html" target="_blank"&gt;Show your Stripes Day on June 21 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler and Doug Bostrom, June 20, 2025.&lt;/li&gt;
  1160. &lt;/ul&gt;
  1161. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (3 articles)&lt;/strong&gt;&lt;/p&gt;
  1162. &lt;ul&gt;
  1163. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/Nq2QAVA32NM?si=5mmi4c008-ApxrbD" target="_blank"&gt;re:publica 25: Johan Rockstr&amp;ouml;m - Decisive Decade: From Global Promises to Planetary Action&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; re:publica on Youtube, Johan Rockstr&amp;ouml;m, May 29, 2025.&lt;/li&gt;
  1164. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/gallery/2025/jun/15/on-irelands-peat-bogs-climate-action-clashes-with-tradition-in-pictures" target="_blank"&gt;On Ireland`s peat bogs: climate action clashes with tradition - in pictures&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Guardian, Photographs by Clodagh Kilcoyne/Reuters, Jun 15, 2025.&lt;/li&gt;
  1165. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.business-standard.com/world-news/military-emissions-warfare-carbon-footprint-climate-summits-ignored-125061600852_1.html" target="_blank"&gt;As wars intensify, their carbon toll remains off climate summit agendas&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;From Gaza to Ukraine, the environmental cost of conflict rivals top emitters but is missing from global climate policy and accountability frameworks.&lt;/em&gt; Business Standard, Abhijeet Kumar, Jun 16, 2025.&lt;/li&gt;
  1166. &lt;/ul&gt;
  1167. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (2 articles)&lt;/strong&gt;&lt;/p&gt;
  1168. &lt;ul&gt;
  1169. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/jun/19/climate-misinformation-turning-crisis-into-catastrophe-ipie-report" target="_blank"&gt;Climate misinformation turning crisis into catastrophe - major report&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;False claims obstructing climate action, say researchers, amid calls for climate lies to be criminalised&lt;/em&gt; The Guardian, Damian Carrington, Jun 19, 2025.&lt;/li&gt;
  1170. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-lia.html" target="_blank"&gt;Fact brief - Is modern warming just a rebound from the Little Ice Age?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, Sue Bin Park, Jun 21, 2025.&lt;/li&gt;
  1171. &lt;/ul&gt;
  1172. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (2 articles)&lt;/strong&gt;&lt;/p&gt;
  1173. &lt;ul&gt;
  1174. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/guest-post-how-climate-change-is-fuelling-record-breaking-extreme-weather/" target="_blank"&gt;Guest post: How climate change is fuelling record-breaking extreme weather&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Recent years have seen a rapid succession of climate-related records broken , withuy &lt;/em&gt; Carbon Brief, Carbon Brief Staff, Jun 13, 2025.&lt;/li&gt;
  1175. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/jun/18/crop-yields-climate-crisis-adaptation" target="_blank"&gt;Climate crisis could hit yields of key crops even if farmers adapt, study finds&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Production of staple crops projected to fall by as much as 120 calories per person per day for every 1C of heating&lt;/em&gt; The Guardian, Ajit Niranjan, Jun 18, 2025.&lt;/li&gt;
  1176. &lt;/ul&gt;
  1177. &lt;p&gt;&lt;strong&gt;Miscellaneous (2 articles)&lt;/strong&gt;&lt;/p&gt;
  1178. &lt;ul&gt;
  1179. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/13062025/agriculture-ethanol-biofuel-policy-climate-failure/" target="_blank"&gt;Biofuels Policy, a Mainstay of American Agriculture, Has Been a Failure for the Climate, a New Report Claims&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A longtime critic of U.S. biofuels says an expansion of biofuels policy under President Donald Trump would lead to more greenhouse gas emissions and fewer food crops.&lt;/em&gt; Inside Climate News, Georgina Gustin, Jun 13, 2025.&lt;/li&gt;
  1180. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_24.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #24&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 28 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 8, 2025 thru Sat, June 14, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler &amp;amp; Doug Bostrom, Jun 15, 2025.&lt;/li&gt;
  1181. &lt;/ul&gt;
  1182. &lt;p&gt;&lt;strong&gt;Climate Law and Justice (1 article)&lt;/strong&gt;&lt;/p&gt;
  1183. &lt;ul&gt;
  1184. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://blogs.law.columbia.edu/climatechange/2025/06/19/what-lliuya-v-rwe-means-for-climate-change-loss-and-damage-claims/" target="_blank"&gt;What Lliuya v. RWE Means for Climate Change Loss and Damage Claims&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Climate Law Blog, Maxim B&amp;ouml;nnemann and Maria Antonia Tigre, Jun 19, 2025.&lt;/li&gt;
  1185. &lt;/ul&gt;
  1186. &lt;p&gt;&lt;strong&gt;Health Aspects of Climate Change (1 article)&lt;/strong&gt;&lt;/p&gt;
  1187. &lt;ul&gt;
  1188. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.medpagetoday.com/opinion/climate-checkup/116118" target="_blank"&gt;Trump Takes Aim at the Climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A physician inventories how the US public is being harmed by an administration fostering ignorance of climate risks and inability to defend against climate harms.&lt;/em&gt; MedPageToday.com - medical news for physicians, Roger Hicks, MD, Jun 17, 2025.&lt;/li&gt;
  1189. &lt;/ul&gt;
  1190. &lt;p&gt;&lt;strong&gt;International Climate Conferences and Agreements (1 article)&lt;/strong&gt;&lt;/p&gt;
  1191. &lt;ul&gt;
  1192. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/17062025/annual-un-climate-talks-start-without-united-states/" target="_blank"&gt;Global Climate Talks Resumed This Week in Germany, For the First Time in 30 Years Without the United States&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;At a Bonn conference on climate, some participants say there&amp;rsquo;s a chance to make progress with the world&amp;rsquo;s biggest economy, America, no longer in the room.&lt;/em&gt; Inside Climate News, Bob Berwyn, Jun 17, 2025.&lt;/li&gt;
  1193. &lt;/ul&gt;
  1194. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Solutions (1 article)&lt;/strong&gt;&lt;/p&gt;
  1195. &lt;ul&gt;
  1196. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://sks.to/evweather" target="_blank"&gt;What is the effect of hot or cold water on EVs?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Sabin Rebuttal #33 answering the question "What is the effect of hot or cold weather on EVs?&lt;/em&gt; Septical Science, Sabin Climate Team, June 17, 2025.&lt;/li&gt;
  1197. &lt;/ul&gt;
  1198. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  1199. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_25.html</link>
  1200. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_25.html</guid>
  1201. <pubDate>Sun, 22 Jun 2025 10:59:39 EST</pubDate>
  1202. </item>  <item>
  1203. <title>Fact brief - Is modern warming just a rebound from the Little Ice Age?</title>
  1204. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  1205. &lt;h3&gt;Is modern warming just a rebound from the Little Ice Age?&lt;/h3&gt;
  1206. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-No-200px.jpg" alt="No" width="200" height="59" /&gt;Global temperatures are warmer today than immediately before the Little Ice Age.&lt;/p&gt;
  1207. &lt;p&gt;The Little Ice Age was a regional cooling phenomenon caused by internal forcings that mostly moved heat around within Earth&amp;rsquo;s climate system.&lt;/p&gt;
  1208. &lt;p&gt;This event affected North America and Europe from 1350 to 1850. While external forcings like volcanic eruptions and decreased solar activity occurred, it was a massive export of Arctic sea ice into the North Atlantic by warm currents that disrupted ocean circulation and triggered prolonged regional cooling.&lt;/p&gt;
  1209. &lt;p&gt;The end of the Little Ice Age coincided with rising solar output and industrial greenhouse gas emissions. However, since the 1950s, solar activity has declined while global temperatures have increased.&lt;/p&gt;
  1210. &lt;p&gt;Today&amp;rsquo;s warming is driven by human emissions, increasing the amount of heat in the system rather than redistributing it.&lt;/p&gt;
  1211. &lt;p&gt;The late 20th century is the warmest interval in the last 2,000 years for over 98% of the globe.&lt;/p&gt;
  1212. &lt;p&gt;&lt;a href="https://sks.to/lia" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/is-modern-warming-just-a-rebound-from-the-little-ice-age/" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  1213. &lt;hr /&gt;
  1214. &lt;p&gt;This fact brief is responsive to quotes such as &lt;a href="https://web.archive.org/web/20150318141729/http://climaterealists.com/index.php?id=3910" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  1215. &lt;hr /&gt;
  1216. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  1217. &lt;p&gt;University of Massachusetts&amp;nbsp;&lt;a href="https://www.umass.edu/news/article/winter-coming-researchers-uncover-surprising-cause-little-ice-age" target="_blank"&gt;Winter Is Coming: Researchers Uncover the Surprising Cause of the Little Ice Age&lt;/a&gt;&lt;/p&gt;
  1218. &lt;p&gt;Eos&amp;nbsp;&lt;a href="https://eos.org/articles/the-little-ice-age-wasnt-global-but-current-climate-change-is" target="_blank"&gt;The Little Ice Age Wasn&amp;rsquo;t Global, but Current Climate Change Is&lt;/a&gt;&lt;/p&gt;
  1219. &lt;p&gt;Journal of Geophysical Research&amp;nbsp;&lt;a href="https://climate.envsci.rutgers.edu/pdf/FreeRobock1999JD900233.pdf" target="_blank"&gt;Global warming in the context of the Little Ice Age&lt;/a&gt;&lt;/p&gt;
  1220. &lt;p&gt;Salon&amp;nbsp;&lt;a href="https://www.salon.com/2023/08/07/what-climate-change-deniers-get-totally-about-the-little-ice-age/" target="_blank"&gt;What climate change deniers get totally wrong about the Little Ice Age&lt;/a&gt;&lt;/p&gt;
  1221. &lt;p&gt;Science&amp;nbsp;&lt;a href="https://www.meteo.psu.edu/holocene/public_html/shared/articles/MannetalScience09.pdf" target="_blank"&gt;Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly&lt;/a&gt;&lt;/p&gt;
  1222. &lt;p&gt;Nature&amp;nbsp;&lt;a href="https://www.nature.com/articles/s41586-019-1401-2" target="_blank"&gt;No evidence for globally coherent warm and cold periods over the preindustrial Common Era&lt;/a&gt;&lt;/p&gt;
  1223. &lt;!--more--&gt;
  1224. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer "yes/no" answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://gigafact.org/skeptical-science" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  1225. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact Quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  1226. <link>https://skepticalscience.com/fact-brief-lia.html</link>
  1227. <guid>https://skepticalscience.com/fact-brief-lia.html</guid>
  1228. <pubDate>Sat, 21 Jun 2025 10:14:28 EST</pubDate>
  1229. </item> </channel> </rss>

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//www.skepticalscience.com/feed.xml

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda