Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://www.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi?rss_guid=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu

  1. <?xml version='1.0' encoding='UTF-8'?>
  2. <rss xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://purl.org/rss/1.0/modules/content/" version="2.0">
  3.  <channel>
  4.    <title>veterinary medicine university of helsinki</title>
  5.    <link>https://pubmed.ncbi.nlm.nih.gov/rss-feed/?feed_id=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;v=2.18.0.post9+e462414&amp;utm_medium=rss&amp;ff=20240517035053&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;utm_source=Feedvalidator</link>
  6.    <description>veterinary medicine university of helsinki: Latest results from PubMed</description>
  7.    <atom:link href="https://pubmed.ncbi.nlm.nih.gov/rss-feed/?feed_id=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;v=2.18.0.post9+e462414&amp;utm_medium=rss&amp;ff=20240517035053&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;utm_source=Feedvalidator" rel="self"/>
  8.    <docs>http://www.rssboard.org/rss-specification</docs>
  9.    <generator>PubMed RSS feeds (2.18.0.post9+e462414)</generator>
  10.    <language>en</language>
  11.    <lastBuildDate>Fri, 17 May 2024 07:50:55 +0000</lastBuildDate>
  12.    <pubDate>Thu, 16 May 2024 06:00:00 -0400</pubDate>
  13.    <ttl>120</ttl>
  14.    <item>
  15.      <title>Genome analysis of gyroviruses identified in waterfowl in Arizona (USA)</title>
  16.      <link>https://pubmed.ncbi.nlm.nih.gov/38753261/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  17.      <description>Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs...</description>
  18.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Arch Virol. 2024 May 16;169(6):120. doi: 10.1007/s00705-024-06049-9.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share &gt;70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares &gt;73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38753261/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38753261</a> | DOI:<a href=https://doi.org/10.1007/s00705-024-06049-9>10.1007/s00705-024-06049-9</a></p></div>]]></content:encoded>
  19.      <guid isPermaLink="false">pubmed:38753261</guid>
  20.      <pubDate>Thu, 16 May 2024 06:00:00 -0400</pubDate>
  21.      <dc:creator>Shawnpreet Sahnan</dc:creator>
  22.      <dc:creator>Diego Olivo</dc:creator>
  23.      <dc:creator>Joy M Custer</dc:creator>
  24.      <dc:creator>Rohan A Bandoo</dc:creator>
  25.      <dc:creator>Danny Jackson</dc:creator>
  26.      <dc:creator>Michael C Lund</dc:creator>
  27.      <dc:creator>Hannah McGraw</dc:creator>
  28.      <dc:creator>Melanie Regney</dc:creator>
  29.      <dc:creator>Victor Aguiar de Souza Penha</dc:creator>
  30.      <dc:creator>Julia Neil</dc:creator>
  31.      <dc:creator>Dean Drake</dc:creator>
  32.      <dc:creator>Kevin McGraw</dc:creator>
  33.      <dc:creator>Arvind Varsani</dc:creator>
  34.      <dc:creator>Simona Kraberger</dc:creator>
  35.      <dc:date>2024-05-16</dc:date>
  36.      <dc:source>Archives of virology</dc:source>
  37.      <dc:title>Genome analysis of gyroviruses identified in waterfowl in Arizona (USA)</dc:title>
  38.      <dc:identifier>pmid:38753261</dc:identifier>
  39.      <dc:identifier>doi:10.1007/s00705-024-06049-9</dc:identifier>
  40.    </item>
  41.    <item>
  42.      <title>Frequency of RPGRIP1 and MAP9 genetic modifiers of canine progressive retinal atrophy, in 132 breeds of dog</title>
  43.      <link>https://pubmed.ncbi.nlm.nih.gov/38752391/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  44.      <description>Variants in RPGRIP1 and MAP9, termed RPGRIP1ins44 and MAP9del respectively, are both associated with a form of canine progressive retinal atrophy referred to as RPGRIP1-CRD and have both been demonstrated to modify the development and progression of this disease. In the current study both variants were genotyped in at least 50 dogs of 132 diverse breeds and the data reveal that both segregate in multiple breeds. Individually, each variant is common within largely non-overlapping subsets of...</description>
  45.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Anim Genet. 2024 May 16. doi: 10.1111/age.13443. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Variants in RPGRIP1 and MAP9, termed RPGRIP1ins44 and MAP9del respectively, are both associated with a form of canine progressive retinal atrophy referred to as RPGRIP1-CRD and have both been demonstrated to modify the development and progression of this disease. In the current study both variants were genotyped in at least 50 dogs of 132 diverse breeds and the data reveal that both segregate in multiple breeds. Individually, each variant is common within largely non-overlapping subsets of breed, and there is a negative correlation between their frequencies within breeds that segregate both variants. The frequency of both variants exceeds 0.05 in a single breed only, the Miniature Longhaired Dachshund. These data indicate that both variants are likely to be ancient and predate the development and genetic isolation of modern dog breeds. That both variants are present individually at high frequency in multiple breeds is consistent with the hypothesis that homozygosity of either variant alone is not associated with a clinically relevant phenotype, whereas the negative correlation between the two variants is consistent with the application of selective pressure, from dog breeders, against homozygosity at both loci, probably due to the more severe phenotype associated with homozygosity at both loci.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38752391/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38752391</a> | DOI:<a href=https://doi.org/10.1111/age.13443>10.1111/age.13443</a></p></div>]]></content:encoded>
  46.      <guid isPermaLink="false">pubmed:38752391</guid>
  47.      <pubDate>Thu, 16 May 2024 06:00:00 -0400</pubDate>
  48.      <dc:creator>Jonas Donner</dc:creator>
  49.      <dc:creator>Cathryn Mellersh</dc:creator>
  50.      <dc:date>2024-05-16</dc:date>
  51.      <dc:source>Animal genetics</dc:source>
  52.      <dc:title>Frequency of RPGRIP1 and MAP9 genetic modifiers of canine progressive retinal atrophy, in 132 breeds of dog</dc:title>
  53.      <dc:identifier>pmid:38752391</dc:identifier>
  54.      <dc:identifier>doi:10.1111/age.13443</dc:identifier>
  55.    </item>
  56.    <item>
  57.      <title>Advancement of membrane separation technology for organic pollutant removal</title>
  58.      <link>https://pubmed.ncbi.nlm.nih.gov/38747950/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  59.      <description>In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper...</description>
  60.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Water Sci Technol. 2024 May;89(9):2290-2310. doi: 10.2166/wst.2024.117. Epub 2024 Apr 10.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38747950/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38747950</a> | DOI:<a href=https://doi.org/10.2166/wst.2024.117>10.2166/wst.2024.117</a></p></div>]]></content:encoded>
  61.      <guid isPermaLink="false">pubmed:38747950</guid>
  62.      <pubDate>Wed, 15 May 2024 06:00:00 -0400</pubDate>
  63.      <dc:creator>Saroj Raj Kafle</dc:creator>
  64.      <dc:creator>Sangeet Adhikari</dc:creator>
  65.      <dc:creator>Rakesh Shrestha</dc:creator>
  66.      <dc:creator>Sagar Ban</dc:creator>
  67.      <dc:creator>Gaurav Khatiwada</dc:creator>
  68.      <dc:creator>Pragati Gaire</dc:creator>
  69.      <dc:creator>Nerisha Tuladhar</dc:creator>
  70.      <dc:creator>Guangming Jiang</dc:creator>
  71.      <dc:creator>Ananda Tiwari</dc:creator>
  72.      <dc:date>2024-05-15</dc:date>
  73.      <dc:source>Water science and technology : a journal of the International Association on Water Pollution Research</dc:source>
  74.      <dc:title>Advancement of membrane separation technology for organic pollutant removal</dc:title>
  75.      <dc:identifier>pmid:38747950</dc:identifier>
  76.      <dc:identifier>doi:10.2166/wst.2024.117</dc:identifier>
  77.    </item>
  78.    <item>
  79.      <title>The great tit HapMap project: A continental-scale analysis of genomic variation in a songbird</title>
  80.      <link>https://pubmed.ncbi.nlm.nih.gov/38747336/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  81.      <description>A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29...</description>
  82.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Mol Ecol Resour. 2024 May 15:e13969. doi: 10.1111/1755-0998.13969. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (F<sub>ST</sub>), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38747336/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38747336</a> | DOI:<a href=https://doi.org/10.1111/1755-0998.13969>10.1111/1755-0998.13969</a></p></div>]]></content:encoded>
  83.      <guid isPermaLink="false">pubmed:38747336</guid>
  84.      <pubDate>Wed, 15 May 2024 06:00:00 -0400</pubDate>
  85.      <dc:creator>Lewis G Spurgin</dc:creator>
  86.      <dc:creator>Mirte Bosse</dc:creator>
  87.      <dc:creator>Frank Adriaensen</dc:creator>
  88.      <dc:creator>Tamer Albayrak</dc:creator>
  89.      <dc:creator>Christos Barboutis</dc:creator>
  90.      <dc:creator>Eduardo Belda</dc:creator>
  91.      <dc:creator>Andrey Bushuev</dc:creator>
  92.      <dc:creator>Jacopo G Cecere</dc:creator>
  93.      <dc:creator>Anne Charmantier</dc:creator>
  94.      <dc:creator>Mariusz Cichon</dc:creator>
  95.      <dc:creator>Niels J Dingemanse</dc:creator>
  96.      <dc:creator>Blandine Doligez</dc:creator>
  97.      <dc:creator>Tapio Eeva</dc:creator>
  98.      <dc:creator>Kjell Einar Erikstad</dc:creator>
  99.      <dc:creator>Vyacheslav Fedorov</dc:creator>
  100.      <dc:creator>Matteo Griggio</dc:creator>
  101.      <dc:creator>Dieter Heylen</dc:creator>
  102.      <dc:creator>Sabine Hille</dc:creator>
  103.      <dc:creator>Camilla A Hinde</dc:creator>
  104.      <dc:creator>Elena Ivankina</dc:creator>
  105.      <dc:creator>Bart Kempenaers</dc:creator>
  106.      <dc:creator>Anvar Kerimov</dc:creator>
  107.      <dc:creator>Milos Krist</dc:creator>
  108.      <dc:creator>Laura Kvist</dc:creator>
  109.      <dc:creator>Veronika N Laine</dc:creator>
  110.      <dc:creator>Raivo Mänd</dc:creator>
  111.      <dc:creator>Erik Matthysen</dc:creator>
  112.      <dc:creator>Ruedi Nager</dc:creator>
  113.      <dc:creator>Boris P Nikolov</dc:creator>
  114.      <dc:creator>Ana Claudia Norte</dc:creator>
  115.      <dc:creator>Markku Orell</dc:creator>
  116.      <dc:creator>Jenny Ouyang</dc:creator>
  117.      <dc:creator>Gergana Petrova-Dinkova</dc:creator>
  118.      <dc:creator>Heinz Richner</dc:creator>
  119.      <dc:creator>Diego Rubolini</dc:creator>
  120.      <dc:creator>Tore Slagsvold</dc:creator>
  121.      <dc:creator>Vallo Tilgar</dc:creator>
  122.      <dc:creator>János Török</dc:creator>
  123.      <dc:creator>Barbara Tschirren</dc:creator>
  124.      <dc:creator>Csongor I Vágási</dc:creator>
  125.      <dc:creator>Teru Yuta</dc:creator>
  126.      <dc:creator>Martien A M Groenen</dc:creator>
  127.      <dc:creator>Marcel E Visser</dc:creator>
  128.      <dc:creator>Kees van Oers</dc:creator>
  129.      <dc:creator>Ben C Sheldon</dc:creator>
  130.      <dc:creator>Jon Slate</dc:creator>
  131.      <dc:date>2024-05-15</dc:date>
  132.      <dc:source>Molecular ecology resources</dc:source>
  133.      <dc:title>The great tit HapMap project: A continental-scale analysis of genomic variation in a songbird</dc:title>
  134.      <dc:identifier>pmid:38747336</dc:identifier>
  135.      <dc:identifier>doi:10.1111/1755-0998.13969</dc:identifier>
  136.    </item>
  137.    <item>
  138.      <title>New approach methods to assess developmental and adult neurotoxicity for regulatory use: a PARC work package 5 project</title>
  139.      <link>https://pubmed.ncbi.nlm.nih.gov/38742231/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  140.      <description>In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is...</description>
  141.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Front Toxicol. 2024 Apr 26;6:1359507. doi: 10.3389/ftox.2024.1359507. eCollection 2024.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">In the European regulatory context, rodent <i>in vivo</i> studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with <i>in vitro</i> or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific <i>in vivo</i> studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38742231/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38742231</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11089904/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11089904</a> | DOI:<a href=https://doi.org/10.3389/ftox.2024.1359507>10.3389/ftox.2024.1359507</a></p></div>]]></content:encoded>
  142.      <guid isPermaLink="false">pubmed:38742231</guid>
  143.      <pubDate>Tue, 14 May 2024 06:00:00 -0400</pubDate>
  144.      <dc:creator>Tamara Tal</dc:creator>
  145.      <dc:creator>Oddvar Myhre</dc:creator>
  146.      <dc:creator>Ellen Fritsche</dc:creator>
  147.      <dc:creator>Joëlle Rüegg</dc:creator>
  148.      <dc:creator>Kai Craenen</dc:creator>
  149.      <dc:creator>Kiara Aiello-Holden</dc:creator>
  150.      <dc:creator>Caroline Agrillo</dc:creator>
  151.      <dc:creator>Patrick J Babin</dc:creator>
  152.      <dc:creator>Beate I Escher</dc:creator>
  153.      <dc:creator>Hubert Dirven</dc:creator>
  154.      <dc:creator>Kati Hellsten</dc:creator>
  155.      <dc:creator>Kristine Dolva</dc:creator>
  156.      <dc:creator>Ellen Hessel</dc:creator>
  157.      <dc:creator>Harm J Heusinkveld</dc:creator>
  158.      <dc:creator>Yavor Hadzhiev</dc:creator>
  159.      <dc:creator>Selma Hurem</dc:creator>
  160.      <dc:creator>Karolina Jagiello</dc:creator>
  161.      <dc:creator>Beata Judzinska</dc:creator>
  162.      <dc:creator>Nils Klüver</dc:creator>
  163.      <dc:creator>Anja Knoll-Gellida</dc:creator>
  164.      <dc:creator>Britta A Kühne</dc:creator>
  165.      <dc:creator>Marcel Leist</dc:creator>
  166.      <dc:creator>Malene Lislien</dc:creator>
  167.      <dc:creator>Jan L Lyche</dc:creator>
  168.      <dc:creator>Ferenc Müller</dc:creator>
  169.      <dc:creator>John K Colbourne</dc:creator>
  170.      <dc:creator>Winfried Neuhaus</dc:creator>
  171.      <dc:creator>Giorgia Pallocca</dc:creator>
  172.      <dc:creator>Bettina Seeger</dc:creator>
  173.      <dc:creator>Ilka Scharkin</dc:creator>
  174.      <dc:creator>Stefan Scholz</dc:creator>
  175.      <dc:creator>Ola Spjuth</dc:creator>
  176.      <dc:creator>Monica Torres-Ruiz</dc:creator>
  177.      <dc:creator>Kristina Bartmann</dc:creator>
  178.      <dc:date>2024-05-14</dc:date>
  179.      <dc:source>Frontiers in toxicology</dc:source>
  180.      <dc:title>New approach methods to assess developmental and adult neurotoxicity for regulatory use: a PARC work package 5 project</dc:title>
  181.      <dc:identifier>pmid:38742231</dc:identifier>
  182.      <dc:identifier>pmc:PMC11089904</dc:identifier>
  183.      <dc:identifier>doi:10.3389/ftox.2024.1359507</dc:identifier>
  184.    </item>
  185.    <item>
  186.      <title>Evolution and genetic characterization of Seoul virus in wild rats Rattus norvegicus from an urban park in Lyon, France 2020-2022</title>
  187.      <link>https://pubmed.ncbi.nlm.nih.gov/38739651/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  188.      <description>CONCLUSION/SIGNIFICANCE: This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.</description>
  189.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">PLoS Negl Trop Dis. 2024 May 13;18(5):e0012142. doi: 10.1371/journal.pntd.0012142. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: Seoul virus (SEOV) is an orthohantavirus primarily carried by rats. In humans, it may cause hemorrhagic fever with renal syndrome (HFRS). Its incidence is likely underestimated and given the expansion of urban areas, a better knowledge of SEOV circulation in rat populations is called for. Beyond the need to improve human case detection, we need to deepen our comprehension of the ecological, epidemiological, and evolutionary processes involved in the transmission of SEOV.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODOLOGY / PRINCIPAL FINDINGS: We performed a comprehensive serological and molecular characterization of SEOV in Rattus norvegicus in a popular urban park within a large city (Lyon, France) to provide essential information to design surveillance strategies regarding SEOV. We sampled rats within the urban park of 'La Tête d'Or' in Lyon city from 2020 to 2022. We combined rat population genetics, immunofluorescence assays, SEOV high-throughput sequencing (S, M, and L segments), and phylogenetic analyses. We found low structuring of wild rat populations within Lyon city. Only one sampling site within the park (building created in 2021) showed high genetic differentiation and deserves further attention. We confirmed the circulation of SEOV in rats from the park with high seroprevalence (17.2%) and high genetic similarity with the strain previously described in 2011 in Lyon city.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSION/SIGNIFICANCE: This study confirms the continuous circulation of SEOV in a popular urban park where the risk for SEOV transmission to humans is present. Implementing a surveillance of this virus could provide an efficient early warning system and help prepare risk-based interventions. As we reveal high gene flow between rat populations from the park and the rest of the city, we advocate for SEOV surveillance to be conducted at the scale of the entire city.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38739651/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38739651</a> | DOI:<a href=https://doi.org/10.1371/journal.pntd.0012142>10.1371/journal.pntd.0012142</a></p></div>]]></content:encoded>
  190.      <guid isPermaLink="false">pubmed:38739651</guid>
  191.      <pubDate>Mon, 13 May 2024 06:00:00 -0400</pubDate>
  192.      <dc:creator>Hussein Alburkat</dc:creator>
  193.      <dc:creator>Teemu Smura</dc:creator>
  194.      <dc:creator>Marie Bouilloud</dc:creator>
  195.      <dc:creator>Julien Pradel</dc:creator>
  196.      <dc:creator>Gwendoline Anfray</dc:creator>
  197.      <dc:creator>Karine Berthier</dc:creator>
  198.      <dc:creator>Lara Dutra</dc:creator>
  199.      <dc:creator>Anne Loiseau</dc:creator>
  200.      <dc:creator>Thanakorn Niamsap</dc:creator>
  201.      <dc:creator>Viktor Olander</dc:creator>
  202.      <dc:creator>Diana Sepulveda</dc:creator>
  203.      <dc:creator>Vinaya Venkat</dc:creator>
  204.      <dc:creator>Nathalie Charbonnel</dc:creator>
  205.      <dc:creator>Guillaume Castel</dc:creator>
  206.      <dc:creator>Tarja Sironen</dc:creator>
  207.      <dc:date>2024-05-13</dc:date>
  208.      <dc:source>PLoS neglected tropical diseases</dc:source>
  209.      <dc:title>Evolution and genetic characterization of Seoul virus in wild rats Rattus norvegicus from an urban park in Lyon, France 2020-2022</dc:title>
  210.      <dc:identifier>pmid:38739651</dc:identifier>
  211.      <dc:identifier>doi:10.1371/journal.pntd.0012142</dc:identifier>
  212.    </item>
  213.    <item>
  214.      <title>Early survival in Atlantic salmon is associated with parental genotypes at loci linked to timing of maturation</title>
  215.      <link>https://pubmed.ncbi.nlm.nih.gov/38736399/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  216.      <description>Large effects loci often contain genes with critical developmental functions with potentially broad effects across life-stages. However, the life-stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity, and several physiological and behavioural traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if...</description>
  217.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Evolution. 2024 May 13:qpae072. doi: 10.1093/evolut/qpae072. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Large effects loci often contain genes with critical developmental functions with potentially broad effects across life-stages. However, the life-stage-specific fitness consequences are rarely explored. In Atlantic salmon, variation in two large-effect loci, six6 and vgll3, is linked to age at maturity, and several physiological and behavioural traits in early life. By genotyping the progeny of wild Atlantic salmon that were planted into natural streams with nutrient manipulations, we tested if genetic variation in these loci is associated with survival in early life. We found that higher early life survival was linked to the genotype associated with late maturation in the vgll3, but with early maturation in the six6 locus. These effects were significant in high-nutrient, but not in in low-nutrient streams. The differences in early survival were not explained by additive genetic effects in the offspring generation, but by maternal genotypes in the six6 locus, and by both parents' genotypes in the vgll3 locus. Our results suggest that indirect genetic effects by large-effect loci can be significant determinants of offspring fitness. This study demonstrates an intriguing case of how large-effect loci can exhibit complex fitness associations across life stages in the wild and indicates that predicting evolutionary dynamics is difficult.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38736399/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38736399</a> | DOI:<a href=https://doi.org/10.1093/evolut/qpae072>10.1093/evolut/qpae072</a></p></div>]]></content:encoded>
  218.      <guid isPermaLink="false">pubmed:38736399</guid>
  219.      <pubDate>Mon, 13 May 2024 06:00:00 -0400</pubDate>
  220.      <dc:creator>Tutku Aykanat</dc:creator>
  221.      <dc:creator>Darryl McLennan</dc:creator>
  222.      <dc:creator>Neil B Metcalfe</dc:creator>
  223.      <dc:creator>Jenni M Prokkola</dc:creator>
  224.      <dc:date>2024-05-13</dc:date>
  225.      <dc:source>Evolution; international journal of organic evolution</dc:source>
  226.      <dc:title>Early survival in Atlantic salmon is associated with parental genotypes at loci linked to timing of maturation</dc:title>
  227.      <dc:identifier>pmid:38736399</dc:identifier>
  228.      <dc:identifier>doi:10.1093/evolut/qpae072</dc:identifier>
  229.    </item>
  230.    <item>
  231.      <title>Ketogenic Diet Protects from Experimental Colitis in a Mouse Model Regardless of Dietary Fat Source</title>
  232.      <link>https://pubmed.ncbi.nlm.nih.gov/38732595/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  233.      <description>While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (n = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then...</description>
  234.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Nutrients. 2024 Apr 29;16(9):1348. doi: 10.3390/nu16091348.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">While ketogenic diets (KDs) may have potential as adjunct treatments for gastrointestinal diseases, there is little knowledge on how the fat source of these diets impacts intestinal health. The objective of this study was to investigate how the source of dietary fat of KD influences experimental colitis. We fed nine-week-old male C57BL/6J mice (<i>n</i> = 36) with a low-fat control diet or KD high either in saturated fatty acids (SFA-KD) or polyunsaturated linoleic acid (LA-KD) for four weeks and then induced colitis with dextran sodium sulfate (DSS). To compare the diets, we analyzed macroscopic and histological changes in the colon, intestinal permeability to fluorescein isothiocyanate-dextran (FITC-dextran), and the colonic expression of tight junction proteins and inflammatory markers. While the effects were more pronounced with LA-KD, both KDs markedly alleviated DSS-induced histological lesions. LA-KD prevented inflammation-related weight loss and the shortening of the colon, as well as preserved <i>Il1b</i> and <i>Tnf</i> expression at a healthy level. Despite no significant between-group differences in permeability to FITC-dextran, LA-KD mitigated changes in tight junction protein expression. Thus, KDs may have preventive potential against intestinal inflammation, with the level of the effect being dependent on the dietary fat source.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38732595/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38732595</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11085069/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11085069</a> | DOI:<a href=https://doi.org/10.3390/nu16091348>10.3390/nu16091348</a></p></div>]]></content:encoded>
  235.      <guid isPermaLink="false">pubmed:38732595</guid>
  236.      <pubDate>Sat, 11 May 2024 06:00:00 -0400</pubDate>
  237.      <dc:creator>Lotta Luiskari</dc:creator>
  238.      <dc:creator>Jere Lindén</dc:creator>
  239.      <dc:creator>Markku Lehto</dc:creator>
  240.      <dc:creator>Hanne Salmenkari</dc:creator>
  241.      <dc:creator>Riitta Korpela</dc:creator>
  242.      <dc:date>2024-05-11</dc:date>
  243.      <dc:source>Nutrients</dc:source>
  244.      <dc:title>Ketogenic Diet Protects from Experimental Colitis in a Mouse Model Regardless of Dietary Fat Source</dc:title>
  245.      <dc:identifier>pmid:38732595</dc:identifier>
  246.      <dc:identifier>pmc:PMC11085069</dc:identifier>
  247.      <dc:identifier>doi:10.3390/nu16091348</dc:identifier>
  248.    </item>
  249.    <item>
  250.      <title>Serum procalcitonin as a diagnostic biomarker in dogs with bacterial respiratory diseases</title>
  251.      <link>https://pubmed.ncbi.nlm.nih.gov/38730224/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  252.      <description>CONCLUSIONS: These results indicate that despite being a valuable diagnostic, prognostic, and follow-up marker in humans with pneumonia, serum PCT concentrations are not elevated in dogs with bacterial respiratory diseases and, therefore, cannot be used as a diagnostic biomarker in dogs.</description>
  253.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Vet Clin Pathol. 2024 May 10. doi: 10.1111/vcp.13353. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: Procalcitonin (PCT) is a useful biomarker in humans in the identification of bacterial respiratory infections.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">OBJECTIVES: The aim of this study was to investigate the utility of serum PCT measurements as a diagnostic biomarker in canine bacterial lower respiratory tract diseases.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: PCT concentrations were measured in serum samples with an ELISA method previously validated for dogs. All dogs underwent thorough clinical examinations, and the diagnosis of respiratory disease was based on clinical and laboratory findings, diagnostic imaging, as well as cytology and bacterial culture of respiratory samples. PCT concentrations between different cohorts of dogs were compared with an ANOVA-model.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: Sixty-two privately owned dogs with respiratory diseases, 25 with bacterial pneumonia (BP), 17 with bacterial bronchitis caused by Bordetella bronchiseptica (BB), and 20 with chronic bronchitis (CB) as well as 44 healthy controls were included in the study. Serum PCT concentrations in dogs with bacterial respiratory diseases (BP mean 51.8 ng/L ± standard deviation [SD] 40.6 ng/L and BB mean 61.4 ng/L ± SD 35.3 ng/L) were not significantly different when compared with dogs with a non-bacterial respiratory disease (CB mean 89.7 ± SD 73.5 ng/L) or healthy dogs (mean 51.0 ng/L ± SD 37.5 ng/L, p &gt; .05 in all comparisons).</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: These results indicate that despite being a valuable diagnostic, prognostic, and follow-up marker in humans with pneumonia, serum PCT concentrations are not elevated in dogs with bacterial respiratory diseases and, therefore, cannot be used as a diagnostic biomarker in dogs.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38730224/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38730224</a> | DOI:<a href=https://doi.org/10.1111/vcp.13353>10.1111/vcp.13353</a></p></div>]]></content:encoded>
  254.      <guid isPermaLink="false">pubmed:38730224</guid>
  255.      <pubDate>Fri, 10 May 2024 06:00:00 -0400</pubDate>
  256.      <dc:creator>N Koho</dc:creator>
  257.      <dc:creator>M M Rajamäki</dc:creator>
  258.      <dc:creator>S J Viitanen</dc:creator>
  259.      <dc:date>2024-05-10</dc:date>
  260.      <dc:source>Veterinary clinical pathology</dc:source>
  261.      <dc:title>Serum procalcitonin as a diagnostic biomarker in dogs with bacterial respiratory diseases</dc:title>
  262.      <dc:identifier>pmid:38730224</dc:identifier>
  263.      <dc:identifier>doi:10.1111/vcp.13353</dc:identifier>
  264.    </item>
  265.    <item>
  266.      <title>Updated European guidelines for clinical management of familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), gastric adenocarcinoma, proximal polyposis of the stomach (GAPPS) and other rare adenomatous polyposis syndromes: a joint EHTG-ESCP revision</title>
  267.      <link>https://pubmed.ncbi.nlm.nih.gov/38722804/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  268.      <description>CONCLUSION: These updated guidelines provide current, comprehensive, and evidence-based practical recommendations for the management of surveillance and treatment of familial adenomatous polyposis patients, encompassing additionally MUTYH-associated polyposis, gastric adenocarcinoma and proximal polyposis of the stomach and other recently identified polyposis syndromes based on pathogenic variants in other genes than APC or MUTYH. Due to the rarity of these diseases, patients should be managed...</description>
  269.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Br J Surg. 2024 May 3;111(5):znae070. doi: 10.1093/bjs/znae070.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: Hereditary adenomatous polyposis syndromes, including familial adenomatous polyposis and other rare adenomatous polyposis syndromes, increase the lifetime risk of colorectal and other cancers.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: A team of 38 experts convened to update the 2008 European recommendations for the clinical management of patients with adenomatous polyposis syndromes. Additionally, other rare monogenic adenomatous polyposis syndromes were reviewed and added. Eighty-nine clinically relevant questions were answered after a systematic review of the existing literature with grading of the evidence according to Grading of Recommendations, Assessment, Development, and Evaluation methodology. Two levels of consensus were identified: consensus threshold (≥67% of voting guideline committee members voting either 'Strongly agree' or 'Agree' during the Delphi rounds) and high threshold (consensus ≥ 80%).</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: One hundred and forty statements reached a high level of consensus concerning the management of hereditary adenomatous polyposis syndromes.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSION: These updated guidelines provide current, comprehensive, and evidence-based practical recommendations for the management of surveillance and treatment of familial adenomatous polyposis patients, encompassing additionally MUTYH-associated polyposis, gastric adenocarcinoma and proximal polyposis of the stomach and other recently identified polyposis syndromes based on pathogenic variants in other genes than APC or MUTYH. Due to the rarity of these diseases, patients should be managed at specialized centres.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38722804/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38722804</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11081080/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11081080</a> | DOI:<a href=https://doi.org/10.1093/bjs/znae070>10.1093/bjs/znae070</a></p></div>]]></content:encoded>
  270.      <guid isPermaLink="false">pubmed:38722804</guid>
  271.      <pubDate>Thu, 09 May 2024 06:00:00 -0400</pubDate>
  272.      <dc:creator>Gloria Zaffaroni</dc:creator>
  273.      <dc:creator>Alessandro Mannucci</dc:creator>
  274.      <dc:creator>Laura Koskenvuo</dc:creator>
  275.      <dc:creator>Borja de Lacy</dc:creator>
  276.      <dc:creator>Anna Maffioli</dc:creator>
  277.      <dc:creator>Tanya Bisseling</dc:creator>
  278.      <dc:creator>Elizabeth Half</dc:creator>
  279.      <dc:creator>Giulia Martina Cavestro</dc:creator>
  280.      <dc:creator>Laura Valle</dc:creator>
  281.      <dc:creator>Neil Ryan</dc:creator>
  282.      <dc:creator>Stefan Aretz</dc:creator>
  283.      <dc:creator>Karen Brown</dc:creator>
  284.      <dc:creator>Francesco Buttitta</dc:creator>
  285.      <dc:creator>Fatima Carneiro</dc:creator>
  286.      <dc:creator>Oonagh Claber</dc:creator>
  287.      <dc:creator>Ruth Blanco-Colino</dc:creator>
  288.      <dc:creator>Maxime Collard</dc:creator>
  289.      <dc:creator>Emma Crosbie</dc:creator>
  290.      <dc:creator>Miguel Cunha</dc:creator>
  291.      <dc:creator>Triantafyllos Doulias</dc:creator>
  292.      <dc:creator>Christina Fleming</dc:creator>
  293.      <dc:creator>Henriette Heinrich</dc:creator>
  294.      <dc:creator>Robert Hüneburg</dc:creator>
  295.      <dc:creator>Julie Metras</dc:creator>
  296.      <dc:creator>Iris Nagtegaal</dc:creator>
  297.      <dc:creator>Ionut Negoi</dc:creator>
  298.      <dc:creator>Maartje Nielsen</dc:creator>
  299.      <dc:creator>Gianluca Pellino</dc:creator>
  300.      <dc:creator>Luigi Ricciardiello</dc:creator>
  301.      <dc:creator>Abdurrahman Sagir</dc:creator>
  302.      <dc:creator>Luis Sánchez-Guillén</dc:creator>
  303.      <dc:creator>Toni T Seppälä</dc:creator>
  304.      <dc:creator>Peter Siersema</dc:creator>
  305.      <dc:creator>Benedikt Striebeck</dc:creator>
  306.      <dc:creator>Julian R Sampson</dc:creator>
  307.      <dc:creator>Andrew Latchford</dc:creator>
  308.      <dc:creator>Yann Parc</dc:creator>
  309.      <dc:creator>John Burn</dc:creator>
  310.      <dc:creator>Gabriela Möslein</dc:creator>
  311.      <dc:date>2024-05-09</dc:date>
  312.      <dc:source>The British journal of surgery</dc:source>
  313.      <dc:title>Updated European guidelines for clinical management of familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), gastric adenocarcinoma, proximal polyposis of the stomach (GAPPS) and other rare adenomatous polyposis syndromes: a joint EHTG-ESCP revision</dc:title>
  314.      <dc:identifier>pmid:38722804</dc:identifier>
  315.      <dc:identifier>pmc:PMC11081080</dc:identifier>
  316.      <dc:identifier>doi:10.1093/bjs/znae070</dc:identifier>
  317.    </item>
  318.    <item>
  319.      <title>A new Finnish flavor of feline coat coloration, "salmiak," is associated with a 95-kb deletion downstream of the KIT gene</title>
  320.      <link>https://pubmed.ncbi.nlm.nih.gov/38721753/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  321.      <description>Cats with a distinctive white hair pattern of unknown molecular cause have been discovered in the Finnish domestic cat population. Based on the unique appearance of these cats, we have named this phenotype salmiak ("salty licorice"). The use of a commercially available panel test to genotype four salmiak-colored cats revealed the absence of all known variants associated with white-haired phenotypic loci: full White (W), Spotting (W^(s)) and the Birman white Gloves associated (w^(g)) allele of...</description>
  322.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Anim Genet. 2024 May 9. doi: 10.1111/age.13438. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Cats with a distinctive white hair pattern of unknown molecular cause have been discovered in the Finnish domestic cat population. Based on the unique appearance of these cats, we have named this phenotype salmiak ("salty licorice"). The use of a commercially available panel test to genotype four salmiak-colored cats revealed the absence of all known variants associated with white-haired phenotypic loci: full White (W), Spotting (W<sup>s</sup>) and the Birman white Gloves associated (w<sup>g</sup>) allele of the KIT proto-oncogene (KIT) gene. Whole-genome sequencing on two salmiak-colored cats was conducted to search for candidate causal variants in the KIT gene. Despite a lack of coding variants, visual inspection of the short read alignments revealed a large ~95 kb deletion located ~65 kb downstream of the KIT gene in the salmiak cats. Additional PCR genotyping of 180 domestic cats and three salmiak-colored cats confirmed the homozygous derived variant genotype fully concordant with the salmiak phenotype. We suggest the newly identified variant be designated as w<sup>sal</sup> for "w salmiak".</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38721753/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38721753</a> | DOI:<a href=https://doi.org/10.1111/age.13438>10.1111/age.13438</a></p></div>]]></content:encoded>
  323.      <guid isPermaLink="false">pubmed:38721753</guid>
  324.      <pubDate>Thu, 09 May 2024 06:00:00 -0400</pubDate>
  325.      <dc:creator>Heidi Anderson</dc:creator>
  326.      <dc:creator>Milla Salonen</dc:creator>
  327.      <dc:creator>Sari Toivola</dc:creator>
  328.      <dc:creator>Matthew Blades</dc:creator>
  329.      <dc:creator>Leslie A Lyons</dc:creator>
  330.      <dc:creator>Oliver P Forman</dc:creator>
  331.      <dc:creator>Marjo K Hytönen</dc:creator>
  332.      <dc:creator>Hannes Lohi</dc:creator>
  333.      <dc:date>2024-05-09</dc:date>
  334.      <dc:source>Animal genetics</dc:source>
  335.      <dc:title>A new Finnish flavor of feline coat coloration, "salmiak," is associated with a 95-kb deletion downstream of the KIT gene</dc:title>
  336.      <dc:identifier>pmid:38721753</dc:identifier>
  337.      <dc:identifier>doi:10.1111/age.13438</dc:identifier>
  338.    </item>
  339.    <item>
  340.      <title>Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization</title>
  341.      <link>https://pubmed.ncbi.nlm.nih.gov/38712683/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  342.      <description>The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to...</description>
  343.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Ecol Lett. 2024 May;27(5):e14415. doi: 10.1111/ele.14415.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38712683/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38712683</a> | DOI:<a href=https://doi.org/10.1111/ele.14415>10.1111/ele.14415</a></p></div>]]></content:encoded>
  344.      <guid isPermaLink="false">pubmed:38712683</guid>
  345.      <pubDate>Tue, 07 May 2024 06:00:00 -0400</pubDate>
  346.      <dc:creator>Judith M Sarneel</dc:creator>
  347.      <dc:creator>Mariet M Hefting</dc:creator>
  348.      <dc:creator>Taru Sandén</dc:creator>
  349.      <dc:creator>Johan van den Hoogen</dc:creator>
  350.      <dc:creator>Devin Routh</dc:creator>
  351.      <dc:creator>Bhupendra S Adhikari</dc:creator>
  352.      <dc:creator>Juha M Alatalo</dc:creator>
  353.      <dc:creator>Alla Aleksanyan</dc:creator>
  354.      <dc:creator>Inge H J Althuizen</dc:creator>
  355.      <dc:creator>Mohammed H S A Alsafran</dc:creator>
  356.      <dc:creator>Jeff W Atkins</dc:creator>
  357.      <dc:creator>Laurent Augusto</dc:creator>
  358.      <dc:creator>Mika Aurela</dc:creator>
  359.      <dc:creator>Aleksej V Azarov</dc:creator>
  360.      <dc:creator>Isabel C Barrio</dc:creator>
  361.      <dc:creator>Claus Beier</dc:creator>
  362.      <dc:creator>María D Bejarano</dc:creator>
  363.      <dc:creator>Sue E Benham</dc:creator>
  364.      <dc:creator>Björn Berg</dc:creator>
  365.      <dc:creator>Nadezhda V Bezler</dc:creator>
  366.      <dc:creator>Katrín Björnsdóttir</dc:creator>
  367.      <dc:creator>Martin A Bolinder</dc:creator>
  368.      <dc:creator>Michele Carbognani</dc:creator>
  369.      <dc:creator>Roberto Cazzolla Gatti</dc:creator>
  370.      <dc:creator>Stefano Chelli</dc:creator>
  371.      <dc:creator>Maxim V Chistotin</dc:creator>
  372.      <dc:creator>Casper T Christiansen</dc:creator>
  373.      <dc:creator>Pascal Courtois</dc:creator>
  374.      <dc:creator>Thomas W Crowther</dc:creator>
  375.      <dc:creator>Michele S Dechoum</dc:creator>
  376.      <dc:creator>Ika Djukic</dc:creator>
  377.      <dc:creator>Sarah Duddigan</dc:creator>
  378.      <dc:creator>Louise M Egerton-Warburton</dc:creator>
  379.      <dc:creator>Nicolas Fanin</dc:creator>
  380.      <dc:creator>Maria Fantappiè</dc:creator>
  381.      <dc:creator>Silvano Fares</dc:creator>
  382.      <dc:creator>Geraldo W Fernandes</dc:creator>
  383.      <dc:creator>Nina V Filippova</dc:creator>
  384.      <dc:creator>Andreas Fliessbach</dc:creator>
  385.      <dc:creator>David Fuentes</dc:creator>
  386.      <dc:creator>Roberto Godoy</dc:creator>
  387.      <dc:creator>Thomas Grünwald</dc:creator>
  388.      <dc:creator>Gema Guzmán</dc:creator>
  389.      <dc:creator>Joseph E Hawes</dc:creator>
  390.      <dc:creator>Yue He</dc:creator>
  391.      <dc:creator>Jean-Marc Hero</dc:creator>
  392.      <dc:creator>Laura L Hess</dc:creator>
  393.      <dc:creator>Katja Hogendoorn</dc:creator>
  394.      <dc:creator>Toke T Høye</dc:creator>
  395.      <dc:creator>Wilma W P Jans</dc:creator>
  396.      <dc:creator>Ingibjörg S Jónsdóttir</dc:creator>
  397.      <dc:creator>Sabina Keller</dc:creator>
  398.      <dc:creator>Sebastian Kepfer-Rojas</dc:creator>
  399.      <dc:creator>Natalya N Kuz'menko</dc:creator>
  400.      <dc:creator>Klaus S Larsen</dc:creator>
  401.      <dc:creator>Hjalmar Laudon</dc:creator>
  402.      <dc:creator>Jonas J Lembrechts</dc:creator>
  403.      <dc:creator>Junhui Li</dc:creator>
  404.      <dc:creator>Jean-Marc Limousin</dc:creator>
  405.      <dc:creator>Sergey M Lukin</dc:creator>
  406.      <dc:creator>Renato Marques</dc:creator>
  407.      <dc:creator>César Marín</dc:creator>
  408.      <dc:creator>Marshall D McDaniel</dc:creator>
  409.      <dc:creator>Qi Meek</dc:creator>
  410.      <dc:creator>Genrietta E Merzlaya</dc:creator>
  411.      <dc:creator>Anders Michelsen</dc:creator>
  412.      <dc:creator>Leonardo Montagnani</dc:creator>
  413.      <dc:creator>Peter Mueller</dc:creator>
  414.      <dc:creator>Rajasekaran Murugan</dc:creator>
  415.      <dc:creator>Isla H Myers-Smith</dc:creator>
  416.      <dc:creator>Stefanie Nolte</dc:creator>
  417.      <dc:creator>Raúl Ochoa-Hueso</dc:creator>
  418.      <dc:creator>Bernard N Okafor</dc:creator>
  419.      <dc:creator>Vladimir V Okorkov</dc:creator>
  420.      <dc:creator>Vladimir G Onipchenko</dc:creator>
  421.      <dc:creator>María C Orozco</dc:creator>
  422.      <dc:creator>Tina Parkhurst</dc:creator>
  423.      <dc:creator>Carlos A Peres</dc:creator>
  424.      <dc:creator>Matteo Petit Bon</dc:creator>
  425.      <dc:creator>Alessandro Petraglia</dc:creator>
  426.      <dc:creator>Martin Pingel</dc:creator>
  427.      <dc:creator>Corinna Rebmann</dc:creator>
  428.      <dc:creator>Brett R Scheffers</dc:creator>
  429.      <dc:creator>Inger Schmidt</dc:creator>
  430.      <dc:creator>Mary C Scholes</dc:creator>
  431.      <dc:creator>Efrat Sheffer</dc:creator>
  432.      <dc:creator>Lyudmila K Shevtsova</dc:creator>
  433.      <dc:creator>Stuart W Smith</dc:creator>
  434.      <dc:creator>Adriano Sofo</dc:creator>
  435.      <dc:creator>Pablo R Stevenson</dc:creator>
  436.      <dc:creator>Barbora Strouhalová</dc:creator>
  437.      <dc:creator>Anders Sundsdal</dc:creator>
  438.      <dc:creator>Rafael B Sühs</dc:creator>
  439.      <dc:creator>Gebretsadik Tamene</dc:creator>
  440.      <dc:creator>Haydn J D Thomas</dc:creator>
  441.      <dc:creator>Duygu Tolunay</dc:creator>
  442.      <dc:creator>Marcello Tomaselli</dc:creator>
  443.      <dc:creator>Simon Tresch</dc:creator>
  444.      <dc:creator>Dominique L Tucker</dc:creator>
  445.      <dc:creator>Michael D Ulyshen</dc:creator>
  446.      <dc:creator>Alejandro Valdecantos</dc:creator>
  447.      <dc:creator>Vigdis Vandvik</dc:creator>
  448.      <dc:creator>Elena I Vanguelova</dc:creator>
  449.      <dc:creator>Kris Verheyen</dc:creator>
  450.      <dc:creator>Xuhui Wang</dc:creator>
  451.      <dc:creator>Laura Yahdjian</dc:creator>
  452.      <dc:creator>Xaris S Yumashev</dc:creator>
  453.      <dc:creator>Joost A Keuskamp</dc:creator>
  454.      <dc:date>2024-05-07</dc:date>
  455.      <dc:source>Ecology letters</dc:source>
  456.      <dc:title>Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization</dc:title>
  457.      <dc:identifier>pmid:38712683</dc:identifier>
  458.      <dc:identifier>doi:10.1111/ele.14415</dc:identifier>
  459.    </item>
  460.    <item>
  461.      <title>Corrigendum: Acute imidacloprid exposure alters mitochondrial function in bumblebee flight muscle and brain</title>
  462.      <link>https://pubmed.ncbi.nlm.nih.gov/38711462/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  463.      <description>[This corrects the article DOI: 10.3389/finsc.2021.765179.].</description>
  464.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Front Insect Sci. 2024 Apr 22;4:1415939. doi: 10.3389/finsc.2024.1415939. eCollection 2024.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">[This corrects the article DOI: 10.3389/finsc.2021.765179.].</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38711462/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38711462</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11072180/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11072180</a> | DOI:<a href=https://doi.org/10.3389/finsc.2024.1415939>10.3389/finsc.2024.1415939</a></p></div>]]></content:encoded>
  465.      <guid isPermaLink="false">pubmed:38711462</guid>
  466.      <pubDate>Tue, 07 May 2024 06:00:00 -0400</pubDate>
  467.      <dc:creator>Chloe Sargent</dc:creator>
  468.      <dc:creator>Brad Ebanks</dc:creator>
  469.      <dc:creator>Ian C W Hardy</dc:creator>
  470.      <dc:creator>T G Emyr Davies</dc:creator>
  471.      <dc:creator>Lisa Chakrabarti</dc:creator>
  472.      <dc:creator>Reinhard Stöger</dc:creator>
  473.      <dc:date>2024-05-07</dc:date>
  474.      <dc:source>Frontiers in insect science</dc:source>
  475.      <dc:title>Corrigendum: Acute imidacloprid exposure alters mitochondrial function in bumblebee flight muscle and brain</dc:title>
  476.      <dc:identifier>pmid:38711462</dc:identifier>
  477.      <dc:identifier>pmc:PMC11072180</dc:identifier>
  478.      <dc:identifier>doi:10.3389/finsc.2024.1415939</dc:identifier>
  479.    </item>
  480.    <item>
  481.      <title>Fecal microbiota profiles of growing pigs and their relation to growth performance</title>
  482.      <link>https://pubmed.ncbi.nlm.nih.gov/38709788/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  483.      <description>The early gut microbiota composition is fundamentally important for piglet health, affecting long-term microbiome development and immunity. In this study, the gut microbiota of postparturient dams was compared with that of their offspring in three Finnish pig farms at three growth phases. The differences in fecal microbiota of three study development groups (Good, Poorly, and PrematureDeath) were analyzed at birth (initial exposure phase), weaning (transitional phase), and before slaughter...</description>
  484.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">PLoS One. 2024 May 6;19(5):e0302724. doi: 10.1371/journal.pone.0302724. eCollection 2024.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The early gut microbiota composition is fundamentally important for piglet health, affecting long-term microbiome development and immunity. In this study, the gut microbiota of postparturient dams was compared with that of their offspring in three Finnish pig farms at three growth phases. The differences in fecal microbiota of three study development groups (Good, Poorly, and PrematureDeath) were analyzed at birth (initial exposure phase), weaning (transitional phase), and before slaughter (stable phase). Dam Lactobacillaceae abundance was lower than in piglets at birth. Limosilactobacillus reuteri and Lactobacillus amylovorus were dominantly expressed in dams and their offspring. Altogether 17 piglets (68%) were identified with Lactobacillaceae at the initial exposure phase, divided unevenly among the development groups: 85% of Good, 37.5% of Poorly, and 75% of PrematureDeath pigs. The development group Good was identified with the highest microbial diversity, whereas the development group PrematureDeath had the lowest diversity. After weaning, the abundance and versatility of Lactobacillaceae in piglets diminished, shifting towards the microbiome of the dam. In conclusion, the fecal microbiota of pigs tends to develop towards a similar alpha and beta diversity despite development group and rearing environment.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38709788/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38709788</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11073740/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11073740</a> | DOI:<a href=https://doi.org/10.1371/journal.pone.0302724>10.1371/journal.pone.0302724</a></p></div>]]></content:encoded>
  485.      <guid isPermaLink="false">pubmed:38709788</guid>
  486.      <pubDate>Mon, 06 May 2024 06:00:00 -0400</pubDate>
  487.      <dc:creator>Emilia König</dc:creator>
  488.      <dc:creator>Shea Beasley</dc:creator>
  489.      <dc:creator>Paulina Heponiemi</dc:creator>
  490.      <dc:creator>Sanni Kivinen</dc:creator>
  491.      <dc:creator>Jaakko Räkköläinen</dc:creator>
  492.      <dc:creator>Seppo Salminen</dc:creator>
  493.      <dc:creator>Maria Carmen Collado</dc:creator>
  494.      <dc:creator>Tuomas Borman</dc:creator>
  495.      <dc:creator>Leo Lahti</dc:creator>
  496.      <dc:creator>Virpi Piirainen</dc:creator>
  497.      <dc:creator>Anna Valros</dc:creator>
  498.      <dc:creator>Mari Heinonen</dc:creator>
  499.      <dc:date>2024-05-06</dc:date>
  500.      <dc:source>PloS one</dc:source>
  501.      <dc:title>Fecal microbiota profiles of growing pigs and their relation to growth performance</dc:title>
  502.      <dc:identifier>pmid:38709788</dc:identifier>
  503.      <dc:identifier>pmc:PMC11073740</dc:identifier>
  504.      <dc:identifier>doi:10.1371/journal.pone.0302724</dc:identifier>
  505.    </item>
  506.    <item>
  507.      <title>Strengthening clinical bacteriology laboratory diagnostics to combat sepsis and antimicrobial resistance in Benin: a train-the-trainer approach</title>
  508.      <link>https://pubmed.ncbi.nlm.nih.gov/38707185/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  509.      <description>INTRODUCTION: Improved laboratory diagnostics is needed to support sepsis diagnosis and combat increasing antibiotic resistance in Benin. We trained clinical laboratory experts and technicians to improve their skills in accurate and up-to-date diagnostics.</description>
  510.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Front Med (Lausanne). 2024 Apr 19;11:1281418. doi: 10.3389/fmed.2024.1281418. eCollection 2024.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">INTRODUCTION: Improved laboratory diagnostics is needed to support sepsis diagnosis and combat increasing antibiotic resistance in Benin. We trained clinical laboratory experts and technicians to improve their skills in accurate and up-to-date diagnostics.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: A Train-the-Trainer (TtT) approach was used to design the course that combines theoretical and practical laboratory skills, specifically addressing the knowledge gaps we had previously identified in our national survey. Pedagogical methods were student-centered, including peer learning, use of online materials, practical laboratory work and pre-and post-course tests.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: We first trained 10 trainers who in turn trained 40 laboratory technicians from across the country, from both public and private clinical and veterinary laboratories. The trainers also prepared standard operation procedures for blood culture and antibiotic susceptibility testing based on international standards. Three months after the training, follow-up visits were made to the laboratories where the implementation of the new skills was evaluated. The progress of the participants observed during the course and the implementation of the new skills afterwards proved the training to be effective.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">DISCUSSION: The professional networks created during the training, the empowerment that utilizes local knowledge resources, and the government support for our initiative can be expected to bring sustainability to the initiative and support the participation of Beninese laboratories in international surveillance programs in the future.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38707185/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38707185</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11066218/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11066218</a> | DOI:<a href=https://doi.org/10.3389/fmed.2024.1281418>10.3389/fmed.2024.1281418</a></p></div>]]></content:encoded>
  511.      <guid isPermaLink="false">pubmed:38707185</guid>
  512.      <pubDate>Mon, 06 May 2024 06:00:00 -0400</pubDate>
  513.      <dc:creator>Hornel Koudokpon</dc:creator>
  514.      <dc:creator>Brice Boris Legba</dc:creator>
  515.      <dc:creator>Victorien Dougnon</dc:creator>
  516.      <dc:creator>Sointu Mero</dc:creator>
  517.      <dc:creator>Honoré Bankole</dc:creator>
  518.      <dc:creator>Kaisa Haukka</dc:creator>
  519.      <dc:date>2024-05-06</dc:date>
  520.      <dc:source>Frontiers in medicine</dc:source>
  521.      <dc:title>Strengthening clinical bacteriology laboratory diagnostics to combat sepsis and antimicrobial resistance in Benin: a train-the-trainer approach</dc:title>
  522.      <dc:identifier>pmid:38707185</dc:identifier>
  523.      <dc:identifier>pmc:PMC11066218</dc:identifier>
  524.      <dc:identifier>doi:10.3389/fmed.2024.1281418</dc:identifier>
  525.    </item>
  526.    <item>
  527.      <title>Access to bedding and outdoor runs for growing-finishing pigs: is it possible to improve welfare without increasing environmental impacts?</title>
  528.      <link>https://pubmed.ncbi.nlm.nih.gov/38703757/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  529.      <description>Providing bedding or access to an outdoor run are husbandry aspects intended to improve pig welfare, which is currently financially supported through animal welfare schemes in several European countries. However, they may significantly affect the environment through changes in feed efficiency and manure management. Therefore, the aim of this paper was to compare farms differing in animal welfare relevant husbandry aspects regarding (1) the welfare of growing-finishing pigs and (2) environmental...</description>
  530.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Animal. 2024 May;18(5):101155. doi: 10.1016/j.animal.2024.101155. Epub 2024 Apr 10.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Providing bedding or access to an outdoor run are husbandry aspects intended to improve pig welfare, which is currently financially supported through animal welfare schemes in several European countries. However, they may significantly affect the environment through changes in feed efficiency and manure management. Therefore, the aim of this paper was to compare farms differing in animal welfare relevant husbandry aspects regarding (1) the welfare of growing-finishing pigs and (2) environmental impact categories such as global warming (GW), acidification (AC), and freshwater (FE) and marine eutrophication (ME), by employing an attributional Life Cycle Assessment. We collected data on 50 farms with growing-finishing pigs in seven European countries. Ten animal-based welfare indicators were aggregated into three pig welfare indices using principal component analysis. Cluster analysis of farms based on husbandry aspects resulted in three clusters: NOBED (31 farms without bedding or outdoor run), BED (11 farms with bedding only) and BEDOUT (eight farms with bedding and outdoor run). Pigs on farms with bedding (BED and BEDOUT) manipulated enrichment more often (P &lt; 0.001), pen fixtures less frequently (P = 0.003) and showed fewer oral stereotypies (P &lt; 0.001) than pigs on NOBED farms. There were fewer pigs with a short(er) tail on farms with than without bedding (P &lt; 0.001). Acidification of BEDOUT and BED farms was significantly higher (compared to NOBED farms P = 0.002) due to higher ammonia emissions related to farmyard manure. Also, BEDOUT farms had higher ME than NOBED farms (P = 0.035). There were no significant differences regarding GW and FE between husbandry clusters, due to the large variability within clusters regarding feed composition and conversion. Therefore, both husbandry aspects associated with improved animal welfare have a significant influence on some environmental impacts, such as acidification and marine eutrophication. Nevertheless, the large variation within clusters suggests that trade-offs may be minimised through e.g. AC and ME.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38703757/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38703757</a> | DOI:<a href=https://doi.org/10.1016/j.animal.2024.101155>10.1016/j.animal.2024.101155</a></p></div>]]></content:encoded>
  531.      <guid isPermaLink="false">pubmed:38703757</guid>
  532.      <pubDate>Sat, 04 May 2024 06:00:00 -0400</pubDate>
  533.      <dc:creator>A K Ruckli</dc:creator>
  534.      <dc:creator>S Hörtenhuber</dc:creator>
  535.      <dc:creator>S Dippel</dc:creator>
  536.      <dc:creator>P Ferrari</dc:creator>
  537.      <dc:creator>M Gebska</dc:creator>
  538.      <dc:creator>M Heinonen</dc:creator>
  539.      <dc:creator>J Helmerichs</dc:creator>
  540.      <dc:creator>C Hubbard</dc:creator>
  541.      <dc:creator>H Spoolder</dc:creator>
  542.      <dc:creator>A Valros</dc:creator>
  543.      <dc:creator>C Winckler</dc:creator>
  544.      <dc:creator>C Leeb</dc:creator>
  545.      <dc:date>2024-05-04</dc:date>
  546.      <dc:source>Animal : an international journal of animal bioscience</dc:source>
  547.      <dc:title>Access to bedding and outdoor runs for growing-finishing pigs: is it possible to improve welfare without increasing environmental impacts?</dc:title>
  548.      <dc:identifier>pmid:38703757</dc:identifier>
  549.      <dc:identifier>doi:10.1016/j.animal.2024.101155</dc:identifier>
  550.    </item>
  551.    <item>
  552.      <title>A Pilot Study of Aerosolization of Infectious Murine Norovirus in an Experimental Setup</title>
  553.      <link>https://pubmed.ncbi.nlm.nih.gov/38698288/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  554.      <description>Human norovirus is transmitted mainly via the faecal-oral route, but norovirus disease outbreaks have been reported in which airborne transmission has been suggested as the only explanation. We used murine norovirus (MNV) as a surrogate for human norovirus to determine the aerosolization of infectious norovirus in an experimental setup. A 3-l air chamber system was used for aerosolization of MNV. Virus in solution (6 log(10) TCID(50)/ml) was introduced into the nebulizer for generating aerosols...</description>
  555.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Environ Virol. 2024 May 2. doi: 10.1007/s12560-024-09595-2. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Human norovirus is transmitted mainly via the faecal-oral route, but norovirus disease outbreaks have been reported in which airborne transmission has been suggested as the only explanation. We used murine norovirus (MNV) as a surrogate for human norovirus to determine the aerosolization of infectious norovirus in an experimental setup. A 3-l air chamber system was used for aerosolization of MNV. Virus in solution (6 log<sub>10</sub> TCID<sub>50</sub>/ml) was introduced into the nebulizer for generating aerosols and a RAW 264.7 cell dish without a lid was placed in the air chamber. Cell culture medium samples were taken from the dishes after the aerosol exposure time of 30 or 90 min, and the dishes were placed in a 37 °C, 5% CO<sub>2</sub> incubator and inspected with a light microscope for viral cytopathic effects (CPEs). We determined both the infectious MNV TCID<sub>50</sub> titre and used an RT-qPCR assay. During the experiments, virus infectivity remained stable for 30 and 90 min in the MNV solution in the nebulizer. Infectious MNV TCID<sub>50</sub> values/ml of 2.89 ± 0.29 and 3.20 ± 0.49 log<sub>10</sub> were measured in the chamber in RAW 264.7 cell dish media after the 30-min and 90-min exposure, respectively. The MNV RNA loads were 6.20 ± 0.24 and 6.93 ± 1.02 log<sub>10</sub> genome copies/ml, respectively. Later, a typical MNV CPE appeared in the aerosol-exposed RAW cell dishes. We demonstrated that MNV was aerosolized and that it remained infectious in the experimental setup used. Further studies required for understanding the behaviour of MNV in aerosols can thus be performed.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38698288/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38698288</a> | DOI:<a href=https://doi.org/10.1007/s12560-024-09595-2>10.1007/s12560-024-09595-2</a></p></div>]]></content:encoded>
  556.      <guid isPermaLink="false">pubmed:38698288</guid>
  557.      <pubDate>Thu, 02 May 2024 06:00:00 -0400</pubDate>
  558.      <dc:creator>Roderik Purhonen</dc:creator>
  559.      <dc:creator>Nina S Atanasova</dc:creator>
  560.      <dc:creator>Julija Salokas</dc:creator>
  561.      <dc:creator>Jonathan Duplissy</dc:creator>
  562.      <dc:creator>Emil Loikkanen</dc:creator>
  563.      <dc:creator>Leena Maunula</dc:creator>
  564.      <dc:date>2024-05-02</dc:date>
  565.      <dc:source>Food and environmental virology</dc:source>
  566.      <dc:title>A Pilot Study of Aerosolization of Infectious Murine Norovirus in an Experimental Setup</dc:title>
  567.      <dc:identifier>pmid:38698288</dc:identifier>
  568.      <dc:identifier>doi:10.1007/s12560-024-09595-2</dc:identifier>
  569.    </item>
  570.    <item>
  571.      <title>Wastewater-based surveillance is an efficient monitoring tool for tracking influenza A in the community</title>
  572.      <link>https://pubmed.ncbi.nlm.nih.gov/38692254/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  573.      <description>Around the world, influenza A virus has caused severe pandemics, and the risk of future pandemics remains high. Currently, influenza A virus surveillance is based on the clinical diagnosis and reporting of disease cases. In this study, we apply wastewater-based surveillance to monitor the amount of the influenza A virus RNA at the population level. We report the influenza A virus RNA levels in 10 wastewater treatment plant catchment areas covering 40 % of the Finnish population. Altogether, 251...</description>
  574.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Water Res. 2024 Apr 20;257:121650. doi: 10.1016/j.watres.2024.121650. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Around the world, influenza A virus has caused severe pandemics, and the risk of future pandemics remains high. Currently, influenza A virus surveillance is based on the clinical diagnosis and reporting of disease cases. In this study, we apply wastewater-based surveillance to monitor the amount of the influenza A virus RNA at the population level. We report the influenza A virus RNA levels in 10 wastewater treatment plant catchment areas covering 40 % of the Finnish population. Altogether, 251 monthly composite influent wastewater samples (collected between February 2021 and February 2023) were analysed from supernatant fraction using influenza A virus specific RT-qPCR method. During the study period, an influenza A virus epidemic occurred in three waves in Finland. This study shows that the influenza A virus RNA can be detected from the supernatant fraction of 24 h composite influent wastewater samples. The influenza A virus RNA gene copy number in wastewater correlated with the number of confirmed disease cases in the Finnish National Infectious Diseases Register. The median Kendall's τ correlation strength was 0.636 (min= 0.486 and max=0.804) and it was statistically significant in all 10 WTTPs. Wastewater-based surveillance of the influenza A virus RNA is an independent from individual testing method and cost-efficiently reflects the circulation of the virus in the entire population. Thus, wastewater monitoring complements the available, but often too sparse, information from individual testing and improves health care and public health preparedness for influenza A virus pandemics.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38692254/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38692254</a> | DOI:<a href=https://doi.org/10.1016/j.watres.2024.121650>10.1016/j.watres.2024.121650</a></p></div>]]></content:encoded>
  575.      <guid isPermaLink="false">pubmed:38692254</guid>
  576.      <pubDate>Wed, 01 May 2024 06:00:00 -0400</pubDate>
  577.      <dc:creator>Kirsi-Maarit Lehto</dc:creator>
  578.      <dc:creator>Annika Länsivaara</dc:creator>
  579.      <dc:creator>Rafiqul Hyder</dc:creator>
  580.      <dc:creator>Oskari Luomala</dc:creator>
  581.      <dc:creator>Anssi Lipponen</dc:creator>
  582.      <dc:creator>Anna-Maria Hokajärvi</dc:creator>
  583.      <dc:creator>Annamari Heikinheimo</dc:creator>
  584.      <dc:creator>Tarja Pitkänen</dc:creator>
  585.      <dc:creator>Sami Oikarinen</dc:creator>
  586.      <dc:creator>WastPan Study Group</dc:creator>
  587.      <dc:date>2024-05-01</dc:date>
  588.      <dc:source>Water research</dc:source>
  589.      <dc:title>Wastewater-based surveillance is an efficient monitoring tool for tracking influenza A in the community</dc:title>
  590.      <dc:identifier>pmid:38692254</dc:identifier>
  591.      <dc:identifier>doi:10.1016/j.watres.2024.121650</dc:identifier>
  592.    </item>
  593.    <item>
  594.      <title>Evolution of triclosan resistance modulates bacterial permissiveness to multidrug resistance plasmids and phages</title>
  595.      <link>https://pubmed.ncbi.nlm.nih.gov/38688912/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  596.      <description>The horizontal transfer of plasmids has been recognized as one of the key drivers for the worldwide spread of antimicrobial resistance (AMR) across bacterial pathogens. However, knowledge remain limited about the contribution made by environmental stress on the evolution of bacterial AMR by modulating horizontal acquisition of AMR plasmids and other mobile genetic elements. Here we combined experimental evolution, whole genome sequencing, reverse genetic engineering, and transcriptomics to...</description>
  597.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Nat Commun. 2024 Apr 30;15(1):3654. doi: 10.1038/s41467-024-48006-9.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The horizontal transfer of plasmids has been recognized as one of the key drivers for the worldwide spread of antimicrobial resistance (AMR) across bacterial pathogens. However, knowledge remain limited about the contribution made by environmental stress on the evolution of bacterial AMR by modulating horizontal acquisition of AMR plasmids and other mobile genetic elements. Here we combined experimental evolution, whole genome sequencing, reverse genetic engineering, and transcriptomics to examine if the evolution of chromosomal AMR to triclosan (TCS) disinfectant has correlated effects on modulating bacterial pathogen (Klebsiella pneumoniae) permissiveness to AMR plasmids and phage susceptibility. Herein, we show that TCS exposure increases the evolvability of K. pneumoniae to evolve TCS-resistant mutants (TRMs) by acquiring mutations and altered expression of several genes previously associated with TCS and antibiotic resistance. Notably, nsrR deletion increases conjugation permissiveness of K. pneumoniae to four AMR plasmids, and enhances susceptibility to various Klebsiella-specific phages through the downregulation of several bacterial defense systems and changes in membrane potential with altered reactive oxygen species response. Our findings suggest that unrestricted use of TCS disinfectant imposes a dual impact on bacterial antibiotic resistance by augmenting both chromosomally and horizontally acquired AMR mechanisms.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38688912/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38688912</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11061290/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11061290</a> | DOI:<a href=https://doi.org/10.1038/s41467-024-48006-9>10.1038/s41467-024-48006-9</a></p></div>]]></content:encoded>
  598.      <guid isPermaLink="false">pubmed:38688912</guid>
  599.      <pubDate>Tue, 30 Apr 2024 06:00:00 -0400</pubDate>
  600.      <dc:creator>Qiu E Yang</dc:creator>
  601.      <dc:creator>Xiaodan Ma</dc:creator>
  602.      <dc:creator>Minchun Li</dc:creator>
  603.      <dc:creator>Mengshi Zhao</dc:creator>
  604.      <dc:creator>Lingshuang Zeng</dc:creator>
  605.      <dc:creator>Minzhen He</dc:creator>
  606.      <dc:creator>Hui Deng</dc:creator>
  607.      <dc:creator>Hanpeng Liao</dc:creator>
  608.      <dc:creator>Christopher Rensing</dc:creator>
  609.      <dc:creator>Ville-Petri Friman</dc:creator>
  610.      <dc:creator>Shungui Zhou</dc:creator>
  611.      <dc:creator>Timothy R Walsh</dc:creator>
  612.      <dc:date>2024-04-30</dc:date>
  613.      <dc:source>Nature communications</dc:source>
  614.      <dc:title>Evolution of triclosan resistance modulates bacterial permissiveness to multidrug resistance plasmids and phages</dc:title>
  615.      <dc:identifier>pmid:38688912</dc:identifier>
  616.      <dc:identifier>pmc:PMC11061290</dc:identifier>
  617.      <dc:identifier>doi:10.1038/s41467-024-48006-9</dc:identifier>
  618.    </item>
  619.    <item>
  620.      <title>Epistasis, core-genome disharmony, and adaptation in recombining bacteria</title>
  621.      <link>https://pubmed.ncbi.nlm.nih.gov/38683013/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  622.      <description>Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination...</description>
  623.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">mBio. 2024 Apr 29:e0058124. doi: 10.1128/mbio.00581-24. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens <i>Campylobacter jejuni</i> and <i>C. coli</i> that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with <i>C. coli</i> that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria <i>Campylobacter</i>, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38683013/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38683013</a> | DOI:<a href=https://doi.org/10.1128/mbio.00581-24>10.1128/mbio.00581-24</a></p></div>]]></content:encoded>
  624.      <guid isPermaLink="false">pubmed:38683013</guid>
  625.      <pubDate>Mon, 29 Apr 2024 06:00:00 -0400</pubDate>
  626.      <dc:creator>Aidan J Taylor</dc:creator>
  627.      <dc:creator>Koji Yahara</dc:creator>
  628.      <dc:creator>Ben Pascoe</dc:creator>
  629.      <dc:creator>Seungwon Ko</dc:creator>
  630.      <dc:creator>Leonardos Mageiros</dc:creator>
  631.      <dc:creator>Evangelos Mourkas</dc:creator>
  632.      <dc:creator>Jessica K Calland</dc:creator>
  633.      <dc:creator>Santeri Puranen</dc:creator>
  634.      <dc:creator>Matthew D Hitchings</dc:creator>
  635.      <dc:creator>Keith A Jolley</dc:creator>
  636.      <dc:creator>Carolin M Kobras</dc:creator>
  637.      <dc:creator>Sion Bayliss</dc:creator>
  638.      <dc:creator>Nicola J Williams</dc:creator>
  639.      <dc:creator>Arnoud H M van Vliet</dc:creator>
  640.      <dc:creator>Julian Parkhill</dc:creator>
  641.      <dc:creator>Martin C J Maiden</dc:creator>
  642.      <dc:creator>Jukka Corander</dc:creator>
  643.      <dc:creator>Laurence D Hurst</dc:creator>
  644.      <dc:creator>Daniel Falush</dc:creator>
  645.      <dc:creator>Paul Keim</dc:creator>
  646.      <dc:creator>Xavier Didelot</dc:creator>
  647.      <dc:creator>David J Kelly</dc:creator>
  648.      <dc:creator>Samuel K Sheppard</dc:creator>
  649.      <dc:date>2024-04-29</dc:date>
  650.      <dc:source>mBio</dc:source>
  651.      <dc:title>Epistasis, core-genome disharmony, and adaptation in recombining bacteria</dc:title>
  652.      <dc:identifier>pmid:38683013</dc:identifier>
  653.      <dc:identifier>doi:10.1128/mbio.00581-24</dc:identifier>
  654.    </item>
  655.    <item>
  656.      <title>Comparison of IncK-&lt;em&gt;bla&lt;/em&gt;&lt;sub&gt;CMY-2&lt;/sub&gt; Plasmids in Extended-Spectrum Cephalosporin-Resistant &lt;em&gt;Escherichia coli&lt;/em&gt; Isolated from Poultry and Humans in Denmark, Finland, and Germany</title>
  657.      <link>https://pubmed.ncbi.nlm.nih.gov/38667025/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  658.      <description>Escherichia coli carrying IncK-bla(CMY-2) plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-bla(CMY-2)-positive ESC-resistant E. coli isolates from poultry production systems in Denmark, Finland, and Germany, as well as from Danish human blood infections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates (n = 46) confirmed the...</description>
  659.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Antibiotics (Basel). 2024 Apr 10;13(4):349. doi: 10.3390/antibiotics13040349.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one"><i>Escherichia coli</i> carrying IncK-<i>bla</i><sub>CMY-2</sub> plasmids mediating resistance to extended-spectrum cephalosporins (ESC) has been frequently described in food-producing animals and in humans. This study aimed to characterize IncK-<i>bla</i><sub>CMY-2</sub>-positive ESC-resistant <i>E. coli</i> isolates from poultry production systems in Denmark, Finland, and Germany, as well as from Danish human blood infections, and further compare their plasmids. Whole-genome sequencing (Illumina) of all isolates (<i>n</i> = 46) confirmed the presence of the <i>bla</i><sub>CMY-2</sub> gene. Minimum inhibitory concentration (MIC) testing revealed a resistant phenotype to cefotaxime as well as resistance to ≥3 antibiotic classes. Conjugative transfer of the <i>bla</i><sub>CMY-2</sub> gene confirmed the resistance being on mobile plasmids. Pangenome analysis showed only one-third of the genes being in the core with the remainder being in the large accessory gene pool. Single nucleotide polymorphism (SNP) analysis on sequence type (ST) 429 and 1286 isolates showed between 0-60 and 13-90 SNP differences, respectively, indicating vertical transmission of closely related clones in the poultry production, including among Danish, Finnish, and German ST429 isolates. A comparison of 22 ST429 isolates from this study with 80 ST429 isolates in Enterobase revealed the widespread geographical occurrence of related isolates associated with poultry production. Long-read sequencing of a representative subset of isolates (<i>n</i> = 28) allowed further characterization and comparison of the IncK-<i>bla</i><sub>CMY-2</sub> plasmids with publicly available plasmid sequences. This analysis revealed the presence of highly similar plasmids in ESC-resistant <i>E. coli</i> from Denmark, Finland, and Germany pointing to the existence of common sources. Moreover, the analysis presented evidence of global plasmid transmission and evolution. Lastly, our results indicate that IncK-<i>bla</i><sub>CMY-2</sub> plasmids and their carriers had been circulating in the Danish production chain with an associated risk of spreading to humans, as exemplified by the similarity of the clinical ST429 isolate to poultry isolates. Its persistence may be driven by co-selection since most IncK-<i>bla</i><sub>CMY-2</sub> plasmids harbor resistance factors to drugs used in veterinary medicine.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38667025/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38667025</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11047599/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11047599</a> | DOI:<a href=https://doi.org/10.3390/antibiotics13040349>10.3390/antibiotics13040349</a></p></div>]]></content:encoded>
  660.      <guid isPermaLink="false">pubmed:38667025</guid>
  661.      <pubDate>Fri, 26 Apr 2024 06:00:00 -0400</pubDate>
  662.      <dc:creator>Meiyao Che</dc:creator>
  663.      <dc:creator>Ana Herrero Fresno</dc:creator>
  664.      <dc:creator>Cristina Calvo-Fernandez</dc:creator>
  665.      <dc:creator>Henrik Hasman</dc:creator>
  666.      <dc:creator>Paula E Kurittu</dc:creator>
  667.      <dc:creator>Annamari Heikinheimo</dc:creator>
  668.      <dc:creator>Lisbeth Truelstrup Hansen</dc:creator>
  669.      <dc:date>2024-04-26</dc:date>
  670.      <dc:source>Antibiotics (Basel, Switzerland)</dc:source>
  671.      <dc:title>Comparison of IncK-&lt;em&gt;bla&lt;/em&gt;&lt;sub&gt;CMY-2&lt;/sub&gt; Plasmids in Extended-Spectrum Cephalosporin-Resistant &lt;em&gt;Escherichia coli&lt;/em&gt; Isolated from Poultry and Humans in Denmark, Finland, and Germany</dc:title>
  672.      <dc:identifier>pmid:38667025</dc:identifier>
  673.      <dc:identifier>pmc:PMC11047599</dc:identifier>
  674.      <dc:identifier>doi:10.3390/antibiotics13040349</dc:identifier>
  675.    </item>
  676.    <item>
  677.      <title>Scenario-based assessment of fecal pathogen sources affecting bathing water quality: novel treatment options to reduce norovirus and &lt;em&gt;Campylobacter&lt;/em&gt; infection risks</title>
  678.      <link>https://pubmed.ncbi.nlm.nih.gov/38628869/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  679.      <description>Wastewater discharge and runoff waters are significant sources of human and animal fecal microbes in surface waters. Human-derived fecal contamination of water is generally estimated to pose a greater risk to human health than animal fecal contamination, but animals may serve as reservoirs of zoonotic pathogens. In this study, quantitative microbial risk assessment (QMRA) tools were used to evaluate the hygienic impact of sewage effluents and runoff water from municipalities and animal farms on...</description>
  680.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Front Microbiol. 2024 Apr 2;15:1353798. doi: 10.3389/fmicb.2024.1353798. eCollection 2024.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Wastewater discharge and runoff waters are significant sources of human and animal fecal microbes in surface waters. Human-derived fecal contamination of water is generally estimated to pose a greater risk to human health than animal fecal contamination, but animals may serve as reservoirs of zoonotic pathogens. In this study, quantitative microbial risk assessment (QMRA) tools were used to evaluate the hygienic impact of sewage effluents and runoff water from municipalities and animal farms on surface and bathing waters. The human-specific microbial source tracking (MST) marker HF183 was used to evaluate the dilution of fecal pathogens originating from the sewage effluent discharge to the downstream watershed. As novel risk management options, the efficiency of UV-LED disinfection and wetland treatment as well as biochar filtration was tested on-site for the contamination sources. According to the dilution pattern of the MST marker HF183, microbes from wastewater were diluted (2.3-3.7 log10) in the receiving waters. The scenario-based QMRA revealed, that the health risks posed by exposure to human-specific norovirus GII and zoonotic Campylobacter jejuni during the bathing events were evaluated. The risk for gastroenteritis was found to be elevated during wastewater contamination events, where especially norovirus GII infection risk increased (1-15 cases per day among 50 bathers) compared with the business as usual (BAU) situation (1 case per day). The noted C. jejuni infection risk was associated with animal farm contamination (1 case per day, versus 0.2-0.6 cases during BAU). Tertiary treatment of wastewater with wetland treatment and UV-LED disinfection effectively reduced the waterborne gastroenteritis risks associated with bathing. Based on the experiences from this study, a QMRA-based approach for health risk evaluations at bathing sites can be useful and is recommended for bathing site risk assessments in the future. In case of low pathogen numbers at the exposure sites, the MST marker HF183 could be used as a pathogen dilution coefficient for the watershed under evaluation. The full-scale implementation of novel tertiary treatment options at wastewater treatment plants (WWTPs) as well as on-site runoff water treatment options should be considered for infection risk management at locations where scenario-based QMRA implies elevated infection risks.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38628869/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38628869</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11018956/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11018956</a> | DOI:<a href=https://doi.org/10.3389/fmicb.2024.1353798>10.3389/fmicb.2024.1353798</a></p></div>]]></content:encoded>
  681.      <guid isPermaLink="false">pubmed:38628869</guid>
  682.      <pubDate>Wed, 17 Apr 2024 06:00:00 -0400</pubDate>
  683.      <dc:creator>Annastiina Rytkönen</dc:creator>
  684.      <dc:creator>Päivi Meriläinen</dc:creator>
  685.      <dc:creator>Kristiina Valkama</dc:creator>
  686.      <dc:creator>Anna-Maria Hokajärvi</dc:creator>
  687.      <dc:creator>Josefiina Ruponen</dc:creator>
  688.      <dc:creator>Jarkko Nummela</dc:creator>
  689.      <dc:creator>Harri Mattila</dc:creator>
  690.      <dc:creator>Tiina Tulonen</dc:creator>
  691.      <dc:creator>Rauni Kivistö</dc:creator>
  692.      <dc:creator>Tarja Pitkänen</dc:creator>
  693.      <dc:date>2024-04-17</dc:date>
  694.      <dc:source>Frontiers in microbiology</dc:source>
  695.      <dc:title>Scenario-based assessment of fecal pathogen sources affecting bathing water quality: novel treatment options to reduce norovirus and &lt;em&gt;Campylobacter&lt;/em&gt; infection risks</dc:title>
  696.      <dc:identifier>pmid:38628869</dc:identifier>
  697.      <dc:identifier>pmc:PMC11018956</dc:identifier>
  698.      <dc:identifier>doi:10.3389/fmicb.2024.1353798</dc:identifier>
  699.    </item>
  700.    <item>
  701.      <title>Hyperactive STAT5 hijacks T cell receptor signaling and drives immature T cell acute lymphoblastic leukemia</title>
  702.      <link>https://pubmed.ncbi.nlm.nih.gov/38618957/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  703.      <description>T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development...</description>
  704.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Clin Invest. 2024 Apr 15;134(8):e168536. doi: 10.1172/JCI168536.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor-ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38618957/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38618957</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11014662/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11014662</a> | DOI:<a href=https://doi.org/10.1172/JCI168536>10.1172/JCI168536</a></p></div>]]></content:encoded>
  705.      <guid isPermaLink="false">pubmed:38618957</guid>
  706.      <pubDate>Mon, 15 Apr 2024 06:00:00 -0400</pubDate>
  707.      <dc:creator>Tobias Suske</dc:creator>
  708.      <dc:creator>Helena Sorger</dc:creator>
  709.      <dc:creator>Gabriele Manhart</dc:creator>
  710.      <dc:creator>Frank Ruge</dc:creator>
  711.      <dc:creator>Nicole Prutsch</dc:creator>
  712.      <dc:creator>Mark W Zimmerman</dc:creator>
  713.      <dc:creator>Thomas Eder</dc:creator>
  714.      <dc:creator>Diaaeldin I Abdallah</dc:creator>
  715.      <dc:creator>Barbara Maurer</dc:creator>
  716.      <dc:creator>Christina Wagner</dc:creator>
  717.      <dc:creator>Susann Schönefeldt</dc:creator>
  718.      <dc:creator>Katrin Spirk</dc:creator>
  719.      <dc:creator>Alexander Pichler</dc:creator>
  720.      <dc:creator>Tea Pemovska</dc:creator>
  721.      <dc:creator>Carmen Schweicker</dc:creator>
  722.      <dc:creator>Daniel Pölöske</dc:creator>
  723.      <dc:creator>Emina Hubanic</dc:creator>
  724.      <dc:creator>Dennis Jungherz</dc:creator>
  725.      <dc:creator>Tony Andreas Müller</dc:creator>
  726.      <dc:creator>Myint Myat Khine Aung</dc:creator>
  727.      <dc:creator>Anna Orlova</dc:creator>
  728.      <dc:creator>Ha Thi Thanh Pham</dc:creator>
  729.      <dc:creator>Kerstin Zimmel</dc:creator>
  730.      <dc:creator>Thomas Krausgruber</dc:creator>
  731.      <dc:creator>Christoph Bock</dc:creator>
  732.      <dc:creator>Mathias Müller</dc:creator>
  733.      <dc:creator>Maik Dahlhoff</dc:creator>
  734.      <dc:creator>Auke Boersma</dc:creator>
  735.      <dc:creator>Thomas Rülicke</dc:creator>
  736.      <dc:creator>Roman Fleck</dc:creator>
  737.      <dc:creator>Elvin Dominic de Araujo</dc:creator>
  738.      <dc:creator>Patrick Thomas Gunning</dc:creator>
  739.      <dc:creator>Tero Aittokallio</dc:creator>
  740.      <dc:creator>Satu Mustjoki</dc:creator>
  741.      <dc:creator>Takaomi Sanda</dc:creator>
  742.      <dc:creator>Sylvia Hartmann</dc:creator>
  743.      <dc:creator>Florian Grebien</dc:creator>
  744.      <dc:creator>Gregor Hoermann</dc:creator>
  745.      <dc:creator>Torsten Haferlach</dc:creator>
  746.      <dc:creator>Philipp Bernhard Staber</dc:creator>
  747.      <dc:creator>Heidi Anne Neubauer</dc:creator>
  748.      <dc:creator>Alfred Thomas Look</dc:creator>
  749.      <dc:creator>Marco Herling</dc:creator>
  750.      <dc:creator>Richard Moriggl</dc:creator>
  751.      <dc:date>2024-04-15</dc:date>
  752.      <dc:source>The Journal of clinical investigation</dc:source>
  753.      <dc:title>Hyperactive STAT5 hijacks T cell receptor signaling and drives immature T cell acute lymphoblastic leukemia</dc:title>
  754.      <dc:identifier>pmid:38618957</dc:identifier>
  755.      <dc:identifier>pmc:PMC11014662</dc:identifier>
  756.      <dc:identifier>doi:10.1172/JCI168536</dc:identifier>
  757.    </item>
  758.    <item>
  759.      <title>Scent Detection Threshold of Trained Dogs to &lt;em&gt;Eucalyptus&lt;/em&gt; Hydrolat</title>
  760.      <link>https://pubmed.ncbi.nlm.nih.gov/38612322/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  761.      <description>Dogs' (Canis lupus familiaris) sense of smell is based on a unique anatomy and physiology that enables them to find and differentiate low concentrations of odor molecules. This ability is exploited when dogs are trained as search, rescue, or medical detection dogs. We performed a three-part study to explore the scent detection threshold of 15 dogs to an in-house-made Eucalyptus hydrolat. Here, decreasing concentrations of the hydrolat were tested using a three-alternative forced-choice method...</description>
  762.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Animals (Basel). 2024 Apr 3;14(7):1083. doi: 10.3390/ani14071083.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Dogs' (<i>Canis lupus familiaris</i>) sense of smell is based on a unique anatomy and physiology that enables them to find and differentiate low concentrations of odor molecules. This ability is exploited when dogs are trained as search, rescue, or medical detection dogs. We performed a three-part study to explore the scent detection threshold of 15 dogs to an in-house-made <i>Eucalyptus</i> hydrolat. Here, decreasing concentrations of the hydrolat were tested using a three-alternative forced-choice method until the first incorrect response, which defined the limit of scent detection for each tested dog. Quantitative proton nuclear magnetic resonance spectroscopy was used to identify and measure the contents of ten commercial <i>Eucalyptus</i> hydrolats, which are used in a dog scent training sport called "nose work". In this study, the dogs' limit of detection initially ranged from 1:10<sup>4</sup> to 1:10<sup>23</sup> but narrowed down to 1:10<sup>17</sup>-1:10<sup>21</sup> after a training period. The results show that, with training, dogs learn to discriminate decreasing concentrations of a target scent, and that dogs can discriminate <i>Eucalyptus</i> hydrolat at very low concentrations. We also detected different concentrations of eucalyptol and lower alcohols in the hydrolat products and highlight the importance of using an identical source of a scent in training a dog for participation in canine scent sport competitions and in olfactory research.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38612322/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38612322</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11010826/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11010826</a> | DOI:<a href=https://doi.org/10.3390/ani14071083>10.3390/ani14071083</a></p></div>]]></content:encoded>
  763.      <guid isPermaLink="false">pubmed:38612322</guid>
  764.      <pubDate>Sat, 13 Apr 2024 06:00:00 -0400</pubDate>
  765.      <dc:creator>Soile Turunen</dc:creator>
  766.      <dc:creator>Susanna Paavilainen</dc:creator>
  767.      <dc:creator>Jouko Vepsäläinen</dc:creator>
  768.      <dc:creator>Anna Hielm-Björkman</dc:creator>
  769.      <dc:date>2024-04-13</dc:date>
  770.      <dc:source>Animals : an open access journal from MDPI</dc:source>
  771.      <dc:title>Scent Detection Threshold of Trained Dogs to &lt;em&gt;Eucalyptus&lt;/em&gt; Hydrolat</dc:title>
  772.      <dc:identifier>pmid:38612322</dc:identifier>
  773.      <dc:identifier>pmc:PMC11010826</dc:identifier>
  774.      <dc:identifier>doi:10.3390/ani14071083</dc:identifier>
  775.    </item>
  776.    <item>
  777.      <title>Whole Blood as a Sample Matrix in Homogeneous Time-Resolved Assay-Förster Resonance Energy Transfer-Based Antibody Detection</title>
  778.      <link>https://pubmed.ncbi.nlm.nih.gov/38611633/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  779.      <description>The protein-L-utilizing Förster resonance energy transfer (LFRET) assay enables mix-and-read antibody detection, as demonstrated for sera from patients with, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus, and orthohantavirus infections. In this study, we compared paired serum and whole blood (WB) samples of COVID-19 patients and SARS-CoV-2 vaccine recipients. We found that LFRET also detects specific antibodies in WB samples. In 44 serum-WB pairs from patients...</description>
  780.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Diagnostics (Basel). 2024 Mar 29;14(7):720. doi: 10.3390/diagnostics14070720.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The protein-L-utilizing Förster resonance energy transfer (LFRET) assay enables mix-and-read antibody detection, as demonstrated for sera from patients with, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus, and orthohantavirus infections. In this study, we compared paired serum and whole blood (WB) samples of COVID-19 patients and SARS-CoV-2 vaccine recipients. We found that LFRET also detects specific antibodies in WB samples. In 44 serum-WB pairs from patients with laboratory-confirmed COVID-19, LFRET showed a strong correlation between the sample materials. By analyzing 89 additional WB samples, totaling 133 WB samples, we found that LFRET results were moderately correlated with enzyme-linked immunosorbent assay results for samples collected 2 to 14 months after receiving COVID-19 diagnosis. However, the correlation decreased for samples &gt;14 months after receiving a diagnosis. When comparing the WB LFRET results to neutralizing antibody titers, a strong correlation emerged for samples collected 1 to 14 months after receiving a diagnosis. This study also highlights the versatility of LFRET in detecting antibodies directly from WB samples and suggests that it could be employed for rapidly assessing antibody responses to infectious agents or vaccines.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38611633/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38611633</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11011549/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11011549</a> | DOI:<a href=https://doi.org/10.3390/diagnostics14070720>10.3390/diagnostics14070720</a></p></div>]]></content:encoded>
  781.      <guid isPermaLink="false">pubmed:38611633</guid>
  782.      <pubDate>Sat, 13 Apr 2024 06:00:00 -0400</pubDate>
  783.      <dc:creator>Annika Lintala</dc:creator>
  784.      <dc:creator>Olli Vapalahti</dc:creator>
  785.      <dc:creator>Arttu Nousiainen</dc:creator>
  786.      <dc:creator>Anu Kantele</dc:creator>
  787.      <dc:creator>Jussi Hepojoki</dc:creator>
  788.      <dc:date>2024-04-13</dc:date>
  789.      <dc:source>Diagnostics (Basel, Switzerland)</dc:source>
  790.      <dc:title>Whole Blood as a Sample Matrix in Homogeneous Time-Resolved Assay-Förster Resonance Energy Transfer-Based Antibody Detection</dc:title>
  791.      <dc:identifier>pmid:38611633</dc:identifier>
  792.      <dc:identifier>pmc:PMC11011549</dc:identifier>
  793.      <dc:identifier>doi:10.3390/diagnostics14070720</dc:identifier>
  794.    </item>
  795.    <item>
  796.      <title>Three-dimensional magnetic resonance cholangiography is superior to two-dimensional single-shot magnetic resonance cholangiography for visualization and image quality of the feline and canine biliary tract: A postmortem study</title>
  797.      <link>https://pubmed.ncbi.nlm.nih.gov/38608174/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  798.      <description>Magnetic resonance cholangiography (MRC) is an established diagnostic tool for noninvasive assessment of the biliary tract in humans. It has also been found to be feasible in companion animals, but no published studies have compared MRC sequences in veterinary medicine. The present study is part of a prospective, observational, analytical investigation on MR cholangiopancreatography performed on the donated bodies of 12 cats and eight dogs. The main aim of this study was to compare the images of...</description>
  799.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Vet Radiol Ultrasound. 2024 Apr 12. doi: 10.1111/vru.13372. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Magnetic resonance cholangiography (MRC) is an established diagnostic tool for noninvasive assessment of the biliary tract in humans. It has also been found to be feasible in companion animals, but no published studies have compared MRC sequences in veterinary medicine. The present study is part of a prospective, observational, analytical investigation on MR cholangiopancreatography performed on the donated bodies of 12 cats and eight dogs. The main aim of this study was to compare the images of 2D-SSh-TSE-MRC and 3D-TSE-MRC sequences for visualization and image quality of the feline and canine biliary tract. Both sequences are T2-weighted and noncontrast. Three independent readers scored the visibility of four segments of the biliary tract, namely the gallbladder (GB), cystic duct, common bile duct (CBD), and extrahepatic ducts, and the image quality of the two MRC sequences using five-point Likert scales. Wilcoxon signed-rank test was used to compare the scores between the MRC sequences separately for cats and dogs. Inter- and intraobserver agreements were measured using Gwet's AC2 with linear weighting. The 3D-TSE-MRC images were scored significantly higher than the 2D-SSh-TSE-MRC for both visibility and image quality (P &lt; .001-.016 for cats, P = .008-.031 for dogs); the only exception was GB in dogs. In both cats and dogs, interobserver agreement for segment visibility and image quality ranged from slight to substantial in 2D-SSh-TSE-MRC and from poor to almost perfect in 3D-TSE-MRC. Most of the assessments (73% for segment visibility and 66% for image quality) had substantial to almost perfect intraobserver agreement. Findings from the current study support the use of 3D-TSE-MRC over 2D-SSh-TSE-MRC for evaluation of the feline and canine biliary tract, but further studies on live animals are warranted.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38608174/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38608174</a> | DOI:<a href=https://doi.org/10.1111/vru.13372>10.1111/vru.13372</a></p></div>]]></content:encoded>
  800.      <guid isPermaLink="false">pubmed:38608174</guid>
  801.      <pubDate>Fri, 12 Apr 2024 06:00:00 -0400</pubDate>
  802.      <dc:creator>Vahideh Rahmani</dc:creator>
  803.      <dc:creator>Juha Peltonen</dc:creator>
  804.      <dc:creator>Dmitri Hmelnikov</dc:creator>
  805.      <dc:creator>Raimonda Uosyte</dc:creator>
  806.      <dc:creator>Sofia Männikkö</dc:creator>
  807.      <dc:creator>Thomas Spillmann</dc:creator>
  808.      <dc:creator>Mirja Ruohoniemi</dc:creator>
  809.      <dc:date>2024-04-12</dc:date>
  810.      <dc:source>Veterinary radiology &amp; ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association</dc:source>
  811.      <dc:title>Three-dimensional magnetic resonance cholangiography is superior to two-dimensional single-shot magnetic resonance cholangiography for visualization and image quality of the feline and canine biliary tract: A postmortem study</dc:title>
  812.      <dc:identifier>pmid:38608174</dc:identifier>
  813.      <dc:identifier>doi:10.1111/vru.13372</dc:identifier>
  814.    </item>
  815.    <item>
  816.      <title>Comparison of in vitro Toxicities of 8-Prenylnaringenin, Tartrazine and 17β-Estradiol, Representatives of Natural and Synthetic Estrogens, in Rat and Human Hepatoma Cell Lines</title>
  817.      <link>https://pubmed.ncbi.nlm.nih.gov/38597376/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  818.      <description>CONCLUSION: Natural estrogens were no less toxic than a synthetic one.</description>
  819.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Endocr Res. 2024 Feb-May;49(2):106-116. doi: 10.1080/07435800.2024.2337758. Epub 2024 Apr 10.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17β-estradiol (E2).</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSION: Natural estrogens were no less toxic than a synthetic one.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38597376/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38597376</a> | DOI:<a href=https://doi.org/10.1080/07435800.2024.2337758>10.1080/07435800.2024.2337758</a></p></div>]]></content:encoded>
  820.      <guid isPermaLink="false">pubmed:38597376</guid>
  821.      <pubDate>Wed, 10 Apr 2024 06:00:00 -0400</pubDate>
  822.      <dc:creator>Atefeh Nasri</dc:creator>
  823.      <dc:creator>Raimo Pohjanvirta</dc:creator>
  824.      <dc:date>2024-04-10</dc:date>
  825.      <dc:source>Endocrine research</dc:source>
  826.      <dc:title>Comparison of in vitro Toxicities of 8-Prenylnaringenin, Tartrazine and 17β-Estradiol, Representatives of Natural and Synthetic Estrogens, in Rat and Human Hepatoma Cell Lines</dc:title>
  827.      <dc:identifier>pmid:38597376</dc:identifier>
  828.      <dc:identifier>doi:10.1080/07435800.2024.2337758</dc:identifier>
  829.    </item>
  830.    <item>
  831.      <title>Epidemic intelligence in Europe: a user needs perspective to foster innovation in digital health surveillance</title>
  832.      <link>https://pubmed.ncbi.nlm.nih.gov/38582850/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  833.      <description>CONCLUSIONS: The study showed that the set of solutions needed by practitioners had to be based on holistic and integrated approaches for monitoring zoonosis and antimicrobial resistance and on harmonization between agencies and sectors while maintaining flexibility in the choice of tools and methods. The technical requirements should be defined in detail by iterative exchanges with EI practitioners and decision-makers.</description>
  834.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">BMC Public Health. 2024 Apr 6;24(1):973. doi: 10.1186/s12889-024-18466-1.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: European epidemic intelligence (EI) systems receive vast amounts of information and data on disease outbreaks and potential health threats. The quantity and variety of available data sources for EI, as well as the available methods to manage and analyse these data sources, are constantly increasing. Our aim was to identify the difficulties encountered in this context and which innovations, according to EI practitioners, could improve the detection, monitoring and analysis of disease outbreaks and the emergence of new pathogens.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: We conducted a qualitative study to identify the need for innovation expressed by 33 EI practitioners of national public health and animal health agencies in five European countries and at the European Centre for Disease Prevention and Control (ECDC). We adopted a stepwise approach to identify the EI stakeholders, to understand the problems they faced concerning their EI activities, and to validate and further define with practitioners the problems to address and the most adapted solutions to their work conditions. We characterized their EI activities, professional logics, and desired changes in their activities using NvivoⓇ software.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: Our analysis highlights that EI practitioners wished to collectively review their EI strategy to enhance their preparedness for emerging infectious diseases, adapt their routines to manage an increasing amount of data and have methodological support for cross-sectoral analysis. Practitioners were in demand of timely, validated and standardized data acquisition processes by text mining of various sources; better validated dataflows respecting the data protection rules; and more interoperable data with homogeneous quality levels and standardized covariate sets for epidemiological assessments of national EI. The set of solutions identified to facilitate risk detection and risk assessment included visualization, text mining, and predefined analytical tools combined with methodological guidance. Practitioners also highlighted their preference for partial rather than full automation of analyses to maintain control over the data and inputs and to adapt parameters to versatile objectives and characteristics.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: The study showed that the set of solutions needed by practitioners had to be based on holistic and integrated approaches for monitoring zoonosis and antimicrobial resistance and on harmonization between agencies and sectors while maintaining flexibility in the choice of tools and methods. The technical requirements should be defined in detail by iterative exchanges with EI practitioners and decision-makers.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38582850/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38582850</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10999084/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10999084</a> | DOI:<a href=https://doi.org/10.1186/s12889-024-18466-1>10.1186/s12889-024-18466-1</a></p></div>]]></content:encoded>
  835.      <guid isPermaLink="false">pubmed:38582850</guid>
  836.      <pubDate>Sat, 06 Apr 2024 06:00:00 -0400</pubDate>
  837.      <dc:creator>Fanny Bouyer</dc:creator>
  838.      <dc:creator>Oumy Thiongane</dc:creator>
  839.      <dc:creator>Alexandre Hobeika</dc:creator>
  840.      <dc:creator>Elena Arsevska</dc:creator>
  841.      <dc:creator>Aurélie Binot</dc:creator>
  842.      <dc:creator>Déborah Corrèges</dc:creator>
  843.      <dc:creator>Timothée Dub</dc:creator>
  844.      <dc:creator>Henna Mäkelä</dc:creator>
  845.      <dc:creator>Esther van Kleef</dc:creator>
  846.      <dc:creator>Ferran Jori</dc:creator>
  847.      <dc:creator>Renaud Lancelot</dc:creator>
  848.      <dc:creator>Alize Mercier</dc:creator>
  849.      <dc:creator>Francesca Fagandini</dc:creator>
  850.      <dc:creator>Sarah Valentin</dc:creator>
  851.      <dc:creator>Wim Van Bortel</dc:creator>
  852.      <dc:creator>Claire Ruault</dc:creator>
  853.      <dc:date>2024-04-06</dc:date>
  854.      <dc:source>BMC public health</dc:source>
  855.      <dc:title>Epidemic intelligence in Europe: a user needs perspective to foster innovation in digital health surveillance</dc:title>
  856.      <dc:identifier>pmid:38582850</dc:identifier>
  857.      <dc:identifier>pmc:PMC10999084</dc:identifier>
  858.      <dc:identifier>doi:10.1186/s12889-024-18466-1</dc:identifier>
  859.    </item>
  860.    <item>
  861.      <title>Case report: Aberrant fecal microbiota composition of an infant diagnosed with prolonged intestinal botulism</title>
  862.      <link>https://pubmed.ncbi.nlm.nih.gov/38581020/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  863.      <description>CONCLUSION: This study brings novel insights into the infant fecal composition associated with intestinal botulism and provides a basis for a more systematic analysis of the gut microbiota of infants diagnosed with botulism. A better understanding of the gut microbial ecology associated with infant botulism may support the development of prophylactic strategies against this life-threatening disease in small babies.</description>
  864.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Gut Pathog. 2024 Apr 5;16(1):20. doi: 10.1186/s13099-024-00614-y.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: Intestinal botulism is primarily reported in small babies as a condition known as infant botulism. The condition results from the ingestion of environmental or foodborne spores of botulinum neurotoxin (BoNT) producing Clostridia, usually Clostridium botulinum, and subsequent spore germination into active botulinum neurotoxinogenic cultures in the gut. It is generally considered that small babies are susceptible to C. botulinum colonization because of their immature gut microbiota. Yet, it is poorly understood which host factors contribute to the clinical outcome of intestinal botulism. We previously reported a case of infant botulism where the infant recovered clinically in six weeks but continued to secrete C. botulinum cells and/or BoNT in the feces for seven months.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CASE PRESENTATION: To further understand the microbial ecology behind this exceptionally long-lasting botulinum neurotoxinogenic colonization, we characterized the infant fecal microbiota using 16S rRNA gene amplicon sequencing over the course of disease and recovery. C. botulinum could be detected in the infant fecal samples at low levels through the acute phase of the disease and three months after recovery. Overall, we observed a temporal delay in the maturation of the infant fecal microbiota associated with a persistently high-level bifidobacterial population and a low level of Lachnospiraceae, Bacteroidaceae and Ruminococcaceae compared to healthy infants over time.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSION: This study brings novel insights into the infant fecal composition associated with intestinal botulism and provides a basis for a more systematic analysis of the gut microbiota of infants diagnosed with botulism. A better understanding of the gut microbial ecology associated with infant botulism may support the development of prophylactic strategies against this life-threatening disease in small babies.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38581020/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38581020</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10996148/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10996148</a> | DOI:<a href=https://doi.org/10.1186/s13099-024-00614-y>10.1186/s13099-024-00614-y</a></p></div>]]></content:encoded>
  865.      <guid isPermaLink="false">pubmed:38581020</guid>
  866.      <pubDate>Fri, 05 Apr 2024 06:00:00 -0400</pubDate>
  867.      <dc:creator>François P Douillard</dc:creator>
  868.      <dc:creator>Yağmur Derman</dc:creator>
  869.      <dc:creator>Ching Jian</dc:creator>
  870.      <dc:creator>Katri Korpela</dc:creator>
  871.      <dc:creator>Harri Saxén</dc:creator>
  872.      <dc:creator>Anne Salonen</dc:creator>
  873.      <dc:creator>Willem M de Vos</dc:creator>
  874.      <dc:creator>Hannu Korkeala</dc:creator>
  875.      <dc:creator>Miia Lindström</dc:creator>
  876.      <dc:date>2024-04-05</dc:date>
  877.      <dc:source>Gut pathogens</dc:source>
  878.      <dc:title>Case report: Aberrant fecal microbiota composition of an infant diagnosed with prolonged intestinal botulism</dc:title>
  879.      <dc:identifier>pmid:38581020</dc:identifier>
  880.      <dc:identifier>pmc:PMC10996148</dc:identifier>
  881.      <dc:identifier>doi:10.1186/s13099-024-00614-y</dc:identifier>
  882.    </item>
  883.    <item>
  884.      <title>Posture and postural dysfunction in dogs: Implications for veterinary physiotherapy</title>
  885.      <link>https://pubmed.ncbi.nlm.nih.gov/38575053/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  886.      <description>Postural assessment is an important part of the veterinary evaluation of a dog's neuromusculoskeletal function. It forms an important part of the clinical examination by physiotherapists and specialists in veterinary rehabilitation and sports medicine and is well researched in humans, which has allowed treatment approaches to be developed and validated. This narrative review aims to complement the veterinary literature, which largely quantifies the impact of various conditions on posture, by...</description>
  887.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Vet J. 2024 Apr 3;305:106107. doi: 10.1016/j.tvjl.2024.106107. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Postural assessment is an important part of the veterinary evaluation of a dog's neuromusculoskeletal function. It forms an important part of the clinical examination by physiotherapists and specialists in veterinary rehabilitation and sports medicine and is well researched in humans, which has allowed treatment approaches to be developed and validated. This narrative review aims to complement the veterinary literature, which largely quantifies the impact of various conditions on posture, by synthesising the physiotherapy literature, to help translate the use of postural assessment as a basis for the development and validation of treatment techniques to improve outcomes in dogs.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38575053/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38575053</a> | DOI:<a href=https://doi.org/10.1016/j.tvjl.2024.106107>10.1016/j.tvjl.2024.106107</a></p></div>]]></content:encoded>
  888.      <guid isPermaLink="false">pubmed:38575053</guid>
  889.      <pubDate>Thu, 04 Apr 2024 06:00:00 -0400</pubDate>
  890.      <dc:creator>Hannah E Michael</dc:creator>
  891.      <dc:creator>Catherine M McGowan</dc:creator>
  892.      <dc:creator>Heli K Hyytiäinen</dc:creator>
  893.      <dc:date>2024-04-04</dc:date>
  894.      <dc:source>Veterinary journal (London, England : 1997)</dc:source>
  895.      <dc:title>Posture and postural dysfunction in dogs: Implications for veterinary physiotherapy</dc:title>
  896.      <dc:identifier>pmid:38575053</dc:identifier>
  897.      <dc:identifier>doi:10.1016/j.tvjl.2024.106107</dc:identifier>
  898.    </item>
  899.    <item>
  900.      <title>Ancestral allele of DNA polymerase gamma modifies antiviral tolerance</title>
  901.      <link>https://pubmed.ncbi.nlm.nih.gov/38570685/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  902.      <description>Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response^(1-4). The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)⁵. Patients...</description>
  903.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Nature. 2024 Apr;628(8009):844-853. doi: 10.1038/s41586-024-07260-z. Epub 2024 Apr 3.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response<sup>1-4</sup>. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)<sup>5</sup>. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms<sup>5</sup>, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals<sup>6</sup> demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38570685/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38570685</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11041766/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11041766</a> | DOI:<a href=https://doi.org/10.1038/s41586-024-07260-z>10.1038/s41586-024-07260-z</a></p></div>]]></content:encoded>
  904.      <guid isPermaLink="false">pubmed:38570685</guid>
  905.      <pubDate>Wed, 03 Apr 2024 06:00:00 -0400</pubDate>
  906.      <dc:creator>Yilin Kang</dc:creator>
  907.      <dc:creator>Jussi Hepojoki</dc:creator>
  908.      <dc:creator>Rocio Sartori Maldonado</dc:creator>
  909.      <dc:creator>Takayuki Mito</dc:creator>
  910.      <dc:creator>Mügen Terzioglu</dc:creator>
  911.      <dc:creator>Tuula Manninen</dc:creator>
  912.      <dc:creator>Ravi Kant</dc:creator>
  913.      <dc:creator>Sachin Singh</dc:creator>
  914.      <dc:creator>Alaa Othman</dc:creator>
  915.      <dc:creator>Rohit Verma</dc:creator>
  916.      <dc:creator>Johanna Uusimaa</dc:creator>
  917.      <dc:creator>Kirmo Wartiovaara</dc:creator>
  918.      <dc:creator>Lauri Kareinen</dc:creator>
  919.      <dc:creator>Nicola Zamboni</dc:creator>
  920.      <dc:creator>Tuula Anneli Nyman</dc:creator>
  921.      <dc:creator>Anders Paetau</dc:creator>
  922.      <dc:creator>Anja Kipar</dc:creator>
  923.      <dc:creator>Olli Vapalahti</dc:creator>
  924.      <dc:creator>Anu Suomalainen</dc:creator>
  925.      <dc:date>2024-04-03</dc:date>
  926.      <dc:source>Nature</dc:source>
  927.      <dc:title>Ancestral allele of DNA polymerase gamma modifies antiviral tolerance</dc:title>
  928.      <dc:identifier>pmid:38570685</dc:identifier>
  929.      <dc:identifier>pmc:PMC11041766</dc:identifier>
  930.      <dc:identifier>doi:10.1038/s41586-024-07260-z</dc:identifier>
  931.    </item>
  932.    <item>
  933.      <title>Characterization of a putative orexin receptor in Ciona intestinalis sheds light on the evolution of the orexin/hypocretin system in chordates</title>
  934.      <link>https://pubmed.ncbi.nlm.nih.gov/38565870/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  935.      <description>Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX(1/2)). However, CiOX appears closer to hOX(1/2) than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by...</description>
  936.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Sci Rep. 2024 Apr 2;14(1):7690. doi: 10.1038/s41598-024-56508-1.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX<sub>1/2</sub>). However, CiOX appears closer to hOX<sub>1/2</sub> than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its G<sub>q</sub> signalling (Ca<sup>2+</sup> elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX<sub>1</sub>-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38565870/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38565870</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10987541/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10987541</a> | DOI:<a href=https://doi.org/10.1038/s41598-024-56508-1>10.1038/s41598-024-56508-1</a></p></div>]]></content:encoded>
  937.      <guid isPermaLink="false">pubmed:38565870</guid>
  938.      <pubDate>Tue, 02 Apr 2024 06:00:00 -0400</pubDate>
  939.      <dc:creator>Maiju K Rinne</dc:creator>
  940.      <dc:creator>Lauri Urvas</dc:creator>
  941.      <dc:creator>Ilona Mandrika</dc:creator>
  942.      <dc:creator>Dāvids Fridmanis</dc:creator>
  943.      <dc:creator>Darren M Riddy</dc:creator>
  944.      <dc:creator>Christopher J Langmead</dc:creator>
  945.      <dc:creator>Jyrki P Kukkonen</dc:creator>
  946.      <dc:creator>Henri Xhaard</dc:creator>
  947.      <dc:date>2024-04-02</dc:date>
  948.      <dc:source>Scientific reports</dc:source>
  949.      <dc:title>Characterization of a putative orexin receptor in Ciona intestinalis sheds light on the evolution of the orexin/hypocretin system in chordates</dc:title>
  950.      <dc:identifier>pmid:38565870</dc:identifier>
  951.      <dc:identifier>pmc:PMC10987541</dc:identifier>
  952.      <dc:identifier>doi:10.1038/s41598-024-56508-1</dc:identifier>
  953.    </item>
  954.    <item>
  955.      <title>Detection of SARS-COV-2 variants and their proportions in wastewater samples using next-generation sequencing in Finland</title>
  956.      <link>https://pubmed.ncbi.nlm.nih.gov/38565591/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  957.      <description>Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants may have different characteristics, e.g., in transmission, mortality, and the effectiveness of vaccines, indicating the importance of variant detection at the population level. Wastewater-based surveillance of SARS-CoV-2 RNA fragments has been shown to be an effective way to monitor the COVID-19 pandemic at the population level. Wastewater is a complex sample matrix affected by environmental factors and PCR inhibitors, causing...</description>
  958.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Sci Rep. 2024 Apr 2;14(1):7751. doi: 10.1038/s41598-024-58113-8.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants may have different characteristics, e.g., in transmission, mortality, and the effectiveness of vaccines, indicating the importance of variant detection at the population level. Wastewater-based surveillance of SARS-CoV-2 RNA fragments has been shown to be an effective way to monitor the COVID-19 pandemic at the population level. Wastewater is a complex sample matrix affected by environmental factors and PCR inhibitors, causing insufficient coverage in sequencing, for example. Subsequently, results where part of the genome does not have sufficient coverage are not uncommon. To identify variants and their proportions in wastewater over time, we utilized next-generation sequencing with the ARTIC Network's primer set and bioinformatics pipeline to evaluate the presence of variants in partial genome data. Based on the wastewater data from November 2021 to February 2022, the Delta variant was dominant until mid-December in Helsinki, Finland's capital, and thereafter in late December 2022 Omicron became the most common variant. At the same time, the Omicron variant of SARS-CoV-2 outcompeted the previous Delta variant in Finland in new COVID-19 cases. The SARS-CoV-2 variant findings from wastewater are in agreement with the variant information obtained from the patient samples when visually comparing trends in the sewerage network area. This indicates that the sequencing of wastewater is an effective way to monitor temporal and spatial trends of SARS-CoV-2 variants at the population level.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38565591/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38565591</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10987589/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10987589</a> | DOI:<a href=https://doi.org/10.1038/s41598-024-58113-8>10.1038/s41598-024-58113-8</a></p></div>]]></content:encoded>
  959.      <guid isPermaLink="false">pubmed:38565591</guid>
  960.      <pubDate>Tue, 02 Apr 2024 06:00:00 -0400</pubDate>
  961.      <dc:creator>Anssi Lipponen</dc:creator>
  962.      <dc:creator>Aleksi Kolehmainen</dc:creator>
  963.      <dc:creator>Sami Oikarinen</dc:creator>
  964.      <dc:creator>Anna-Maria Hokajärvi</dc:creator>
  965.      <dc:creator>Kirsi-Maarit Lehto</dc:creator>
  966.      <dc:creator>Annamari Heikinheimo</dc:creator>
  967.      <dc:creator>Jani Halkilahti</dc:creator>
  968.      <dc:creator>Aapo Juutinen</dc:creator>
  969.      <dc:creator>Oskari Luomala</dc:creator>
  970.      <dc:creator>Teemu Smura</dc:creator>
  971.      <dc:creator>Kirsi Liitsola</dc:creator>
  972.      <dc:creator>Soile Blomqvist</dc:creator>
  973.      <dc:creator>Carita Savolainen-Kopra</dc:creator>
  974.      <dc:creator>Tarja Pitkänen</dc:creator>
  975.      <dc:creator>WastPan Study Group</dc:creator>
  976.      <dc:date>2024-04-02</dc:date>
  977.      <dc:source>Scientific reports</dc:source>
  978.      <dc:title>Detection of SARS-COV-2 variants and their proportions in wastewater samples using next-generation sequencing in Finland</dc:title>
  979.      <dc:identifier>pmid:38565591</dc:identifier>
  980.      <dc:identifier>pmc:PMC10987589</dc:identifier>
  981.      <dc:identifier>doi:10.1038/s41598-024-58113-8</dc:identifier>
  982.    </item>
  983.    <item>
  984.      <title>5-Aminothiazoles Reveal a New Ligand-Binding Site on Prolyl Oligopeptidase Which is Important for Modulation of Its Protein-Protein Interaction-Derived Functions</title>
  985.      <link>https://pubmed.ncbi.nlm.nih.gov/38546708/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  986.      <description>A series of novel 5-aminothiazole-based ligands for prolyl oligopeptidase (PREP) comprise selective, potent modulators of the protein-protein interaction (PPI)-mediated functions of PREP, although they are only weak inhibitors of the proteolytic activity of PREP. The disconnected structure-activity relationships are significantly more pronounced for the 5-aminothiazole-based ligands than for the earlier published 5-aminooxazole-based ligands. Furthermore, the stability of the 5-aminothiazole...</description>
  987.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Med Chem. 2024 Apr 11;67(7):5421-5436. doi: 10.1021/acs.jmedchem.3c01993. Epub 2024 Mar 28.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">A series of novel 5-aminothiazole-based ligands for prolyl oligopeptidase (PREP) comprise selective, potent modulators of the protein-protein interaction (PPI)-mediated functions of PREP, although they are only weak inhibitors of the proteolytic activity of PREP. The disconnected structure-activity relationships are significantly more pronounced for the 5-aminothiazole-based ligands than for the earlier published 5-aminooxazole-based ligands. Furthermore, the stability of the 5-aminothiazole scaffold allowed exploration of wider substitution patterns than that was possible with the 5-aminooxazole scaffold. The intriguing structure-activity relationships for the modulation of the proteolytic activity and PPI-derived functions of PREP were elaborated by presenting a new binding site for PPI modulating PREP ligands, which was initially discovered using molecular modeling and later confirmed through point mutation studies. Our results suggest that this new binding site on PREP is clearly more important than the active site of PREP for the modulation of its PPI-mediated functions.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38546708/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38546708</a> | DOI:<a href=https://doi.org/10.1021/acs.jmedchem.3c01993>10.1021/acs.jmedchem.3c01993</a></p></div>]]></content:encoded>
  988.      <guid isPermaLink="false">pubmed:38546708</guid>
  989.      <pubDate>Thu, 28 Mar 2024 06:00:00 -0400</pubDate>
  990.      <dc:creator>Henri T Pätsi</dc:creator>
  991.      <dc:creator>Tommi P Kilpeläinen</dc:creator>
  992.      <dc:creator>Mikael Jumppanen</dc:creator>
  993.      <dc:creator>Johanna Uhari-Väänänen</dc:creator>
  994.      <dc:creator>Pieter Van Wielendaele</dc:creator>
  995.      <dc:creator>Francesca De Lorenzo</dc:creator>
  996.      <dc:creator>Hengjing Cui</dc:creator>
  997.      <dc:creator>Samuli Auno</dc:creator>
  998.      <dc:creator>Janne Saharinen</dc:creator>
  999.      <dc:creator>Erin Seppälä</dc:creator>
  1000.      <dc:creator>Nina Sipari</dc:creator>
  1001.      <dc:creator>Juha Savinainen</dc:creator>
  1002.      <dc:creator>Ingrid De Meester</dc:creator>
  1003.      <dc:creator>Anne-Marie Lambeir</dc:creator>
  1004.      <dc:creator>Maija Lahtela-Kakkonen</dc:creator>
  1005.      <dc:creator>Timo T Myöhänen</dc:creator>
  1006.      <dc:creator>Erik A A Wallén</dc:creator>
  1007.      <dc:date>2024-03-28</dc:date>
  1008.      <dc:source>Journal of medicinal chemistry</dc:source>
  1009.      <dc:title>5-Aminothiazoles Reveal a New Ligand-Binding Site on Prolyl Oligopeptidase Which is Important for Modulation of Its Protein-Protein Interaction-Derived Functions</dc:title>
  1010.      <dc:identifier>pmid:38546708</dc:identifier>
  1011.      <dc:identifier>doi:10.1021/acs.jmedchem.3c01993</dc:identifier>
  1012.    </item>
  1013.    <item>
  1014.      <title>A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats</title>
  1015.      <link>https://pubmed.ncbi.nlm.nih.gov/38537634/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1016.      <description>The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using...</description>
  1017.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Cell Genom. 2024 Apr 10;4(4):100527. doi: 10.1016/j.xgen.2024.100527. Epub 2024 Mar 26.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38537634/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38537634</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC11019364/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC11019364</a> | DOI:<a href=https://doi.org/10.1016/j.xgen.2024.100527>10.1016/j.xgen.2024.100527</a></p></div>]]></content:encoded>
  1018.      <guid isPermaLink="false">pubmed:38537634</guid>
  1019.      <pubDate>Wed, 27 Mar 2024 06:00:00 -0400</pubDate>
  1020.      <dc:creator>Tristan V de Jong</dc:creator>
  1021.      <dc:creator>Yanchao Pan</dc:creator>
  1022.      <dc:creator>Pasi Rastas</dc:creator>
  1023.      <dc:creator>Daniel Munro</dc:creator>
  1024.      <dc:creator>Monika Tutaj</dc:creator>
  1025.      <dc:creator>Huda Akil</dc:creator>
  1026.      <dc:creator>Chris Benner</dc:creator>
  1027.      <dc:creator>Denghui Chen</dc:creator>
  1028.      <dc:creator>Apurva S Chitre</dc:creator>
  1029.      <dc:creator>William Chow</dc:creator>
  1030.      <dc:creator>Vincenza Colonna</dc:creator>
  1031.      <dc:creator>Clifton L Dalgard</dc:creator>
  1032.      <dc:creator>Wendy M Demos</dc:creator>
  1033.      <dc:creator>Peter A Doris</dc:creator>
  1034.      <dc:creator>Erik Garrison</dc:creator>
  1035.      <dc:creator>Aron M Geurts</dc:creator>
  1036.      <dc:creator>Hakan M Gunturkun</dc:creator>
  1037.      <dc:creator>Victor Guryev</dc:creator>
  1038.      <dc:creator>Thibaut Hourlier</dc:creator>
  1039.      <dc:creator>Kerstin Howe</dc:creator>
  1040.      <dc:creator>Jun Huang</dc:creator>
  1041.      <dc:creator>Ted Kalbfleisch</dc:creator>
  1042.      <dc:creator>Panjun Kim</dc:creator>
  1043.      <dc:creator>Ling Li</dc:creator>
  1044.      <dc:creator>Spencer Mahaffey</dc:creator>
  1045.      <dc:creator>Fergal J Martin</dc:creator>
  1046.      <dc:creator>Pejman Mohammadi</dc:creator>
  1047.      <dc:creator>Ayse Bilge Ozel</dc:creator>
  1048.      <dc:creator>Oksana Polesskaya</dc:creator>
  1049.      <dc:creator>Michal Pravenec</dc:creator>
  1050.      <dc:creator>Pjotr Prins</dc:creator>
  1051.      <dc:creator>Jonathan Sebat</dc:creator>
  1052.      <dc:creator>Jennifer R Smith</dc:creator>
  1053.      <dc:creator>Leah C Solberg Woods</dc:creator>
  1054.      <dc:creator>Boris Tabakoff</dc:creator>
  1055.      <dc:creator>Alan Tracey</dc:creator>
  1056.      <dc:creator>Marcela Uliano-Silva</dc:creator>
  1057.      <dc:creator>Flavia Villani</dc:creator>
  1058.      <dc:creator>Hongyang Wang</dc:creator>
  1059.      <dc:creator>Burt M Sharp</dc:creator>
  1060.      <dc:creator>Francesca Telese</dc:creator>
  1061.      <dc:creator>Zhihua Jiang</dc:creator>
  1062.      <dc:creator>Laura Saba</dc:creator>
  1063.      <dc:creator>Xusheng Wang</dc:creator>
  1064.      <dc:creator>Terence D Murphy</dc:creator>
  1065.      <dc:creator>Abraham A Palmer</dc:creator>
  1066.      <dc:creator>Anne E Kwitek</dc:creator>
  1067.      <dc:creator>Melinda R Dwinell</dc:creator>
  1068.      <dc:creator>Robert W Williams</dc:creator>
  1069.      <dc:creator>Jun Z Li</dc:creator>
  1070.      <dc:creator>Hao Chen</dc:creator>
  1071.      <dc:date>2024-03-27</dc:date>
  1072.      <dc:source>Cell genomics</dc:source>
  1073.      <dc:title>A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats</dc:title>
  1074.      <dc:identifier>pmid:38537634</dc:identifier>
  1075.      <dc:identifier>pmc:PMC11019364</dc:identifier>
  1076.      <dc:identifier>doi:10.1016/j.xgen.2024.100527</dc:identifier>
  1077.    </item>
  1078.    <item>
  1079.      <title>Toxicity Screening of Fungal Extracts and Metabolites, Xenobiotic Chemicals, and Indoor Dusts with In Vitro and Ex Vivo Bioassay Methods</title>
  1080.      <link>https://pubmed.ncbi.nlm.nih.gov/38535560/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1081.      <description>It is controversial how useful bioassays are for identifying the in vivo toxicity of hazardous environmental exposures. In this study, fruiting bodies of forest mushrooms (n = 46), indoor mold colonies (n = 412), fungal secondary metabolites (n = 18), xenobiotic chemicals such as biocides and detergents (n = 6), and methanol extracts of indoor dusts from urban buildings (n = 26) were screened with two different bioactivity assays: boar sperm motility inhibition (BSMI) and inhibition of cell...</description>
  1082.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Pathogens. 2024 Feb 29;13(3):217. doi: 10.3390/pathogens13030217.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">It is controversial how useful bioassays are for identifying the in vivo toxicity of hazardous environmental exposures. In this study, fruiting bodies of forest mushrooms (n = 46), indoor mold colonies (n = 412), fungal secondary metabolites (n = 18), xenobiotic chemicals such as biocides and detergents (n = 6), and methanol extracts of indoor dusts from urban buildings (n = 26) were screened with two different bioactivity assays: boar sperm motility inhibition (BSMI) and inhibition of cell proliferation (ICP) tests. For the forest mushrooms, the toxicity testing result was positive for 100% of poisonous-classified species, 69% of non-edible-classified species, and 18% of edible-classified species. Colonies of 21 isolates of Ascomycota mold fungal species previously isolated from water-damaged buildings proved to be toxic in the tests. Out of the fungal metabolites and xenobiotic chemicals, 94% and 100% were toxic, respectively. Out of the indoor dusts from moldy-classified houses (n = 12) and from dry, mold-free houses (n = 14), 50% and 57% were toxic, respectively. The bioassay tests, however, could not differentiate the samples from indoor dusts of moldy-classified buildings from those from the mold-free buildings. Xenobiotic chemicals and indoor dusts were more toxic in the BSMI assay than in the ICP assay, whereas the opposite results were obtained with the Ascomycota mold colonies and fungal secondary metabolites. The tests recognized unknown methanol-soluble thermoresistant substances in indoor settled dusts. Toxic indoor dusts may indicate a harmful exposure, regardless of whether the toxicity is due to xenobiotic chemicals or microbial metabolites.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38535560/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38535560</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10974995/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10974995</a> | DOI:<a href=https://doi.org/10.3390/pathogens13030217>10.3390/pathogens13030217</a></p></div>]]></content:encoded>
  1083.      <guid isPermaLink="false">pubmed:38535560</guid>
  1084.      <pubDate>Wed, 27 Mar 2024 06:00:00 -0400</pubDate>
  1085.      <dc:creator>Tuomas Hintikka</dc:creator>
  1086.      <dc:creator>Maria A Andersson</dc:creator>
  1087.      <dc:creator>Taina Lundell</dc:creator>
  1088.      <dc:creator>Tamás Marik</dc:creator>
  1089.      <dc:creator>László Kredics</dc:creator>
  1090.      <dc:creator>Raimo Mikkola</dc:creator>
  1091.      <dc:creator>Magnus C Andersson</dc:creator>
  1092.      <dc:creator>Jarek Kurnitski</dc:creator>
  1093.      <dc:creator>Heidi Salonen</dc:creator>
  1094.      <dc:date>2024-03-27</dc:date>
  1095.      <dc:source>Pathogens (Basel, Switzerland)</dc:source>
  1096.      <dc:title>Toxicity Screening of Fungal Extracts and Metabolites, Xenobiotic Chemicals, and Indoor Dusts with In Vitro and Ex Vivo Bioassay Methods</dc:title>
  1097.      <dc:identifier>pmid:38535560</dc:identifier>
  1098.      <dc:identifier>pmc:PMC10974995</dc:identifier>
  1099.      <dc:identifier>doi:10.3390/pathogens13030217</dc:identifier>
  1100.    </item>
  1101.    <item>
  1102.      <title>A Novel &lt;em&gt;CARMIL2&lt;/em&gt; Immunodeficiency Identified in a Subset of Cavalier King Charles Spaniels with &lt;em&gt;Pneumocystis&lt;/em&gt; and &lt;em&gt;Bordetella&lt;/em&gt; Pneumonia</title>
  1103.      <link>https://pubmed.ncbi.nlm.nih.gov/38535207/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1104.      <description>Pet dogs are a valuable natural animal model for studying relationships between primary immunodeficiencies and susceptibility to Pneumocystis and other opportunistic respiratory pathogens. Certain breeds, such as the Cavalier King Charles Spaniel, are over-represented for Pneumocystis pneumonia (PCP), suggesting the presence of a primary immunodeficiency in the breed. Here, we report the discovery of a CARMIL2 nonsense variant in three Cavalier King Charles Spaniel dogs with either PCP (n = 2)...</description>
  1105.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Fungi (Basel). 2024 Mar 5;10(3):198. doi: 10.3390/jof10030198.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Pet dogs are a valuable natural animal model for studying relationships between primary immunodeficiencies and susceptibility to <i>Pneumocystis</i> and other opportunistic respiratory pathogens. Certain breeds, such as the Cavalier King Charles Spaniel, are over-represented for <i>Pneumocystis</i> pneumonia (PCP), suggesting the presence of a primary immunodeficiency in the breed. Here, we report the discovery of a <i>CARMIL2</i> nonsense variant in three Cavalier King Charles Spaniel dogs with either PCP (n = 2) or refractory <i>Bordetella</i> pneumonia (n = 1). <i>CARMIL2</i> encodes a protein that plays critical roles in T-cell activation and other aspects of immune function. Deleterious <i>CARMIL2</i> variants have recently been reported in human patients with PCP and other recurrent pneumonias. In addition to opportunistic respiratory infection, the affected dogs also exhibited other clinical manifestations of CARMIL2 deficiencies that have been reported in humans, including early-onset gastrointestinal disease, allergic skin disease, mucocutaneous lesions, abscesses, autoimmune disorders, and gastrointestinal parasitism. This discovery highlights the potential utility of a natural canine model in identifying and studying primary immunodeficiencies in patients affected by PCP.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38535207/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38535207</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10970956/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10970956</a> | DOI:<a href=https://doi.org/10.3390/jof10030198>10.3390/jof10030198</a></p></div>]]></content:encoded>
  1106.      <guid isPermaLink="false">pubmed:38535207</guid>
  1107.      <pubDate>Wed, 27 Mar 2024 06:00:00 -0400</pubDate>
  1108.      <dc:creator>Emily L Coffey</dc:creator>
  1109.      <dc:creator>Liang Ma</dc:creator>
  1110.      <dc:creator>Ousmane H Cissé</dc:creator>
  1111.      <dc:creator>Joseph A Kovacs</dc:creator>
  1112.      <dc:creator>Katie M Minor</dc:creator>
  1113.      <dc:creator>Antti Sukura</dc:creator>
  1114.      <dc:creator>Patrizia Danesi</dc:creator>
  1115.      <dc:creator>Steven G Friedenberg</dc:creator>
  1116.      <dc:creator>Jonah N Cullen</dc:creator>
  1117.      <dc:creator>Christiane Weissenbacher-Lang</dc:creator>
  1118.      <dc:creator>Julie C Nadeau</dc:creator>
  1119.      <dc:creator>Amber M Graham</dc:creator>
  1120.      <dc:creator>Martin N Granick</dc:creator>
  1121.      <dc:creator>Natalie K Branson</dc:creator>
  1122.      <dc:creator>Kyle C Branson</dc:creator>
  1123.      <dc:creator>Barbara Blasi</dc:creator>
  1124.      <dc:creator>Casandra M Jacobs</dc:creator>
  1125.      <dc:creator>Eva Furrow</dc:creator>
  1126.      <dc:date>2024-03-27</dc:date>
  1127.      <dc:source>Journal of fungi (Basel, Switzerland)</dc:source>
  1128.      <dc:title>A Novel &lt;em&gt;CARMIL2&lt;/em&gt; Immunodeficiency Identified in a Subset of Cavalier King Charles Spaniels with &lt;em&gt;Pneumocystis&lt;/em&gt; and &lt;em&gt;Bordetella&lt;/em&gt; Pneumonia</dc:title>
  1129.      <dc:identifier>pmid:38535207</dc:identifier>
  1130.      <dc:identifier>pmc:PMC10970956</dc:identifier>
  1131.      <dc:identifier>doi:10.3390/jof10030198</dc:identifier>
  1132.    </item>
  1133.    <item>
  1134.      <title>WSV2023 - The second meeting of the world society for virology: One health - One world - One virology</title>
  1135.      <link>https://pubmed.ncbi.nlm.nih.gov/38527382/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1136.      <description>The Second International Conference of the World Society for Virology (WSV), hosted by Riga Stradiņš University, was held in Riga, Latvia, on June 15-17th, 2023. It prominently highlighted the recent advancements in different disciplines of virology. The conference had fourteen keynote speakers covering diverse topics, including emerging virus pseudotypes, Zika virus vaccine development, herpesvirus capsid mobility, parvovirus invasion strategies, influenza in animals and birds, West Nile virus...</description>
  1137.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Virology. 2024 Jun;594:110049. doi: 10.1016/j.virol.2024.110049. Epub 2024 Mar 15.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">The Second International Conference of the World Society for Virology (WSV), hosted by Riga Stradiņš University, was held in Riga, Latvia, on June 15-17th, 2023. It prominently highlighted the recent advancements in different disciplines of virology. The conference had fourteen keynote speakers covering diverse topics, including emerging virus pseudotypes, Zika virus vaccine development, herpesvirus capsid mobility, parvovirus invasion strategies, influenza in animals and birds, West Nile virus and Marburg virus ecology, as well as the latest update in animal vaccines. Discussions further explored SARS-CoV-2 RNA replicons as vaccine candidates, SARS-CoV-2 in humans and animals, and the significance of plant viruses in the 'One Health' paradigm. The presence of the presidents from three virology societies, namely the American, Indian, and Korean Societies for Virology, highlighted the event's significance. Additionally, past president of the American Society for Virology (ASV), formally declared the partnership between ASV and WSV during the conference.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38527382/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38527382</a> | DOI:<a href=https://doi.org/10.1016/j.virol.2024.110049>10.1016/j.virol.2024.110049</a></p></div>]]></content:encoded>
  1138.      <guid isPermaLink="false">pubmed:38527382</guid>
  1139.      <pubDate>Mon, 25 Mar 2024 06:00:00 -0400</pubDate>
  1140.      <dc:creator>Ahmed S Abdel-Moneim</dc:creator>
  1141.      <dc:creator>Modra Murovska</dc:creator>
  1142.      <dc:creator>Maria Söderlund-Venermo</dc:creator>
  1143.      <dc:creator>Vikram N Vakharia</dc:creator>
  1144.      <dc:creator>William C Wilson</dc:creator>
  1145.      <dc:creator>Douglas P Gladue</dc:creator>
  1146.      <dc:creator>Matthew D Moore</dc:creator>
  1147.      <dc:creator>Covadonga Alonso</dc:creator>
  1148.      <dc:creator>Sayed F Abdelwahab</dc:creator>
  1149.      <dc:creator>Marietjie Venter</dc:creator>
  1150.      <dc:creator>Yashpal S Malik</dc:creator>
  1151.      <dc:creator>Shi Zhengli</dc:creator>
  1152.      <dc:creator>Shailendra K Saxena</dc:creator>
  1153.      <dc:creator>Anupam Varma</dc:creator>
  1154.      <dc:creator>Richard J Kuhn</dc:creator>
  1155.      <dc:date>2024-03-25</dc:date>
  1156.      <dc:source>Virology</dc:source>
  1157.      <dc:title>WSV2023 - The second meeting of the world society for virology: One health - One world - One virology</dc:title>
  1158.      <dc:identifier>pmid:38527382</dc:identifier>
  1159.      <dc:identifier>doi:10.1016/j.virol.2024.110049</dc:identifier>
  1160.    </item>
  1161.    <item>
  1162.      <title>Role of mastitis in on-farm deaths of Finnish dairy cows</title>
  1163.      <link>https://pubmed.ncbi.nlm.nih.gov/38522830/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1164.      <description>According to our recent necropsy-based study, mastitis is the most common underlying diagnosis of on-farm deaths in Finnish dairy cows. However, it remained unanswered to what extent mastitis has contributed to death of all necropsied cows. In the present study, based on histopathology we detected one third of the necropsied dairy cows having active inflammatory udder lesions (n = 110). The role of mastitis varied and was interpreted by causes of death (underlying, intermediate, immediate, other...</description>
  1165.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Dairy Sci. 2024 Mar 22:S0022-0302(24)00622-2. doi: 10.3168/jds.2024-24405. Online ahead of print.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">According to our recent necropsy-based study, mastitis is the most common underlying diagnosis of on-farm deaths in Finnish dairy cows. However, it remained unanswered to what extent mastitis has contributed to death of all necropsied cows. In the present study, based on histopathology we detected one third of the necropsied dairy cows having active inflammatory udder lesions (n = 110). The role of mastitis varied and was interpreted by causes of death (underlying, intermediate, immediate, other significant). Mastitis was most commonly either the underlying (28%) or both immediate and underlying cause of death (48%), and only seldom the immediate (4%) or intermediate (4%) cause of death. Mastitis occurred either as the only cause leading to death (mastitis only, MO, 39%), or with many other contributing diseases (multiple diseases, MD, 61%) which were interacting with mastitis and together leading to death. Between these groups (MO vs. MD), time of mastitis occurrence during lactation, producer-reported duration of illness, clinical signs, and medication differed, as well the histopathological severity of mastitis. The cases, where mastitis was the only initial insult, occurred evenly throughout the entire lactation, but the cases with many interacting diseases clustered in early lactation. In multiple diseases -cases mastitis occurred concurrently with metritis (31%), aspiration pneumonia (24%), acute trauma/dystocia (15%), or with other diseases, such as ketosis, hepatic lipidosis, rumenitis, and abomasal diseases. For a pathologist, the gross mastitis diagnosis was most challenging at the beginning of the lactation, especially if inflammation was mild to moderate, suggesting the value of histopathological examination being highest at that time. Also, producers reported mastitis signs less frequently if cow had many simultaneously occurring diseases. Therefore, even if clinical signs of other diseases are present, the udder should be considered a potential cause of illness, and it should be examined, especially in dry and transition period cows.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38522830/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38522830</a> | DOI:<a href=https://doi.org/10.3168/jds.2024-24405>10.3168/jds.2024-24405</a></p></div>]]></content:encoded>
  1166.      <guid isPermaLink="false">pubmed:38522830</guid>
  1167.      <pubDate>Sun, 24 Mar 2024 06:00:00 -0400</pubDate>
  1168.      <dc:creator>K A Hagner</dc:creator>
  1169.      <dc:creator>H S Nordgren</dc:creator>
  1170.      <dc:creator>K Sarjokari</dc:creator>
  1171.      <dc:creator>A Sukura</dc:creator>
  1172.      <dc:creator>P J Rajala-Schultz</dc:creator>
  1173.      <dc:date>2024-03-24</dc:date>
  1174.      <dc:source>Journal of dairy science</dc:source>
  1175.      <dc:title>Role of mastitis in on-farm deaths of Finnish dairy cows</dc:title>
  1176.      <dc:identifier>pmid:38522830</dc:identifier>
  1177.      <dc:identifier>doi:10.3168/jds.2024-24405</dc:identifier>
  1178.    </item>
  1179.    <item>
  1180.      <title>Double-blinded, randomised, placebo-controlled trial of convalescent plasma for COVID-19: analyses by neutralising antibodies homologous to recipients' variants</title>
  1181.      <link>https://pubmed.ncbi.nlm.nih.gov/38513074/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1182.      <description>INTRODUCTION: Convalescent plasma (CP) emerged as potential treatment for COVID-19 early in the pandemic. While efficacy in hospitalised patients has been lacklustre, CP may be beneficial at the first stages of disease. Despite multiple new variants emerging, no trials have involved analyses on variant-specific antibody titres of CP.</description>
  1183.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Infect Dis (Lond). 2024 Jun;56(6):423-433. doi: 10.1080/23744235.2024.2329957. Epub 2024 Mar 21.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">INTRODUCTION: Convalescent plasma (CP) emerged as potential treatment for COVID-19 early in the pandemic. While efficacy in hospitalised patients has been lacklustre, CP may be beneficial at the first stages of disease. Despite multiple new variants emerging, no trials have involved analyses on variant-specific antibody titres of CP.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: We recruited hospitalised COVID-19 patients within 10 days of symptom onset and, employing a double-blinded approach, randomised them to receive 200 ml convalescent plasma with high (HCP) or low (LCP) neutralising antibody (NAb) titre against the ancestral strain (Wuhan-like variant) or placebo in 1:1:1 ratio. Primary endpoints comprised intubation, corticosteroids for symptom aggravation, and safety assessed as serious adverse events. For a preplanned ad hoc analysis, the patients were regrouped by infused CP's NAb titers to variants infecting the recipients i.e. by titres of homologous HCP (hHCP) or LCP (hLCP).</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: Of the 57 patients, 18 received HCP, 19 LCP and 20 placebo, all groups smaller than planned. No significant differences were found for primary endpoints. In ad hoc analysis, hHCPrecipients needed significantly less respiratory support, and appeared to be given corticosteroids less frequently (1/14; 7.1%) than those receiving hLCP (9/23; 39.1%) or placebo (8/20; 40%), (<i>p</i> = 0.077).</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">DISCUSSION: Our double-blinded, placebo-controlled CP therapy trial remained underpowered and does not allow any firm conclusions for early-stage hospitalised COVID-19 patients. Interestingly, however, regrouping by homologous - recipients' variant-specific - CP titres suggested benefits for hHCP. We encourage similar re-analysis of ongoing/previous larger CP studies.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">TRIAL REGISTRATION: ClinTrials.gov identifier: NCT0473040.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38513074/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38513074</a> | DOI:<a href=https://doi.org/10.1080/23744235.2024.2329957>10.1080/23744235.2024.2329957</a></p></div>]]></content:encoded>
  1184.      <guid isPermaLink="false">pubmed:38513074</guid>
  1185.      <pubDate>Thu, 21 Mar 2024 06:00:00 -0400</pubDate>
  1186.      <dc:creator>T Khawaja</dc:creator>
  1187.      <dc:creator>M Kajova</dc:creator>
  1188.      <dc:creator>I Levonen</dc:creator>
  1189.      <dc:creator>J P Pietilä</dc:creator>
  1190.      <dc:creator>H Välimaa</dc:creator>
  1191.      <dc:creator>J Paajanen</dc:creator>
  1192.      <dc:creator>S H Pakkanen</dc:creator>
  1193.      <dc:creator>A Patjas</dc:creator>
  1194.      <dc:creator>R Montonen</dc:creator>
  1195.      <dc:creator>S Miettinen</dc:creator>
  1196.      <dc:creator>J Virtanen</dc:creator>
  1197.      <dc:creator>T Smura</dc:creator>
  1198.      <dc:creator>T Sironen</dc:creator>
  1199.      <dc:creator>R Fagerlund</dc:creator>
  1200.      <dc:creator>H Ugurlu</dc:creator>
  1201.      <dc:creator>R Iheozor-Ejiofor</dc:creator>
  1202.      <dc:creator>K Saksela</dc:creator>
  1203.      <dc:creator>T Vahlberg</dc:creator>
  1204.      <dc:creator>A Ranki</dc:creator>
  1205.      <dc:creator>A Vierikko</dc:creator>
  1206.      <dc:creator>J Ihalainen</dc:creator>
  1207.      <dc:creator>O Vapalahti</dc:creator>
  1208.      <dc:creator>A Kantele</dc:creator>
  1209.      <dc:date>2024-03-21</dc:date>
  1210.      <dc:source>Infectious diseases (London, England)</dc:source>
  1211.      <dc:title>Double-blinded, randomised, placebo-controlled trial of convalescent plasma for COVID-19: analyses by neutralising antibodies homologous to recipients' variants</dc:title>
  1212.      <dc:identifier>pmid:38513074</dc:identifier>
  1213.      <dc:identifier>doi:10.1080/23744235.2024.2329957</dc:identifier>
  1214.    </item>
  1215.    <item>
  1216.      <title>Comparison of habitual physical activity in French Bulldogs, Pugs and normocephalic dogs by accelerometry</title>
  1217.      <link>https://pubmed.ncbi.nlm.nih.gov/38487414/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1218.      <description>Brachycephalic obstructive airway syndrome (BOAS) is a major welfare concern in flat-faced dog breeds. As BOAS causes respiratory difficulties and exercise intolerance, it can reduce dogs' daily quality of life (QOL). However, evaluation of QOL in dogs is difficult, and many owners perceive BOAS signs as 'normal' for the breed. Accelerometers that measure frequency, duration and intensity of activities can offer an objective way of evaluating dogs' daily activity and thereby deliver potential...</description>
  1219.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Anim Welf. 2023 Sep 11;32:e60. doi: 10.1017/awf.2023.80. eCollection 2023.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Brachycephalic obstructive airway syndrome (BOAS) is a major welfare concern in flat-faced dog breeds. As BOAS causes respiratory difficulties and exercise intolerance, it can reduce dogs' daily quality of life (QOL). However, evaluation of QOL in dogs is difficult, and many owners perceive BOAS signs as 'normal' for the breed. Accelerometers that measure frequency, duration and intensity of activities can offer an objective way of evaluating dogs' daily activity and thereby deliver potential insights into QOL. The aim of this study was to assess habitual physical activity of 48 brachycephalic and 23 non-brachycephalic dogs using accelerometers. The accelerometers were used for one week and owners filled in a questionnaire regarding their dog's well-being and activities. Veterinary-assessed BOAS grading for brachycephalic dogs was determined. Compared with controls, more severely affected French Bulldogs and Pugs had significantly lower total activity counts and spent less time in high activity. In Pugs, mildly affected dogs were also less active, but age can be a contributing factor here, as older age decreased activity in Pugs and controls showed a wider age range. In French Bulldogs, those dogs with no or mild signs of BOAS did not differ from controls regarding their daily activity. In conclusion, accelerometers were easy to use for objective measurement of daily activity in bracycephalic dogs, although a degree of discomfort due to the collar was reported. Results showed that BOAS signs were associated with decreased habitual physical activity. These findings emphasise the importance of actions taken to reduce incidence of BOAS in brachycephalic breeds.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38487414/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38487414</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10936329/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10936329</a> | DOI:<a href=https://doi.org/10.1017/awf.2023.80>10.1017/awf.2023.80</a></p></div>]]></content:encoded>
  1220.      <guid isPermaLink="false">pubmed:38487414</guid>
  1221.      <pubDate>Fri, 15 Mar 2024 06:00:00 -0400</pubDate>
  1222.      <dc:creator>Mimma Aromaa</dc:creator>
  1223.      <dc:creator>Heikki Putro</dc:creator>
  1224.      <dc:creator>Liisa Lilja-Maula</dc:creator>
  1225.      <dc:creator>Minna M Rajamäki</dc:creator>
  1226.      <dc:date>2024-03-15</dc:date>
  1227.      <dc:source>Animal welfare (South Mimms, England)</dc:source>
  1228.      <dc:title>Comparison of habitual physical activity in French Bulldogs, Pugs and normocephalic dogs by accelerometry</dc:title>
  1229.      <dc:identifier>pmid:38487414</dc:identifier>
  1230.      <dc:identifier>pmc:PMC10936329</dc:identifier>
  1231.      <dc:identifier>doi:10.1017/awf.2023.80</dc:identifier>
  1232.    </item>
  1233.    <item>
  1234.      <title>The spatio-temporal distribution of aromatase cytochrome in ovary throughout the canine oestrous cycle</title>
  1235.      <link>https://pubmed.ncbi.nlm.nih.gov/38484784/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1236.      <description>CONCLUSIONS AND IMPLICATIONS: Understanding of cells involved in oestradiol production is important for targeted inhibition of oestradiol synthesis, possibly offering an approach for contraception and suppression of oestrus.</description>
  1237.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Reprod Fertil Dev. 2024 Mar;36:RD23201. doi: 10.1071/RD23201.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONTEXT: New animal welfare legislation and ethical guidelines encourage alternative approaches for canine contraception, instead of surgical gonadectomy which is considered invasive and unjustified in healthy dogs.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">AIMS: Reversible contraception might be achieved by inhibition of aromatase (CYP19), an enzyme catalysing the conversion of androgens to oestrogens. This study provides insights into the spatio-temporal expression and distribution of aromatase in canine ovarian tissue.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: Ovarian tissue was collected from 39 healthy and sexually mature bitches during different stages of the oestrous cycle: pro-oestrus (n =8), oestrus (n =12), dioestrus (n =9) (luteal phase) and anoestrus (n =10). Localisation of cytochrome P450 aromatase was determined by immunohistochemistry.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">KEY RESULTS: Aromatase activity in the dog is high during pro-oestrus, ovulation and early dioestrus. Comparing types of follicles and corpora lutea, the highest aromatase abundance was found in antral follicles and luteinising follicles, whereas corpora lutea and early antral follicles showed an intermediate presence of the enzyme. Interesting was the high abundance of aromatase in luteinising theca interna cells, prevailing over granulosa cells.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS AND IMPLICATIONS: Understanding of cells involved in oestradiol production is important for targeted inhibition of oestradiol synthesis, possibly offering an approach for contraception and suppression of oestrus.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38484784/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38484784</a> | DOI:<a href=https://doi.org/10.1071/RD23201>10.1071/RD23201</a></p></div>]]></content:encoded>
  1238.      <guid isPermaLink="false">pubmed:38484784</guid>
  1239.      <pubDate>Thu, 14 Mar 2024 06:00:00 -0400</pubDate>
  1240.      <dc:creator>L Lindh</dc:creator>
  1241.      <dc:creator>M P Kowalewski</dc:creator>
  1242.      <dc:creator>S K Goericke-Pesch</dc:creator>
  1243.      <dc:creator>H Lindeberg</dc:creator>
  1244.      <dc:creator>G Schuler</dc:creator>
  1245.      <dc:creator>O A T Peltoniemi</dc:creator>
  1246.      <dc:date>2024-03-14</dc:date>
  1247.      <dc:source>Reproduction, fertility, and development</dc:source>
  1248.      <dc:title>The spatio-temporal distribution of aromatase cytochrome in ovary throughout the canine oestrous cycle</dc:title>
  1249.      <dc:identifier>pmid:38484784</dc:identifier>
  1250.      <dc:identifier>doi:10.1071/RD23201</dc:identifier>
  1251.    </item>
  1252.    <item>
  1253.      <title>Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland</title>
  1254.      <link>https://pubmed.ncbi.nlm.nih.gov/38467259/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1255.      <description>Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods,...</description>
  1256.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Sci Total Environ. 2024 May 20;926:171401. doi: 10.1016/j.scitotenv.2024.171401. Epub 2024 Mar 10.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p &lt; 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38467259/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38467259</a> | DOI:<a href=https://doi.org/10.1016/j.scitotenv.2024.171401>10.1016/j.scitotenv.2024.171401</a></p></div>]]></content:encoded>
  1257.      <guid isPermaLink="false">pubmed:38467259</guid>
  1258.      <pubDate>Mon, 11 Mar 2024 06:00:00 -0400</pubDate>
  1259.      <dc:creator>Ananda Tiwari</dc:creator>
  1260.      <dc:creator>Kirsi-Maarit Lehto</dc:creator>
  1261.      <dc:creator>Dafni K Paspaliari</dc:creator>
  1262.      <dc:creator>Ahmad I Al-Mustapha</dc:creator>
  1263.      <dc:creator>Anniina Sarekoski</dc:creator>
  1264.      <dc:creator>Anna-Maria Hokajärvi</dc:creator>
  1265.      <dc:creator>Annika Länsivaara</dc:creator>
  1266.      <dc:creator>Rafiqul Hyder</dc:creator>
  1267.      <dc:creator>Oskari Luomala</dc:creator>
  1268.      <dc:creator>Anssi Lipponen</dc:creator>
  1269.      <dc:creator>Sami Oikarinen</dc:creator>
  1270.      <dc:creator>Annamari Heikinheimo</dc:creator>
  1271.      <dc:creator>Tarja Pitkänen</dc:creator>
  1272.      <dc:creator>WastPan Study Group</dc:creator>
  1273.      <dc:date>2024-03-11</dc:date>
  1274.      <dc:source>The Science of the total environment</dc:source>
  1275.      <dc:title>Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland</dc:title>
  1276.      <dc:identifier>pmid:38467259</dc:identifier>
  1277.      <dc:identifier>doi:10.1016/j.scitotenv.2024.171401</dc:identifier>
  1278.    </item>
  1279.    <item>
  1280.      <title>Genomic signatures of climate adaptation in bank voles</title>
  1281.      <link>https://pubmed.ncbi.nlm.nih.gov/38455148/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1282.      <description>Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole...</description>
  1283.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Ecol Evol. 2024 Mar 7;14(3):e10886. doi: 10.1002/ece3.10886. eCollection 2024 Mar.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Evidence for divergent selection and adaptive variation across the landscape can provide insight into a species' ability to adapt to different environments. However, despite recent advances in genomics, it remains difficult to detect the footprints of climate-mediated selection in natural populations. Here, we analysed ddRAD sequencing data (21,892 SNPs) in conjunction with geographic climate variation to search for signatures of adaptive differentiation in twelve populations of the bank vole (<i>Clethrionomys glareolus</i>) distributed across Europe. To identify the loci subject to selection associated with climate variation, we applied multiple genotype-environment association methods, two univariate and one multivariate, and controlled for the effect of population structure. In total, we identified 213 candidate loci for adaptation, 74 of which were located within genes. In particular, we identified signatures of selection in candidate genes with functions related to lipid metabolism and the immune system. Using the results of redundancy analysis, we demonstrated that population history and climate have joint effects on the genetic variation in the pan-European metapopulation. Furthermore, by examining only candidate loci, we found that annual mean temperature is an important factor shaping adaptive genetic variation in the bank vole. By combining landscape genomic approaches, our study sheds light on genome-wide adaptive differentiation and the spatial distribution of variants underlying adaptive variation influenced by local climate in bank voles.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38455148/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38455148</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10918726/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10918726</a> | DOI:<a href=https://doi.org/10.1002/ece3.10886>10.1002/ece3.10886</a></p></div>]]></content:encoded>
  1284.      <guid isPermaLink="false">pubmed:38455148</guid>
  1285.      <pubDate>Fri, 08 Mar 2024 06:00:00 -0500</pubDate>
  1286.      <dc:creator>Remco Folkertsma</dc:creator>
  1287.      <dc:creator>Nathalie Charbonnel</dc:creator>
  1288.      <dc:creator>Heikki Henttonen</dc:creator>
  1289.      <dc:creator>Marta Heroldová</dc:creator>
  1290.      <dc:creator>Otso Huitu</dc:creator>
  1291.      <dc:creator>Petr Kotlík</dc:creator>
  1292.      <dc:creator>Emiliano Manzo</dc:creator>
  1293.      <dc:creator>Johanna L A Paijmans</dc:creator>
  1294.      <dc:creator>Olivier Plantard</dc:creator>
  1295.      <dc:creator>Attila D Sándor</dc:creator>
  1296.      <dc:creator>Michael Hofreiter</dc:creator>
  1297.      <dc:creator>Jana A Eccard</dc:creator>
  1298.      <dc:date>2024-03-08</dc:date>
  1299.      <dc:source>Ecology and evolution</dc:source>
  1300.      <dc:title>Genomic signatures of climate adaptation in bank voles</dc:title>
  1301.      <dc:identifier>pmid:38455148</dc:identifier>
  1302.      <dc:identifier>pmc:PMC10918726</dc:identifier>
  1303.      <dc:identifier>doi:10.1002/ece3.10886</dc:identifier>
  1304.    </item>
  1305.    <item>
  1306.      <title>Concerns about the histological assessment in a mouse model of human celiac disease</title>
  1307.      <link>https://pubmed.ncbi.nlm.nih.gov/38441347/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1308.      <description>Commentary on: Abadie V et al. IL‐15, gluten and HLA‐DQ8 drive tissue destruction in coeliac disease. Nature. 2020; 578: 600‐604</description>
  1309.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Scand J Immunol. 2024 Mar;99(3):e13351. doi: 10.1111/sji.13351. Epub 2024 Jan 16.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Commentary on: Abadie V et al. IL‐15, gluten and HLA‐DQ8 drive tissue destruction in coeliac disease. Nature. 2020; 578: 600‐604</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38441347/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38441347</a> | DOI:<a href=https://doi.org/10.1111/sji.13351>10.1111/sji.13351</a></p></div>]]></content:encoded>
  1310.      <guid isPermaLink="false">pubmed:38441347</guid>
  1311.      <pubDate>Tue, 05 Mar 2024 06:00:00 -0500</pubDate>
  1312.      <dc:creator>Tobias L Freitag</dc:creator>
  1313.      <dc:creator>Leif C Andersson</dc:creator>
  1314.      <dc:creator>Anja Kipar</dc:creator>
  1315.      <dc:date>2024-03-05</dc:date>
  1316.      <dc:source>Scandinavian journal of immunology</dc:source>
  1317.      <dc:title>Concerns about the histological assessment in a mouse model of human celiac disease</dc:title>
  1318.      <dc:identifier>pmid:38441347</dc:identifier>
  1319.      <dc:identifier>doi:10.1111/sji.13351</dc:identifier>
  1320.    </item>
  1321.    <item>
  1322.      <title>An international inter-laboratory study to compare digital PCR with ISO standardized qPCR assays for the detection of norovirus GI and GII in oyster tissue</title>
  1323.      <link>https://pubmed.ncbi.nlm.nih.gov/38431324/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1324.      <description>An optimized digital RT-PCR (RT-dPCR) assay for the detection of human norovirus GI and GII RNA was compared with ISO 15216-conform quantitative real-time RT-PCR (RT-qPCR) assays in an interlaboratory study (ILS) among eight laboratories. A duplex GI/GII RT-dPCR assay, based on the ISO 15216-oligonucleotides, was used on a Bio-Rad QX200 platform by six laboratories. Adapted assays for Qiagen Qiacuity or ThermoFisher QuantStudio 3D were used by one laboratory each. The ILS comprised...</description>
  1325.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Food Microbiol. 2024 Jun;120:104478. doi: 10.1016/j.fm.2024.104478. Epub 2024 Jan 12.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">An optimized digital RT-PCR (RT-dPCR) assay for the detection of human norovirus GI and GII RNA was compared with ISO 15216-conform quantitative real-time RT-PCR (RT-qPCR) assays in an interlaboratory study (ILS) among eight laboratories. A duplex GI/GII RT-dPCR assay, based on the ISO 15216-oligonucleotides, was used on a Bio-Rad QX200 platform by six laboratories. Adapted assays for Qiagen Qiacuity or ThermoFisher QuantStudio 3D were used by one laboratory each. The ILS comprised quantification of norovirus RNA in the absence of matrix and in oyster tissue samples. On average, results of the RT-dPCR assays were very similar to those obtained by RT-qPCR assays. The coefficient of variation (CV%) of norovirus GI results was, however, much lower for RT-dPCR than for RT-qPCR in intra-laboratory replicates (eight runs) and between the eight laboratories. The CV% of norovirus GII results was in the same range for both detection formats. Had in-house prepared dsDNA standards been used, the CV% of norovirus GII could have been in favor of the RT-dPCR assay. The ratio between RT-dPCR and RT-qPCR results varied per laboratory, despite using the distributed RT-qPCR dsDNA standards. The study indicates that the RT-dPCR assay is likely to increase uniformity of quantitative results between laboratories.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38431324/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38431324</a> | DOI:<a href=https://doi.org/10.1016/j.fm.2024.104478>10.1016/j.fm.2024.104478</a></p></div>]]></content:encoded>
  1326.      <guid isPermaLink="false">pubmed:38431324</guid>
  1327.      <pubDate>Sat, 02 Mar 2024 06:00:00 -0500</pubDate>
  1328.      <dc:creator>Ingeborg L A Boxman</dc:creator>
  1329.      <dc:creator>Ramia Molin</dc:creator>
  1330.      <dc:creator>Sofia Persson</dc:creator>
  1331.      <dc:creator>Anna Juréus</dc:creator>
  1332.      <dc:creator>Claudia C C Jansen</dc:creator>
  1333.      <dc:creator>Nils P Sosef</dc:creator>
  1334.      <dc:creator>Soizick F Le Guyader</dc:creator>
  1335.      <dc:creator>Joanna Ollivier</dc:creator>
  1336.      <dc:creator>Maija Summa</dc:creator>
  1337.      <dc:creator>Maria Hautaniemi</dc:creator>
  1338.      <dc:creator>Elisabetta Suffredini</dc:creator>
  1339.      <dc:creator>Simona Di Pasquale</dc:creator>
  1340.      <dc:creator>Mette Myrmel</dc:creator>
  1341.      <dc:creator>Mamata Khatri</dc:creator>
  1342.      <dc:creator>Urska Jamnikar-Ciglenecki</dc:creator>
  1343.      <dc:creator>Darja Kusar</dc:creator>
  1344.      <dc:creator>Dominik Moor</dc:creator>
  1345.      <dc:creator>Lisa Butticaz</dc:creator>
  1346.      <dc:creator>James A Lowther</dc:creator>
  1347.      <dc:creator>David I Walker</dc:creator>
  1348.      <dc:creator>Tina Stapleton</dc:creator>
  1349.      <dc:creator>Magnus Simonsson</dc:creator>
  1350.      <dc:creator>René A M Dirks</dc:creator>
  1351.      <dc:date>2024-03-02</dc:date>
  1352.      <dc:source>Food microbiology</dc:source>
  1353.      <dc:title>An international inter-laboratory study to compare digital PCR with ISO standardized qPCR assays for the detection of norovirus GI and GII in oyster tissue</dc:title>
  1354.      <dc:identifier>pmid:38431324</dc:identifier>
  1355.      <dc:identifier>doi:10.1016/j.fm.2024.104478</dc:identifier>
  1356.    </item>
  1357.    <item>
  1358.      <title>Cellulase-assisted platelet-rich plasma release from nanofibrillated cellulose hydrogel enhances wound healing</title>
  1359.      <link>https://pubmed.ncbi.nlm.nih.gov/38423475/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1360.      <description>Platelet-rich plasma (PRP) is a source of growth factors, which are implicated in active tissue regeneration. However, after transplantation the efficacy of these bioactive compounds is often diminished due to rapid degradation and untargeted localization. For this reason, we evaluated the potential of nanofibrillated cellulose (NFC) hydrogel as a PRP carrier. NFC hydrogel is an animal-free biomaterial that, when doped with cellulase, can assist the release of PRP in a wound site. In this study,...</description>
  1361.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Control Release. 2024 Apr;368:397-412. doi: 10.1016/j.jconrel.2024.02.041. Epub 2024 Mar 6.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">Platelet-rich plasma (PRP) is a source of growth factors, which are implicated in active tissue regeneration. However, after transplantation the efficacy of these bioactive compounds is often diminished due to rapid degradation and untargeted localization. For this reason, we evaluated the potential of nanofibrillated cellulose (NFC) hydrogel as a PRP carrier. NFC hydrogel is an animal-free biomaterial that, when doped with cellulase, can assist the release of PRP in a wound site. In this study, we examined the effects of 0.5% (m/v) NFC hydrogel formulations, including PRP and cellulase, on the migration and proliferation of skin cells via an in vitro scratch wound model. The suitability of the 0.8% NFC hydrogel formulations for accelerated wound healing and PRP carrying was studied in vitro in diffusion studies and in vivo in a full-thickness excisional wound model in SKH1 mice. None of the NFC hydrogel formulations with or without PRP and cellulase disturbed the normal cell behavior in vitro, and cellulase was successfully used to degrade NFC. NFC hydrogel slowed fibroblast migration rate in vitro. In vivo, NFC hydrogel treatment showed significantly enhanced re-epithelialization compared to control and supported collagen deposition. In addition, angiogenesis was significantly induced via PRP release after degrading NFC hydrogel with cellulase without abnormal host reaction. This study demonstrates the potential of NFC hydrogel with cellulase as a carrier for PRP with controlled release in future skin tissue engineering applications.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38423475/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38423475</a> | DOI:<a href=https://doi.org/10.1016/j.jconrel.2024.02.041>10.1016/j.jconrel.2024.02.041</a></p></div>]]></content:encoded>
  1362.      <guid isPermaLink="false">pubmed:38423475</guid>
  1363.      <pubDate>Thu, 29 Feb 2024 06:00:00 -0500</pubDate>
  1364.      <dc:creator>Elle Koivunotko</dc:creator>
  1365.      <dc:creator>Raili Koivuniemi</dc:creator>
  1366.      <dc:creator>Julia Monola</dc:creator>
  1367.      <dc:creator>Riina Harjumäki</dc:creator>
  1368.      <dc:creator>Chris S Pridgeon</dc:creator>
  1369.      <dc:creator>Mari Madetoja</dc:creator>
  1370.      <dc:creator>Jere Linden</dc:creator>
  1371.      <dc:creator>Lauri Paasonen</dc:creator>
  1372.      <dc:creator>Saara Laitinen</dc:creator>
  1373.      <dc:creator>Marjo Yliperttula</dc:creator>
  1374.      <dc:date>2024-02-29</dc:date>
  1375.      <dc:source>Journal of controlled release : official journal of the Controlled Release Society</dc:source>
  1376.      <dc:title>Cellulase-assisted platelet-rich plasma release from nanofibrillated cellulose hydrogel enhances wound healing</dc:title>
  1377.      <dc:identifier>pmid:38423475</dc:identifier>
  1378.      <dc:identifier>doi:10.1016/j.jconrel.2024.02.041</dc:identifier>
  1379.    </item>
  1380.    <item>
  1381.      <title>Classification of feline hypertrophic cardiomyopathy-associated gene variants according to the American College of Medical Genetics and Genomics guidelines</title>
  1382.      <link>https://pubmed.ncbi.nlm.nih.gov/38371598/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1383.      <description>INTRODUCTION: The correct labeling of a genetic variant as pathogenic is important as breeding decisions based on incorrect DNA tests can lead to the unwarranted exclusion of animals, potentially compromising the long-term health of a population. In human medicine, the American college of Medical Genetics (ACMG) guidelines provide a framework for variant classification. This study aims to apply these guidelines to six genetic variants associated with hypertrophic cardiomyopathy (HCM) in certain...</description>
  1384.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Front Vet Sci. 2024 Feb 2;11:1327081. doi: 10.3389/fvets.2024.1327081. eCollection 2024.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">INTRODUCTION: The correct labeling of a genetic variant as pathogenic is important as breeding decisions based on incorrect DNA tests can lead to the unwarranted exclusion of animals, potentially compromising the long-term health of a population. In human medicine, the American college of Medical Genetics (ACMG) guidelines provide a framework for variant classification. This study aims to apply these guidelines to six genetic variants associated with hypertrophic cardiomyopathy (HCM) in certain cat breeds and to propose a modified criterion for variant classification.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: Genetic samples were sourced from five cat breeds: Maine Coon, Sphynx, Ragdoll, Devon Rex, and British Short- and Longhair. Allele frequencies were determined, and in the subset with phenotypes available, odds ratios to determine the association with HCM were calculated. <i>In silico</i> evaluation followed with joint evidence and data from other publications assisting in the classification of each variant.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: Two variants, MYBPC3:c.91G &gt; C [A31P] and MYBPC3:c.2453C &gt; T [R818W], were designated as pathogenic. One variant, MYH7:c.5647G &gt; A [E1883K], was found likely pathogenic, while the remaining three were labeled as variants of unknown significance.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">DISCUSSION: Routine genetic testing is advised solely for the MYBPC3:c.91G &gt; C [A31P] in the Maine Coon and MYBPC3:c.2453C &gt; T [R818W] in the Ragdoll breed. The human ACMG guidelines serve as a suitable foundational tool to ascertain which variants to include; however, refining them for application in veterinary medicine might be beneficial.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38371598/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38371598</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10873919/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10873919</a> | DOI:<a href=https://doi.org/10.3389/fvets.2024.1327081>10.3389/fvets.2024.1327081</a></p></div>]]></content:encoded>
  1385.      <guid isPermaLink="false">pubmed:38371598</guid>
  1386.      <pubDate>Mon, 19 Feb 2024 06:00:00 -0500</pubDate>
  1387.      <dc:creator>Fréderique Boeykens</dc:creator>
  1388.      <dc:creator>Marie Abitbol</dc:creator>
  1389.      <dc:creator>Heidi Anderson</dc:creator>
  1390.      <dc:creator>Tanushri Dargar</dc:creator>
  1391.      <dc:creator>Paolo Ferrari</dc:creator>
  1392.      <dc:creator>Philip R Fox</dc:creator>
  1393.      <dc:creator>Jessica J Hayward</dc:creator>
  1394.      <dc:creator>Jens Häggström</dc:creator>
  1395.      <dc:creator>Stephen Davison</dc:creator>
  1396.      <dc:creator>Mark D Kittleson</dc:creator>
  1397.      <dc:creator>Frank van Steenbeek</dc:creator>
  1398.      <dc:creator>Ingrid Ljungvall</dc:creator>
  1399.      <dc:creator>Leslie A Lyons</dc:creator>
  1400.      <dc:creator>Maria Longeri</dc:creator>
  1401.      <dc:creator>Åsa Ohlsson</dc:creator>
  1402.      <dc:creator>Luc Peelman</dc:creator>
  1403.      <dc:creator>Caroline Dufaure de Citres</dc:creator>
  1404.      <dc:creator>Pascale Smets</dc:creator>
  1405.      <dc:creator>Maria Elena Turba</dc:creator>
  1406.      <dc:creator>Bart J G Broeckx</dc:creator>
  1407.      <dc:date>2024-02-19</dc:date>
  1408.      <dc:source>Frontiers in veterinary science</dc:source>
  1409.      <dc:title>Classification of feline hypertrophic cardiomyopathy-associated gene variants according to the American College of Medical Genetics and Genomics guidelines</dc:title>
  1410.      <dc:identifier>pmid:38371598</dc:identifier>
  1411.      <dc:identifier>pmc:PMC10873919</dc:identifier>
  1412.      <dc:identifier>doi:10.3389/fvets.2024.1327081</dc:identifier>
  1413.    </item>
  1414.    <item>
  1415.      <title>The evolutionary significance of post-transcriptional gene regulation</title>
  1416.      <link>https://pubmed.ncbi.nlm.nih.gov/38366090/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1417.      <description>No abstract</description>
  1418.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">Heredity (Edinb). 2024 Mar;132(3):117-119. doi: 10.1038/s41437-024-00674-5. Epub 2024 Feb 16.</p><p><b>NO ABSTRACT</b></p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38366090/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38366090</a> | PMC:<a href="https://www.ncbi.nlm.nih.gov/pmc/PMC10923911/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">PMC10923911</a> | DOI:<a href=https://doi.org/10.1038/s41437-024-00674-5>10.1038/s41437-024-00674-5</a></p></div>]]></content:encoded>
  1419.      <guid isPermaLink="false">pubmed:38366090</guid>
  1420.      <pubDate>Sat, 17 Feb 2024 06:00:00 -0500</pubDate>
  1421.      <dc:creator>Jukka-Pekka Verta</dc:creator>
  1422.      <dc:creator>Arne Jacobs</dc:creator>
  1423.      <dc:date>2024-02-17</dc:date>
  1424.      <dc:source>Heredity</dc:source>
  1425.      <dc:title>The evolutionary significance of post-transcriptional gene regulation</dc:title>
  1426.      <dc:identifier>pmid:38366090</dc:identifier>
  1427.      <dc:identifier>pmc:PMC10923911</dc:identifier>
  1428.      <dc:identifier>doi:10.1038/s41437-024-00674-5</dc:identifier>
  1429.    </item>
  1430.    <item>
  1431.      <title>Differentiation of highly pathogenic strains of human JC polyomavirus in neurological patients by next generation sequencing</title>
  1432.      <link>https://pubmed.ncbi.nlm.nih.gov/38364704/?utm_source=Feedvalidator&amp;utm_medium=rss&amp;utm_campaign=None&amp;utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&amp;fc=None&amp;ff=20240517035053&amp;v=2.18.0.post9+e462414</link>
  1433.      <description>CONCLUSIONS: Rearranged NCCRs are predominant in brain tissue and common in CSF from PML patients. Extremely sensitive detection and identification of neurotropic viral populations in CSF or brain tissue by NGS may contribute to early and accurate diagnosis, timely intervention and improved patient care.</description>
  1434.      <content:encoded><![CDATA[<div><p style="color: #4aa564;">J Clin Virol. 2024 Apr;171:105652. doi: 10.1016/j.jcv.2024.105652. Epub 2024 Feb 12.</p><p><b>ABSTRACT</b></p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">BACKGROUND: JC polyomavirus (JCPyV) persists asymptomatic in more than half of the human population. Immunocompromising conditions may cause reactivation and acquisition of neurotropic rearrangements in the viral genome, especially in the non-coding control region (NCCR). Such rearranged JCPyV strains are strongly associated with the development of progressive multifocal leukoencephalopathy (PML).</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">METHODS: Using next-generation sequencing (NGS) and bioinformatics tools, the NCCR was characterized in cerebrospinal fluid (CSF; N = 21) and brain tissue (N = 16) samples from PML patients (N = 25), urine specimens from systemic lupus erythematosus patients (N = 2), brain tissue samples from control individuals (N = 2) and waste-water samples (N = 5). Quantitative PCR was run in parallel for diagnostic PML samples.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">RESULTS: Archetype NCCR (i.e. ABCDEF block structure) and archetype-like NCCR harboring minor mutations were detected in two CSF samples and in one CSF sample and in one tissue sample, respectively. Among samples from PML patients, rearranged NCCRs were found in 8 out of 21 CSF samples and in 14 out of 16 brain tissue samples. Complete or partial deletion of the C and D blocks was characteristic of most rearranged JCPyV strains. From ten CSF samples and one tissue sample NCCR could not be amplified.</p><p xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:p1="http://pubmed.gov/pub-one">CONCLUSIONS: Rearranged NCCRs are predominant in brain tissue and common in CSF from PML patients. Extremely sensitive detection and identification of neurotropic viral populations in CSF or brain tissue by NGS may contribute to early and accurate diagnosis, timely intervention and improved patient care.</p><p style="color: lightgray">PMID:<a href="https://pubmed.ncbi.nlm.nih.gov/38364704/?utm_source=Feedvalidator&utm_medium=rss&utm_content=14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu&ff=20240517035053&v=2.18.0.post9+e462414">38364704</a> | DOI:<a href=https://doi.org/10.1016/j.jcv.2024.105652>10.1016/j.jcv.2024.105652</a></p></div>]]></content:encoded>
  1435.      <guid isPermaLink="false">pubmed:38364704</guid>
  1436.      <pubDate>Fri, 16 Feb 2024 06:00:00 -0500</pubDate>
  1437.      <dc:creator>Eeva Auvinen</dc:creator>
  1438.      <dc:creator>Anni Honkimaa</dc:creator>
  1439.      <dc:creator>Pia Laine</dc:creator>
  1440.      <dc:creator>Sara Passerini</dc:creator>
  1441.      <dc:creator>Ugo Moens</dc:creator>
  1442.      <dc:creator>Valeria Pietropaolo</dc:creator>
  1443.      <dc:creator>Mika Saarela</dc:creator>
  1444.      <dc:creator>Leena Maunula</dc:creator>
  1445.      <dc:creator>Laura Mannonen</dc:creator>
  1446.      <dc:creator>Olli Tynninen</dc:creator>
  1447.      <dc:creator>Hannu Haapasalo</dc:creator>
  1448.      <dc:creator>Tuomas Rauramaa</dc:creator>
  1449.      <dc:creator>Petri Auvinen</dc:creator>
  1450.      <dc:creator>Hanna Liimatainen</dc:creator>
  1451.      <dc:date>2024-02-16</dc:date>
  1452.      <dc:source>Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology</dc:source>
  1453.      <dc:title>Differentiation of highly pathogenic strains of human JC polyomavirus in neurological patients by next generation sequencing</dc:title>
  1454.      <dc:identifier>pmid:38364704</dc:identifier>
  1455.      <dc:identifier>doi:10.1016/j.jcv.2024.105652</dc:identifier>
  1456.    </item>
  1457.  </channel>
  1458. </rss>
  1459.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//www.ncbi.nlm.nih.gov/entrez/eutils/erss.cgi%3Frss_guid%3D14czX-i9THTeCLgNq1i0-wQkRV9Z03cz2_ZexMfJADhczHggsu

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda