Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://www.nasa.gov/rss/breaking_news.rss

  1. <?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
  2. xmlns:content="http://purl.org/rss/1.0/modules/content/"
  3. xmlns:wfw="http://wellformedweb.org/CommentAPI/"
  4. xmlns:dc="http://purl.org/dc/elements/1.1/"
  5. xmlns:atom="http://www.w3.org/2005/Atom"
  6. xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
  7. xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
  8. xmlns:media="http://search.yahoo.com/mrss/" >
  9.  
  10. <channel>
  11. <title>NASA</title>
  12. <atom:link href="https://www.nasa.gov/news-release/feed/" rel="self" type="application/rss+xml" />
  13. <link>https://www.nasa.gov</link>
  14. <description>Official National Aeronautics and Space Administration Website</description>
  15. <lastBuildDate>Tue, 07 May 2024 22:47:55 +0000</lastBuildDate>
  16. <language>en-US</language>
  17. <sy:updatePeriod>
  18. hourly </sy:updatePeriod>
  19. <sy:updateFrequency>
  20. 1 </sy:updateFrequency>
  21. <generator>https://wordpress.org/?v=6.4.4</generator>
  22. <item>
  23. <title>International SWOT Mission Can Improve Flood Prediction </title>
  24. <link>https://science.nasa.gov/earth/climate-change/international-swot-mission-can-improve-flood-prediction/</link>
  25. <dc:creator><![CDATA[]]></dc:creator>
  26. <pubDate>Tue, 07 May 2024 22:47:55 +0000</pubDate>
  27. <category><![CDATA[Climate Change]]></category>
  28. <category><![CDATA[Natural Disasters]]></category>
  29. <category><![CDATA[SWOT (Surface Water and Ocean Topography)]]></category>
  30. <category><![CDATA[Uncategorized]]></category>
  31. <category><![CDATA[Water on Earth]]></category>
  32. <guid isPermaLink="false">https://science.nasa.gov/earth/climate-change/international-swot-mission-can-improve-flood-prediction/</guid>
  33.  
  34. <description><![CDATA[A partnership between NASA and the French space agency, the satellite is poised to help improve forecasts of where and when flooding will occur in Earth’s rivers, lakes, and reservoirs. Rivers, lakes, and reservoirs are like our planet’s arteries, carrying life-sustaining water in interconnected networks. When Earth’s water cycle runs too fast, flooding can result, […]]]></description>
  35. <content:encoded><![CDATA[<div id="" class="hds-article-hero-header nasa-gb-align-full bg-carbon-90 width-full maxw-full color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-article-hero-header">
  36. <div class="hds-cover-wrapper width-full maxw-full minh-tablet grid-container minh-tablet flex-column padding-0">
  37. <div class="hds-foreground-wrapper display-flex flex-direction-column">
  38. <div class="grid-container grid-container-block margin-top-auto width-full maxw-desktop-lg padding-y-9 padding-x-3 desktop:padding-x-0 z-400">
  39. <div class="z-400 grid-col-12 tablet:grid-col-12 desktop:grid-col-7 z-400">
  40. <div class="margin-0">
  41. <div class="label color-spacesuit-white margin-bottom-2">6 Min Read</div>
  42. <h1 class="heading-41 line-height-md color-spacesuit-white-important">
  43. International SWOT Mission Can Improve Flood Prediction  </h1>
  44. </p></div>
  45. </p></div>
  46. <div class="grid-col-12 tablet:grid-col-12 desktop:grid-col-5"></div>
  47. <div class="skrim-overlay skrim-left mobile-skrim-top z-200"></div>
  48. <figure class="hds-media-background  "><img fetchpriority="high" decoding="async" width="953" height="536" src="https://science.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg?w=953" class="attachment-1536x1536 size-1536x1536" alt="An aerial photo of a flooded neighborhood in North Dakota" style="transform: scale(1.2); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg 953w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg?resize=300,169 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg?resize=768,432 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg?resize=400,225 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg?resize=600,337 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg?resize=900,506 900w" sizes="(max-width: 953px) 100vw, 953px" loading="eager" /></figure>
  49. </p></div>
  50. </p></div>
  51. </p></div>
  52. <div class="padding-y-3 padding-x-3">
  53. <div class="grid-container grid-container-block padding-x-0"><figcaption class="hds-caption maxw-mobile">
  54. <div class="hds-caption-text p-sm margin-0 color-carbon-30">
  55. <div><figcaption>Flooding on the Souris River inundated this community in North Dakota in 2011. The U.S.-French SWOT satellite is giving scientists and water managers a new tool to look at floods in 3D, information that can improve predictions of where and how often flooding will occur.</figcaption></div>
  56. </p></div>
  57. </figcaption></div>
  58. </p></div>
  59. </p></div>
  60. <h3 class="wp-block-heading" id="h-a-partnership-between-nasa-and-the-french-space-agency-the-satellite-is-poised-to-help-improve-forecasts-of-where-and-when-flooding-will-occur-in-earth-s-rivers-lakes-and-reservoirs">A partnership between NASA and the French space agency, the satellite is poised to help improve forecasts of where and when flooding will occur in Earth’s rivers, lakes, and reservoirs.</h3>
  61. <p>Rivers, lakes, and reservoirs are like our planet’s arteries, carrying life-sustaining water in interconnected networks. When Earth’s water cycle runs too fast, flooding can result, threatening lives and property. That risk is increasing as climate change alters precipitation patterns and more people are living in flood-prone areas <a href="https://earthobservatory.nasa.gov/images/148866/research-shows-more-people-living-in-floodplains" rel="noopener">worldwide</a>.</p>
  62. <p>Scientists and water managers use many types of data to predict flooding. This year they have a new tool at their disposal: freshwater data from the Surface Water and Ocean Topography (<a href="https://swot.jpl.nasa.gov/" rel="noopener">SWOT</a>) satellite. The observatory, a collaboration between NASA and the French space agency, CNES (Centre National d’Études Spatiales), is measuring the height of <a href="https://www.jpl.nasa.gov/news/joint-nasa-cnes-water-tracking-satellite-reveals-first-stunning-views" rel="noopener">nearly all water surfaces</a> on Earth. SWOT was designed to measure every major river wider than about 300 feet (100 meters), and preliminary results suggest it may be able to observe much smaller rivers.</p>
  63. <div id="" class="hds-media hds-module wp-block-image">
  64. <div class="margin-left-auto margin-right-auto nasa-block-align-inline">
  65. <div class="hds-media-wrapper margin-left-auto margin-right-auto">
  66. <figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://science.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg" rel="noopener"><img loading="lazy" decoding="async" width="1280" height="719" src="https://science.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?w=1280" class="attachment-2048x2048 size-2048x2048" alt="A visual map of data from monsoon rains in northeast Bangladesh" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg 1280w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?resize=300,169 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?resize=768,431 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?resize=1024,575 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?resize=400,225 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?resize=600,337 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?resize=900,506 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1a-bangladesh-figure-complete-16-width-1280.jpg?resize=1200,674 1200w" sizes="(max-width: 1280px) 100vw, 1280px" /></a></figure><figcaption class="hds-caption padding-y-2">
  67. <div class="hds-caption-text p-sm margin-0">Flooding from monsoon rains covers a wide region of northeast Bangladesh in this Oct. 8, 2023, image showing data from SWOT. The U.S.-French satellite is the first to provide timely, precise water surface elevation information over entire regions at high resolution, enabling improved flooding forecasts.</div>
  68. </figcaption></div>
  69. </div>
  70. </div>
  71. <p>Stream gauges can accurately measure water levels in rivers, but only at individual locations, often spaced far apart. Many rivers have no stream gauges at all, particularly in countries without resources to maintain and monitor them. Gauges can also be disabled by floods and are unreliable when water overtops the riverbank and flows into areas they cannot measure.</p>
  72. <p>SWOT provides a more comprehensive, 3D look at floods, measuring their height, width, and slope. Scientists can use this data to better track how floodwaters pulse across a landscape, improving predictions of where flooding will occur and how often.</p>
  73. <div id="" class="hds-media hds-module wp-block-image">
  74. <div class="margin-left-auto margin-right-auto nasa-block-align-inline">
  75. <div class="hds-media-wrapper margin-left-auto margin-right-auto">
  76. <figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://science.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg" rel="noopener"><img loading="lazy" decoding="async" width="1280" height="720" src="https://science.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?w=1280" class="attachment-2048x2048 size-2048x2048" alt="A visual map from above of river slope data from California's Sacramento River." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg 1280w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?resize=300,169 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?resize=768,432 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?resize=1024,576 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?resize=400,225 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?resize=600,338 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?resize=900,506 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e1b-sacramentoslope-figure-may32024-16-width-1280.jpg?resize=1200,675 1200w" sizes="(max-width: 1280px) 100vw, 1280px" /></a></figure><figcaption class="hds-caption padding-y-2">
  77. <div class="hds-caption-text p-sm margin-0">SWOT river slope data — like that depicted here for California’s Sacramento River — can improve predictions of how fast water flows through rivers and off landscapes. To calculate slope, scientists subtract the lower water elevation (right) from the higher one (left) and divide by segment length.</div>
  78. </figcaption></div>
  79. </div>
  80. </div>
  81. <h3 class="wp-block-heading" id="h-building-a-better-flood-model"><strong>Building a Better Flood Model</strong></h3>
  82. <p>One effort to incorporate SWOT data into flood models is led by J. Toby Minear of the Cooperative Institute for Research in Environmental Sciences (CIRES) in Boulder, Colorado. Minear is investigating how to incorporate SWOT data into the National Oceanic and Atmospheric Administration’s <a href="https://water.noaa.gov/about/nwm" rel="noopener">National Water Model</a>, which predicts the potential for flooding and its timing along U.S. rivers. SWOT freshwater data will fill in spatial gaps between gauges and help scientists like Minear determine the water levels (heights) at which flooding occurs at specific locations along rivers.</p>
  83. <div id="" class="hds-media hds-module wp-block-image">
  84. <div class="margin-left-auto margin-right-auto nasa-block-align-inline">
  85. <div class="hds-media-wrapper margin-left-auto margin-right-auto">
  86. <figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://science.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg" rel="noopener"><img loading="lazy" decoding="async" width="1280" height="853" src="https://science.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?w=1280" class="attachment-2048x2048 size-2048x2048" alt="A photo of a field researcher standing on the edge of a river in New Zealand, setting up a GPS unit on a tripod." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg 1280w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?resize=300,200 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?resize=768,512 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?resize=1024,682 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?resize=400,267 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?resize=600,400 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?resize=900,600 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val-width-1280.jpg?resize=1200,800 1200w" sizes="(max-width: 1280px) 100vw, 1280px" /></a></figure><figcaption class="hds-caption padding-y-2">
  87. <div class="hds-caption-text p-sm margin-0">UNC-Chapel Hill doctoral student Marissa Hughes levels a tripod to install a GPS unit to precisely measure the water surface elevation of a segment of New Zealand’s Waimakariri River. The measurements were used to calibrate and validate data from the U.S.-French SWOT satellite</div>
  88. </figcaption></div>
  89. </div>
  90. </div>
  91. <p>He expects SWOT to improve National Water Model data in multiple ways. For example, it will provide more accurate estimates of river slopes and how they change with streamflow. Generally speaking, the steeper a river’s slope, the faster its water flows. Hydrologic modelers use slope data to predict the speed water moves through a river and off a landscape.</p>
  92. <p>SWOT will also help scientists and water managers quantify how much water lakes and reservoirs can store. While there are about 90,000 relatively large U.S. reservoirs, only a few thousand of them have water-level data that’s incorporated into the National Water Model. This limits scientists’ ability to know how reservoir levels relate to surrounding land elevations and potential flooding. SWOT is measuring tens of thousands of U.S. reservoirs, along with nearly all natural U.S. lakes larger than about two football fields combined.</p>
  93. <p>Some countries, including the U.S., have made significant investments in river gauging networks and detailed local flood models. But in Africa, South Asia, parts of South America, and the Arctic, there’s little data for lakes and rivers. In such places, flood risk assessments often rely on rough estimates. Part of SWOT’s potential is that it will allow hydrologists to fill these gaps, providing information on where water is stored on landscapes and how much is flowing through rivers.</p>
  94. <p>Tamlin Pavelsky, NASA’s SWOT freshwater science lead and a researcher at the University of North Carolina at Chapel Hill, says SWOT can help address the growing threat of flooding from extreme storms fueled by climate change. “Think about Houston and Hurricane Harvey in 2017,” he said. “It’s very unlikely we would have seen 60 inches of rain from one storm without climate change. Societies will need to update engineering design standards and floodplain maps as intense precipitation events become more common.”</p>
  95. <p>Pavelsky says these changes in Earth’s water cycle are altering society’s assumptions about floods and what a floodplain is. “Hundreds of millions of people worldwide will be at increased risk of flooding in the future as rainfall events become increasingly intense and population growth occurs in flood-prone areas,” he added.</p>
  96. <p>SWOT flood data will have other practical applications. For example, insurers can use models informed by SWOT data to improve flood hazard maps to better estimate an area’s potential damage and loss risks. A major reinsurance company, FM Global, is among SWOT’s 40 current <a href="https://swot.jpl.nasa.gov/applications/early-adopters/" rel="noopener">early adopters</a> — a global community of organizations working to incorporate SWOT data into their decision-making activities.</p>
  97. <p>“Companies like FM Global and government agencies like the U.S. Federal Emergency Management Agency can fine tune their flood models by comparing them to SWOT data,” Pavelsky said. “Those better models will give us a more accurate picture of where and how often floods are likely to happen.”</p>
  98. </p>
  99. <h3 class="wp-block-heading" id="h-more-about-the-mission"><strong>More About the Mission</strong></h3>
  100. <p><a href="https://www.jpl.nasa.gov/news/nasa-launches-international-mission-to-survey-earths-water" rel="noopener">Launched</a> on Dec. 16, 2022, from Vandenberg Space Force Base in central California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.</p>
  101. <p>SWOT was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the project’s U.S. component. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, dual frequency Poseidon altimeter (developed by Thales Alenia Space), KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center, and managed the associated launch services.</p>
  102. <p>For more on SWOT, visit:</p>
  103. <p><a href="https://swot.jpl.nasa.gov/" rel="noopener">https://swot.jpl.nasa.gov/</a></p>
  104. <h4 class="wp-block-heading" id="h-news-media-contact">News Media Contact</h4>
  105. <p>Jane J. Lee / Andrew Wang</p>
  106. <p>Jet Propulsion Laboratory, Pasadena, Calif.</p>
  107. <p>818-354-0307 / 626-379-6874</p>
  108. <p><a href="mailto:jane.j.lee@jpl.nasa.gov" target="_blank" rel="noreferrer noopener">jane.j.lee@jpl.nasa.gov</a> / <a href="mailto:andrew.wang@jpl.nasa.gov" target="_blank" rel="noreferrer noopener">andrew.wang@jpl.nasa.gov</a></p>
  109. <p>Written by Alan Buis</p>
  110. <p>2024-060</p>
  111. ]]></content:encoded>
  112. </item>
  113. <item>
  114. <title>20 Years Ago: NASA Selects its 19th Group of Astronauts</title>
  115. <link>https://www.nasa.gov/history/20-years-ago-nasa-selects-its-19th-group-of-astronauts/</link>
  116. <dc:creator><![CDATA[Kelli Mars]]></dc:creator>
  117. <pubDate>Tue, 07 May 2024 21:34:13 +0000</pubDate>
  118. <category><![CDATA[NASA History]]></category>
  119. <guid isPermaLink="false">https://www.nasa.gov/?p=658424</guid>
  120.  
  121. <description><![CDATA[On May 6, 2004, NASA announced the selection of its 19th group of astronauts. The group comprised 11 candidates &#8211; two pilots, six mission specialists, and three educator mission specialists – and included two women, two Hispanic Americans, and one African American. Three astronauts from the Japan Aerospace Exploration Agency (JAXA) joined the 11 NASA [&#8230;]]]></description>
  122. <content:encoded><![CDATA[
  123. <p>On May 6, 2004, NASA announced the selection of its 19th group of astronauts. The group comprised 11 candidates &#8211; two pilots, six mission specialists, and three educator mission specialists – and included two women, two Hispanic Americans, and one African American. Three astronauts from the Japan Aerospace Exploration Agency (JAXA) joined the 11 NASA astronauts for the 20-month training program to qualify as mission specialists, following which they became eligible for flight assignments. They comprised the last group of astronauts selected to fly on the space shuttle. All members of the group completed at least one spaceflight, with five making a single trip into space, four making two trips, and five going three times. Several remain on active status and available for future flight assignments.</p>
  124.  
  125.  
  126.  
  127. <p><img decoding="async" height="440" width="624" class="wp-image-658656" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg" alt="The Group 19 NASA and Japan Aerospace Exploration Agency astronaut candidates pose for a group photo – front row, Robert L. Satcher, left, Dorothy “Dottie” M. Metcalf-Lindenburger, Christopher J. Cassidy, Richard R. Arnold, Randolph J. Bresnik, and Thomas H. Marshburn; back row, Akihiko “Aki” Hoshide, left, Shannon Walker, Joseph M. Acaba, James P. Dutton, R. Shane Kimbrough, Satoshi Furukawa, José M. Hernández, and Naoko Yamazaki" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg 1050w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg?resize=300,211 300w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg?resize=768,541 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg?resize=1024,722 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg?resize=400,282 400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg?resize=600,423 600w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-1-nasa-and-jaxa-group-photo.jpg?resize=900,634 900w" sizes="(max-width: 624px) 100vw, 624px" /><br><em>The Group 19 NASA and Japan Aerospace Exploration Agency astronaut candidates pose for a group photo – front row, Robert L. Satcher, left, Dorothy “Dottie” M. Metcalf-Lindenburger, Christopher J. Cassidy, Richard R. Arnold, Randolph J. Bresnik, and Thomas H. Marshburn; back row, Akihiko “Aki” Hoshide, left, Shannon Walker, Joseph M. Acaba, James P. Dutton, R. Shane Kimbrough, Satoshi Furukawa, José M. Hernández, and Naoko Yamazaki.</em></p>
  128.  
  129.  
  130.  
  131. <p>In a ceremony held at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia, NASA Administrator <a href="https://www.nasa.gov/history/20-years-ago-sean-okeefe-sworn-in-as-nasas-10th-administrator/">Sean C. O’Keefe</a> and Chief of the Astronaut Office <a href="https://www.nasa.gov/wp-content/uploads/2016/01/rominger_kent.pdf?emrc=663b45f82510f">Kent V. Rominger</a> introduced the 11 new astronaut candidates, the first selected since the <a href="https://www.nasa.gov/history/20-years-ago-remembering-columbia-and-her-crew/">Columbia accident</a>. <a href="https://www.nasa.gov/former-astronaut-john-h-glenn/">John H. Glenn</a>, representing the original <a href="https://www.nasa.gov/history/65-years-ago-nasa-selects-americas-first-astronauts/">Mercury 7 astronauts</a> selected in 1959, also attended the ceremony. The newest class of astronaut candidates included <a href="https://www.nasa.gov/humans-in-space/astronauts/randolph-j-bresnik/">Randolph J. Bresnik</a> and <a href="https://www.nasa.gov/wp-content/uploads/2023/05/dutton.pdf?emrc=663b45f825218">James P. Dutton</a> as the two pilot candidates; <a href="https://www.nasa.gov/wp-content/uploads/2016/02/cassidy-cj.pdf?emrc=663b45f825330">Christopher J. Cassidy</a>, <a href="https://www.nasa.gov/wp-content/uploads/2016/01/hernandez_jose.pdf?emrc=663b45f82541e">José M. Hernández</a>, <a href="https://www.nasa.gov/wp-content/uploads/2016/03/kimbrough-rs.pdf?emrc=663b45f82550c">R. Shane Kimbrough</a>, <a href="https://www.nasa.gov/wp-content/uploads/2023/07/marshburn-thomas.pdf?emrc=663b45f825601">Thomas H. Marshburn</a>, <a href="https://www.nasa.gov/wp-content/uploads/2016/01/satcher_robert.pdf?emrc=663b45f8256e8">Robert “Bobby” L. Satcher</a>, and <a href="https://www.nasa.gov/humans-in-space/astronauts/shannon-walker/">Shannon Walker</a> as the mission specialists; and <a href="https://www.nasa.gov/wp-content/uploads/2023/07/acaba-joseph-2.pdf?emrc=663b45f8257d3">Joseph M. Acaba</a>, <a href="https://www.nasa.gov/wp-content/uploads/2016/01/arnold-rr_0.pdf?emrc=663b45f8258bc">Richard R. Arnold</a>, and <a href="https://www.nasa.gov/people/dottie-metcalf-lindenburger/">Dorothy “Dottie” M. Metcalf-Lindenburger</a> as the educator astronauts. Under a joint agreement between the two agencies, JAXA astronauts <a href="https://humans-in-space.jaxa.jp/en/astronaut/furukawa-satoshi/" rel="noopener">Satoshi Furukawa</a>, <a href="https://humans-in-space.jaxa.jp/en/astronaut/hoshide-akihiko/" rel="noopener">Akihiko “Aki” Hoshide</a>, and <a href="https://humans-in-space.jaxa.jp/en/astronaut/yamazaki-naoko/" rel="noopener">Naoko Yamazaki</a>, selected in 1999, joined the 11 NASA astronauts for the 20-month certification program.</p>
  132.  
  133.  
  134.  
  135. <p><img decoding="async" height="416" width="624" class="wp-image-658657" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg" alt="Group 19 astronaut candidates during survival training at Brunswick Naval Air Station in Maine." srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg 3000w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-2-survival-training-nas-brunswick-me-aug-22-2004.jpg?resize=2000,1333 2000w" sizes="(max-width: 624px) 100vw, 624px" /><br><em>Group 19 astronaut candidates during survival training at Brunswick Naval Air Station in Maine.</em></p>
  136.  
  137.  
  138.  
  139. <p>The 11 NASA and three JAXA astronaut candidates began their 18-month training and certification period in June 2004. The training included scientific and technical briefings, intensive instruction in shuttle and International Space Station systems, physiological training, T-38 flight training, and water and wilderness survival training. They also received orientation tours at all NASA centers. They completed the astronaut candidate training in February 2006 and qualified for various technical assignments within the astronaut office and for future flight assignments.</p>
  140.  
  141.  
  142.  
  143. <p><img decoding="async" height="269" width="208" class="wp-image-658658" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg" alt="Group 19 patch" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg 2839w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=233,300 233w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=768,990 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=795,1024 795w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=1192,1536 1192w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=1589,2048 1589w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=310,400 310w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=466,600 466w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=698,900 698w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=931,1200 931w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-3-patch-jsc2005e03144.jpg?resize=1552,2000 1552w" sizes="(max-width: 208px) 100vw, 208px" /> <img loading="lazy" decoding="async" height="269" width="215" class="wp-image-658659" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg" alt="NASA astronaut Joseph M. Acaba" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-4-acaba-jsc2004e40629.jpg?resize=1600,2000 1600w" sizes="(max-width: 215px) 100vw, 215px" /> <img loading="lazy" decoding="async" height="269" width="215" class="wp-image-658660" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg" alt="NASA astronaut Richard R. Arnold" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-5-arnold-jsc2004e47576.jpg?resize=1600,2000 1600w" sizes="(max-width: 215px) 100vw, 215px" /><br><em>Group 19 patch, left, and NASA astronauts Joseph M. Acaba and Richard R. Arnold.</em></p>
  144.  
  145.  
  146.  
  147. <p>Per tradition, the previous astronaut class provided the nickname for Group 19: The Peacocks. The Group 19 astronauts designed their patch, that included elements such as the American and Japanese flags, a stylized astronaut pin, fourteen stars representing the astronauts, a book – representing knowledge and learning – with a Roman numeral XIX on it, and the Earth, Moon, and Mars, representing current and future exploration. The border of the patch contained the Latin words Explorandi Concitandi Docendi Gratia, meaning “for the sake of exploring, inspiring, and teaching.”</p>
  148.  
  149.  
  150.  
  151. <p>Acaba, one of the three educator astronauts, hails from California. He received his first spaceflight assignment as a mission specialist on STS-119, the 2009 mission that brought the final truss segment to the space station. He conducted two spacewalks, one of them with fellow Peacock Arnold. Acaba then traveled to the station for his second mission, this time on a Russian Soyuz spacecraft, to serve as a flight engineer during Expedition 31 and 32 in 2012, during which the crew welcomed the first commercial cargo vehicle, a SpaceX Dragon. He completed his third mission as a flight engineer during Expedition 53 and 54 in 2012 to 2013, performing a single spacewalk. Acaba spent a total of 306 days in space and 19 hours and 46 minutes outside during three spacewalks. He has served as the Chief of the Astronaut Office since 2023.</p>
  152.  
  153.  
  154.  
  155. <p>The second of the three educator astronauts, Arnold, a resident of Maryland, flew with Acaba on STS-119 in 2009. He conducted two spacewalks, one of them with fellow Peacock Acaba. His second flight took place nine years later when he served as a flight engineer during Expedition 55 and 56 and performed three more spacewalks. He has logged 209 days in space and accumulated 32 hours and 4 minutes of spacewalk time during five excursions.</p>
  156.  
  157.  
  158.  
  159. <p><img decoding="async" height="auto" width="215" class="wp-image-658667" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg" alt="Group 19 NASA astronaut Randolph J. Bresnik" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-6-bresnik-jsc2004e40638.jpg?resize=1600,2000 1600w" sizes="(max-width: 2400px) 100vw, 2400px" /> <img decoding="async" height="auto" width="215" class="wp-image-658668" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg" alt="Group 19 NASA astronaut Christopher J. Cassidy" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-7-cassidy-jsc2004e44277.jpg?resize=1600,2000 1600w" sizes="(max-width: 2400px) 100vw, 2400px" /> <img decoding="async" height="auto" width="215" class="wp-image-658669" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg" alt="Group 19 NASA astronaut James P. Dutton" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-8-dutton-jsc2004e40438.jpg?resize=1600,2000 1600w" sizes="(max-width: 2400px) 100vw, 2400px" /><br><em>Group 19 NASA astronauts Randolph J. Bresnik, left, Christopher J. Cassidy, and James P. Dutton.</em></p>
  160.  
  161.  
  162.  
  163. <p>Bresnik, a U.S. Marine test pilot from California, received his first spaceflight assignment as a mission specialist on STS-129, a utilization and logistics flight that brought two External Logistics Carriers to the space station. He conducted two spacewalks during the 11-day flight, including one with fellow Peacock Satcher. During his second spaceflight in 2017, Bresnik flew to the station on a Soyuz, spending 139 days in space, first as a flight engineer during Expedition 52 and then as commander of Expedition 53, and conducted three more spacewalks. He logged a total of 149 days in space, and 32 hours outside during five spacewalks. Since 2018, Bresnik has served as assistant to the chief of the astronaut office for exploration.</p>
  164.  
  165.  
  166.  
  167. <p>A native of Maine and a U.S. Navy SEAL, Cassidy completed three spaceflights during his NASA career. On his first flight in 2009, he flew as a mission specialist on STS-127, the flight that delivered the Japanese Kibo Exposed Facility to the station. He performed three spacewalks during the 16-day mission, two of them with fellow Peacock Marshburn. He returned to the space station in 2013 via a Soyuz and served as a flight engineer during Expeditions 35 and 36, spending 166 days in space and conducting three spacewalks including one <a href="https://www.nasa.gov/feature/10-years-ago-eva-23-how-a-high-visibility-close-call-cut-short-a-spacewalk">terminated early</a> when fellow spacewalker <a href="https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Astronauts/Luca_Parmitano" rel="noopener">Luca Parmitano</a>’s helmet began filling with water. On his third mission in 2020, Cassidy served as flight engineer during Expedition 62 and commanded Expedition 63. He conducted four more spacewalks. He spent a total of 378 days in space and 54 hours 51 minutes outside on nine spacewalks.</p>
  168.  
  169.  
  170.  
  171. <p>A native of Oregon and a colonel in the U.S. Air Force, Dutton flew as pilot on STS-131, a resupply mission to the space station in 2010. Fellow Peacocks Metcalf-Lindenburger and Yamazaki accompanied Dutton on the flight. The Multi-Purpose Logistics Module (MPLM) brought 27,000 pounds of supplies to the station, and returned 6,000 pounds of science, hardware, and trash back to the ground. Dutton logged 15 days in space.</p>
  172.  
  173.  
  174.  
  175. <p><img decoding="async" height="auto" width="215" class="wp-image-658670" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg" alt="Group 19 NASA astronaut José M. Hernández" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg 3258w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=1639,2048 1639w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-9-hernandez-jsc2004e27097.jpg?resize=1600,2000 1600w" sizes="(max-width: 3258px) 100vw, 3258px" /> <img decoding="async" height="auto" width="215" class="wp-image-658671" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg" alt="Group 19 NASA astronaut R. Shane Kimbrough" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg 3254w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=1639,2048 1639w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-10-kimbrough-jsc2004e23959.jpg?resize=1600,2000 1600w" sizes="(max-width: 3254px) 100vw, 3254px" /> <img decoding="async" height="auto" width="215" class="wp-image-658672" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg" alt="Group 19 NASA astronaut Thomas H. Marshburn" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg 3258w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=1639,2048 1639w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-11-marshburn-jsc2004e27273.jpg?resize=1600,2000 1600w" sizes="(max-width: 3258px) 100vw, 3258px" /><br><em>Group 19 NASA astronauts José M. Hernández, left, R. Shane Kimbrough, and Thomas H. Marshburn.</em></p>
  176.  
  177.  
  178.  
  179. <p>California native Hernández joined the Materials and Processes Branch at NASA’s Johnson Space Center (JSC) in Houston prior to his selection as an astronaut. He made his one spaceflight on STS-128 in 2009, an expedition crew member rotation flight that also delivered 18,000 pounds of supplies, cargo, and science to the space station inside an MPLM. He logged 14 days in space. The 2023 motion picture “A Million Miles Away” chronicled Hernández’s journey to become an astronaut.</p>
  180.  
  181.  
  182.  
  183. <p>Texas native and U.S. Army aviator Kimbrough joined JSC in 2000 at Ellington Field’s Aircraft Operations Division before joining the astronaut corps. The first NASA astronaut from Group 19 to get a flight assignment, Kimbrough flew as a mission specialist on STS-126 in 2008. During the 16-day mission, the astronauts carried out an expedition crew member rotation and resupplied the station with 14,000 pounds of supplies including facilities to enable six-person occupancy of the station. Kimbrough completed two spacewalks during STS-126. For his second spaceflight, Kimbrough launched on a Soyuz and flew as a flight engineer on Expedition 49, becoming commander of Expedition 50 a week later. During the 173-day mission in 2016-2017, he conducted four spacewalks. For his third flight, Kimbrough served as the commander of Crew-2 and as flight engineer during Expedition 65/66 in 2021, flying with fellow Peacock Hoshide. During the 199-day mission he conducted three more spacewalks, bringing his total to nine and more than 59 hours outside the station. During his three spaceflights, he accumulated 388 days in space.</p>
  184.  
  185.  
  186.  
  187. <p>A native of North Carolina, Marshburn served as a flight surgeon at JSC before his selection as an astronaut, supporting Shuttle/Mir, space shuttle, and space station crews. On his first spaceflight, the 16-day STS-127 in 2009, he served as a mission specialist to help deliver the Japanese Kibo Exposed Facility and performed three spacewalks, two of them with fellow Peacock Cassidy. On his second spaceflight, Marshburn launched on a Soyuz and served as flight engineer on Expedition 34/35 in 2012 and 2013. During the 145-day mission, he completed one spacewalk. On his third mission, he served as Crew-3 pilot and flight engineer on the 176-day Expedition 66/67, completing one more spacewalk to bring his total to five, spending 31 hours outside the station. On his three flights, Marshburn spent 377 days in space.</p>
  188.  
  189.  
  190.  
  191. <p><img decoding="async" height="auto" width="215" class="wp-image-658678" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg" alt="Group 19 NASA astronaut Dorothy “Dottie” M. Metcalf-Lindenburger" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-12-metcalf-lindenburger-jsc2004e40090.jpg?resize=1600,2000 1600w" sizes="(max-width: 2400px) 100vw, 2400px" /> <img decoding="async" height="auto" width="215" class="wp-image-658679" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg" alt="Group 19 NASA astronaut Robert L. Satcher" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-13-satcher-jsc2004e40437.jpg?resize=1600,2000 1600w" sizes="(max-width: 2400px) 100vw, 2400px" /> <img decoding="async" height="auto" width="215" class="wp-image-658680" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg" alt="Group 19 NASA astronaut Shannon Walker" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg 2400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=1229,1536 1229w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=1638,2048 1638w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=960,1200 960w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-14-walker-jsc2004e27098.jpg?resize=1600,2000 1600w" sizes="(max-width: 2400px) 100vw, 2400px" /><br><em>Group 19 NASA astronauts Dorothy “Dottie” M. Metcalf-Lindenburger, left, Robert L. Satcher, and Shannon Walker.</em></p>
  192.  
  193.  
  194.  
  195. <p>The third educator astronaut, Denver native Metcalf-Lindenburger made her one spaceflight as a mission specialist on STS-131, flying with fellow Peacocks Dutton and Yamazaki. During the 15-day mission in 2010, the astronauts resupplied the station, including bringing 27,000 pounds of supplies in the MPLM and returning 6,000 pounds of hardware and science back to Earth.</p>
  196.  
  197.  
  198.  
  199. <p>A native of Virginia, Satcher worked as an orthopedic surgeon before his selection as an astronaut. He made his one spaceflight as a mission specialist on STS-129, an 11-day flight in 2009. During the utilization and logistics flight that brought two External Logistics Carriers to the station, Satcher performed two spacewalks, including one with fellow Peacock Bresnik, totaling 12 hours 19 minutes.</p>
  200.  
  201.  
  202.  
  203. <p>Walker holds the honor as the first native Houstonian selected as an astronaut. She worked for many years in flight operations at JSC prior to her selection. On her first spaceflight in 2010, Walker launched on a Soyuz and served as a flight engineer on the 163-day Expedition 24/25. For her second flight, she served as a mission specialist on Crew-1, the first operational flight of the SpaceX Crew Dragon, and as a flight engineer during Expedition 64 and commander of Expedition 65 in 2020 and 2021. Including that 167-day flight, Walker has logged 330 days in space. She currently serves as the deputy chief of the astronaut office.</p>
  204.  
  205.  
  206.  
  207. <p><img decoding="async" height="auto" width="215" class="wp-image-658681" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-15-furukawa.jpeg" alt="Astronaut Satoshi Furukawa of the Japan Aerospace Exploration Agency" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-15-furukawa.jpeg 350w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-15-furukawa.jpeg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-15-furukawa.jpeg?resize=320,400 320w" sizes="(max-width: 350px) 100vw, 350px" /> <img decoding="async" height="auto" width="215" class="wp-image-658683" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png" alt="Astronaut Akihiko “Aki” Hoshide of the Japan Aerospace Exploration Agency" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png 1000w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png?resize=768,960 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png?resize=819,1024 819w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png?resize=320,400 320w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png?resize=480,600 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png?resize=720,900 720w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-16-hoshide.png?resize=960,1200 960w" sizes="(max-width: 1000px) 100vw, 1000px" /> <img decoding="async" height="auto" width="215" class="wp-image-658684" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-17-yamazaki.jpg" alt="Astronaut Naoko Yamazaki of the Japan Aerospace Exploration Agency" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-17-yamazaki.jpg 480w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-17-yamazaki.jpg?resize=240,300 240w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-17-yamazaki.jpg?resize=320,400 320w" sizes="(max-width: 480px) 100vw, 480px" /><br><em>Astronauts Satoshi Furukawa, left, Akihiko “Aki” Hoshide, and Naoko Yamazaki of the Japan Aerospace Exploration Agency who joined NASA’s Group 19 for training.</em></p>
  208.  
  209.  
  210.  
  211. <p>Born in Yokohama, Furukawa earned a medical degree and worked as a researcher in gastrointestinal surgery before JAXA selected him as an astronaut in 1999. He joined Group 19 in June 2004 to certify as a mission specialist. For his first spaceflight, Furukawa launched on a Soyuz and served as a flight engineer during Expedition 28/29, a 167-day mission in 2011. In 2023-24, he flew as a mission specialist on Crew 7 and as a flight engineer on Expedition 69/70, spending 199 days in space. Furukawa has accumulated 366 days in orbit and remains on active status.</p>
  212.  
  213.  
  214.  
  215. <p>Hoshide, born in Tokyo, joined JAXA in 1992 and seven years later the agency selected him as an astronaut. After finishing his mission specialist certification in 2006, JAXA chose him to fly on STS-124, the flight that delivered the Kibo pressurized module to the space station in 2008. Four years later, Hoshide traveled to the space station a second time to serve as a flight engineer during Expedition 32/33. He performed three spacewalks totaling 28 hours and 17 minutes. In 2021, he returned to the station as a member of Crew-2, flying with fellow Peacock Kimbrough. He served as a flight engineer during Expedition 65 and commander of Expedition 66, spending an additional 198 days in space. Hoshide accumulated 340 days in orbit and remains on active status.</p>
  216.  
  217.  
  218.  
  219. <p>An engineer born in Chiba, Yamazaki joined JAXA in 1996, three years before the agency selected her as an astronaut. She completed her mission specialist certification in 2006 and in 2010, made her one spaceflight on STS 131, flying with fellow Peacocks Dutton and Metcalf-Lindenburger. During the 15-day mission, the astronauts transferred 27,000 pounds of supplies to the station from the MPLM and returned 6,000 pounds back to Earth. Yamazaki operated both the shuttle and station remote manipulator systems during the flight. The STS-131 mission took place while fellow JAXA astronaut <a href="https://humans-in-space.jaxa.jp/en/astronaut/noguchi-soichi/" rel="noopener">Soichi Noguchi</a> served as an Expedition 23 flight engineer, marking the first time two Japanese astronauts flew in space at the same time.</p>
  220.  
  221.  
  222.  
  223. <p><img loading="lazy" decoding="async" height="179" width="624" class="wp-image-658692" src="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg" alt="Summary of spaceflights by Group 19 astronauts" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg 1280w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg?resize=300,86 300w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg?resize=768,220 768w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg?resize=1024,293 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg?resize=400,114 400w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg?resize=600,172 600w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg?resize=900,257 900w, https://www.nasa.gov/wp-content/uploads/2024/05/group-19-18-flight-table.jpg?resize=1200,343 1200w" sizes="(max-width: 624px) 100vw, 624px" /><br><em>Summary of spaceflights by Group 19 astronauts.</em></p>
  224.  
  225.  
  226.  
  227. <p>The Group 19 NASA and JAXA astronauts have made and continue to make significant contributions to the space station – assembly, research, maintenance, logistics, management – traveling to space and back using three different spacecraft – space shuttle, Soyuz, and Crew Dragon. Kimbrough, Marshburn, and Hoshide flew all three during their careers. As a group, they completed 28 flights spending 2,913 days, or nearly eight years, in space. They comprised the last group selected to fly on the space shuttle before its retirement in 2011. Eight of the 14 performed 43 spacewalks spending 275 hours and 46 minutes, or more than 11 days, outside the spacecraft. With several of the astronauts still on active duty, the story of Group 19 remains unfinished.</p>
  228.  
  229.  
  230. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 hds-module hds-module-full wp-block-nasa-blocks-related-articles"> <section class="hds-related-articles padding-x-0 padding-y-3 desktop:padding-top-7 desktop:padding-bottom-9">
  231. <div class="w-100 grid-row grid-container maxw-widescreen padding-0 text-align-left">
  232. <div class="margin-bottom-4"><h2 style="max-width: 100%;" class="width-full w-full maxw-full">Explore More</h2></div>
  233. </div>
  234. <div class="grid-row grid-container maxw-widescreen padding-0">
  235. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  236. <a href="https://www.nasa.gov/history/35-years-ago-sts-30-launches-magellan-to-venus/" class="color-carbon-black">
  237. <div class="margin-bottom-2">
  238. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  239. <figure class="hds-media-background  "><img decoding="async" width="300" height="228" src="https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg 1184w, https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg?resize=300,228 300w, https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg?resize=768,584 768w, https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg?resize=1024,779 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg?resize=400,304 400w, https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg?resize=600,457 600w, https://www.nasa.gov/wp-content/uploads/2024/05/sts-30-11-preflight-crew-presser-mar-27-1989-sts-30-prep-37.jpg?resize=900,685 900w" sizes="(max-width: 300px) 100vw, 300px" loading="eager" /></figure> </div>
  240. </div>
  241. <div class="padding-right-0 desktop:padding-right-10">
  242. <div class="subheading margin-bottom-1">14 min read</div>
  243. <div class="margin-bottom-1"><h3 class="related-article-title">35 Years Ago: STS-30 Launches Magellan to Venus</h3></div>
  244. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  245. <span class="display-flex flex-align-center margin-right-2">
  246. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  247. <span>Article</span>
  248. </span>
  249. <span class="">
  250. 6 days ago </span>
  251. </div>
  252. </div>
  253. </a>
  254. </div>
  255. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  256. <a href="https://www.nasa.gov/history/asian-american-and-native-hawaiian-pacific-islander-heritage-month-2024/" class="color-carbon-black">
  257. <div class="margin-bottom-2">
  258. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  259. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="243" src="https://www.nasa.gov/wp-content/uploads/2022/05/aapi_2021_22_chiao_after_landing_jsc2005e17946.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/05/aapi_2021_22_chiao_after_landing_jsc2005e17946.jpg 985w, https://www.nasa.gov/wp-content/uploads/2022/05/aapi_2021_22_chiao_after_landing_jsc2005e17946.jpg?resize=300,243 300w, https://www.nasa.gov/wp-content/uploads/2022/05/aapi_2021_22_chiao_after_landing_jsc2005e17946.jpg?resize=768,623 768w, https://www.nasa.gov/wp-content/uploads/2022/05/aapi_2021_22_chiao_after_landing_jsc2005e17946.jpg?resize=400,324 400w, https://www.nasa.gov/wp-content/uploads/2022/05/aapi_2021_22_chiao_after_landing_jsc2005e17946.jpg?resize=600,487 600w, https://www.nasa.gov/wp-content/uploads/2022/05/aapi_2021_22_chiao_after_landing_jsc2005e17946.jpg?resize=900,730 900w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  260. </div>
  261. <div class="padding-right-0 desktop:padding-right-10">
  262. <div class="subheading margin-bottom-1">18 min read</div>
  263. <div class="margin-bottom-1"><h3 class="related-article-title">Asian-American and Native Hawaiian Pacific Islander Heritage Month</h3></div>
  264. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  265. <span class="display-flex flex-align-center margin-right-2">
  266. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  267. <span>Article</span>
  268. </span>
  269. <span class="">
  270. 7 days ago </span>
  271. </div>
  272. </div>
  273. </a>
  274. </div>
  275. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  276. <a href="https://www.nasa.gov/history/nasa-and-art/" class="color-carbon-black">
  277. <div class="margin-bottom-2">
  278. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  279. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="235" src="https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg 6272w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=300,235 300w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=768,603 768w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=1024,804 1024w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=1536,1205 1536w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=2048,1607 2048w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=400,314 400w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=600,471 600w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=900,706 900w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=1200,942 1200w, https://www.nasa.gov/wp-content/uploads/2024/04/nasm-f2c6c0f20a162-001.jpg?resize=2000,1570 2000w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  280. </div>
  281. <div class="padding-right-0 desktop:padding-right-10">
  282. <div class="subheading margin-bottom-1">5 min read</div>
  283. <div class="margin-bottom-1"><h3 class="related-article-title">NASA and Art</h3></div>
  284. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  285. <span class="display-flex flex-align-center margin-right-2">
  286. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  287. <span>Article</span>
  288. </span>
  289. <span class="">
  290. 1 week ago </span>
  291. </div>
  292. </div>
  293. </a>
  294. </div>
  295. </div>
  296. </section>
  297. </div>]]></content:encoded>
  298. </item>
  299. <item>
  300. <title>NASA’s TESS Returns to Science Operations</title>
  301. <link>https://science.nasa.gov/missions/tess/nasas-tess-temporarily-pauses-science-observations/</link>
  302. <dc:creator><![CDATA[]]></dc:creator>
  303. <pubDate>Tue, 07 May 2024 20:51:48 +0000</pubDate>
  304. <category><![CDATA[Astrophysics]]></category>
  305. <category><![CDATA[Goddard Space Flight Center]]></category>
  306. <category><![CDATA[TESS (Transiting Exoplanet Survey Satellite)]]></category>
  307. <category><![CDATA[The Universe]]></category>
  308. <guid isPermaLink="false">https://science.nasa.gov/missions/tess/nasas-tess-temporarily-pauses-science-observations/</guid>
  309.  
  310. <description><![CDATA[NASA’s TESS (Transiting Exoplanet Survey Satellite) returned to science operations May 3 and is once again making observations. The satellite went into safe mode April 23 following a separate period of down time earlier that month. The operations team determined this latest safe mode was triggered by a failure to properly unload momentum from the […]]]></description>
  311. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro">
  312. <div class="width-full maxw-full article-header">
  313. <div class="margin-bottom-2 width-full maxw-full">
  314. <p class="label carbon-60 margin-0 margin-bottom-3 padding-0">4 min read</p>
  315. <h1 class="display-48 margin-bottom-2">NASA’s TESS Returns to Science Operations</h1>
  316. </div>
  317. </div>
  318. </div>
  319. <p>NASA’s <a href="http://nasa.gov/tess" rel="noopener">TESS (Transiting Exoplanet Survey Satellite)</a> returned to science operations May 3 and is once again making observations. The satellite went into safe mode April 23 following a separate period of down time earlier that month.</p>
  320. <p>The operations team determined this latest safe mode was triggered by a failure to properly unload momentum from the spacecraft’s reaction wheels, a routine activity needed to keep the satellite properly oriented when making observations. The propulsion system, which enables this momentum transfer, had not been successfully repressurized following a prior safe mode event April 8. The team has corrected this, allowing the mission to return to normal science operations. The cause of the April 8 safe mode event remains under investigation. </p>
  321. <p>The TESS mission is a NASA Astrophysics Explorer operated by the Massachusetts Institute of Technology in Cambridge, Massachusetts. Launched in 2018, TESS has been <a href="https://www.nasa.gov/centers-and-facilities/goddard/nasas-tess-celebrates-fifth-year-scanning-the-sky-for-new-worlds/">scanning almost the entire sky</a> looking for planets beyond our solar system, known as <a href="https://www.nasa.gov/universe/nasa-planet-hunter-finds-its-1st-earth-size-habitable-zone-world/">exoplanets</a>. The TESS mission has also uncovered other cosmic phenomena, including <a href="https://www.nasa.gov/universe/nasas-tess-mission-spots-its-1st-star-shredding-black-hole/">star-shredding black holes</a> and <a href="https://www.nasa.gov/universe/nasas-tess-enables-breakthrough-study-of-perplexing-stellar-pulsations/">stellar oscillations</a>. Read more about TESS discoveries at <a href="https://science.nasa.gov/mission/tess" rel="noopener">nasa.gov/tess</a>.</p>
  322. <p><strong>Media contact:</strong><br /><strong><a href="mailto:claire.andreoli@nasa.gov">Claire Andreoli</a></strong><br /><strong>301-286-1940</strong><br /><strong><a href="claire.andreoli@nasa.gov">claire.andreoli@nasa.gov</a><br /><a href="https://www.nasa.gov/goddard/">NASA’s Goddard Space Flight Center</a>, Greenbelt, Md.</strong></p>
  323. <h2 class="wp-block-heading" id="h-april-24">April 24</h2>
  324. <h3 class="wp-block-heading" id="h-nasa-s-planet-hunting-satellite-temporarily-on-pause">NASA’s Planet-Hunting Satellite Temporarily on Pause</h3>
  325. <p>During a routine activity April 23, NASA’s <a href="https://science.nasa.gov/mission/tess" rel="noopener">TESS (Transiting Exoplanet Survey Satellite)</a> entered safe mode, temporarily suspending science operations. The satellite scans the sky searching for planets beyond our solar system.</p>
  326. <p>The team is working to restore the satellite to science operations while investigating the underlying cause. NASA also continues investigating the cause of a separate safe mode event that took place earlier this month, including whether the two events are connected. The spacecraft itself remains stable.</p>
  327. <p>The TESS mission is a NASA Astrophysics Explorer operated by the Massachusetts Institute of Technology in Cambridge, Massachusetts. Launched in 2018, TESS recently celebrated its sixth anniversary in orbit. Visit <a href="https://science.nasa.gov/mission/tess" rel="noopener">nasa.gov/tess</a> for updates.</p>
  328. </p>
  329. <p><strong>Media contact:</strong><br /><strong><a href="mailto:claire.andreoli@nasa.gov">Claire Andreoli</a></strong><br /><strong>301-286-1940</strong><br /><strong><a href="claire.andreoli@nasa.gov">claire.andreoli@nasa.gov</a><br /><a href="https://www.nasa.gov/goddard/">NASA’s Goddard Space Flight Center</a>, Greenbelt, Md.</strong></p>
  330. <h2 class="wp-block-heading" id="h-april-17-2024">April 17, 2024</h2>
  331. <h3 class="wp-block-heading" id="h-nasa-s-tess-returns-to-science-operations">NASA’s TESS Returns to Science Operations</h3>
  332. <p>NASA’s <a href="https://science.nasa.gov/mission/tess" rel="noopener">TESS (Transiting Exoplanet Survey Satellite)</a> has returned to work after science observations were suspended on April 8, when the spacecraft entered into safe mode. All instruments are powered on and, following the successful download of previously collected science data stored in the mission’s recorder, are now making new science observations.</p>
  333. <p>Analysis of what triggered the satellite to enter safe mode is ongoing.</p>
  334. <p>The TESS mission is a NASA Astrophysics Explorer operated by MIT in Cambridge, Massachusetts. Launched in 2018, TESS has been <a href="https://www.nasa.gov/centers-and-facilities/goddard/nasas-tess-celebrates-fifth-year-scanning-the-sky-for-new-worlds/">scanning almost the entire sky</a> looking for planets beyond our solar system, known as <a href="https://www.nasa.gov/universe/nasa-planet-hunter-finds-its-1st-earth-size-habitable-zone-world/">exoplanets</a>. The TESS mission has also uncovered other cosmic phenomena, including <a href="https://www.nasa.gov/universe/nasas-tess-mission-spots-its-1st-star-shredding-black-hole/">star-shredding black holes</a> and <a href="https://www.nasa.gov/universe/nasas-tess-enables-breakthrough-study-of-perplexing-stellar-pulsations/">stellar oscillations</a>. Read more about TESS discoveries at <a href="https://science.nasa.gov/mission/tess" rel="noopener">nasa.gov/tess</a>.</p>
  335. <p><strong>Media contact:</strong><br /><strong><a href="mailto:claire.andreoli@nasa.gov">Claire Andreoli</a></strong><br /><strong>301-286-1940</strong><br /><strong><a href="claire.andreoli@nasa.gov">claire.andreoli@nasa.gov</a><br /><a href="https://www.nasa.gov/goddard/">NASA’s Goddard Space Flight Center</a>, Greenbelt, Md.</strong></p>
  336. <h2 class="wp-block-heading" id="h-april-11-2024">April 11, 2024</h2>
  337. <h3 class="wp-block-heading" id="h-nasa-s-tess-temporarily-pauses-science-observations">NASA’s TESS Temporarily Pauses Science Observations</h3>
  338. <p>NASA’s TESS (Transiting Exoplanet Survey Satellite) entered into safe mode April 8, temporarily interrupting science observations. The team is investigating the root cause of the safe mode, which occurred during scheduled engineering activities. The satellite itself remains in good health.</p>
  339. <p>The team will continue investigating the issue and is in the process of returning TESS to science observations in the coming days.</p>
  340. <p>The TESS mission is a NASA Astrophysics Explorer operated by MIT in Cambridge, Massachusetts. Launched in 2018, TESS has been scanning almost the entire sky looking for planets beyond our solar system, known as exoplanets. The TESS mission has also uncovered other cosmic phenomena, including <a href="https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-mission-spots-its-1st-star-shredding-black-hole">star-shredding black holes</a> and <a href="https://www.nasa.gov/feature/goddard/2021/nasa-s-tess-tunes-into-an-all-sky-symphony-of-red-giant-stars">stellar oscillations</a>. Read more about TESS discoveries at <a href="/Users/amfishe4/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/2HHHRFYO/nasa.gov/tess">nasa.</a><a href="http://nasa.gov/tess" rel="noopener">gov</a><a href="/Users/amfishe4/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/2HHHRFYO/nasa.gov/tess">/tess</a>.</p>
  341. <p><strong>Media Contact:</strong><br /><strong>Claire Andreoli</strong><br /><strong>(301) 286-1940</strong><br /><strong><a href="mailto:claire.andreoli@nasa.gov">claire.andreoli@nasa.gov</a></strong><br /><strong><a href="https://www.nasa.gov/goddard/">NASA’s Goddard Space Flight Center</a>, Greenbelt, Md.</strong></p>
  342. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 article_a hds-module hds-module-full wp-block-nasa-blocks-credits-and-details">
  343. <section class="padding-x-0 padding-top-5 padding-bottom-2 desktop:padding-top-7 desktop:padding-bottom-9">
  344. <div class="grid-row grid-container maxw-widescreen padding-0">
  345. <div class="grid-col-12 desktop:grid-col-2 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  346. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  347. <div class="margin-bottom-2">
  348. <h2 class="heading-14">Share</h2>
  349. </p></div>
  350. <div class="padding-bottom-2">
  351. <ul class="social-icons social-icons-round">
  352. <li class="social-icon social-icon-x">
  353. <a href="https://x.com/intent/tweet?via=NASA&#038;text=NASA%E2%80%99s%20TESS%20Returns%20to%20Science%20Operations&#038;url=https%3A%2F%2Fscience.nasa.gov%2Fmissions%2Ftess%2Fnasas-tess-temporarily-pauses-science-observations%2F" aria-label="Share on X."><br />
  354. <svg width="1200" height="1227" viewBox="0 0 1200 1227" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M714.163 519.284L1160.89 0H1055.03L667.137 450.887L357.328 0H0L468.492 681.821L0 1226.37H105.866L515.491 750.218L842.672 1226.37H1200L714.137 519.284H714.163ZM569.165 687.828L521.697 619.934L144.011 79.6944H306.615L611.412 515.685L658.88 583.579L1055.08 1150.3H892.476L569.165 687.854V687.828Z" fill="white"/></svg><br />
  355. </a>
  356. </li>
  357. <li class="social-icon social-icon-facebook">
  358. <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fscience.nasa.gov%2Fmissions%2Ftess%2Fnasas-tess-temporarily-pauses-science-observations%2F" aria-label="Share on Facebook." rel="noopener"><br />
  359. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M9 8h-3v4h3v12h5v-12h3.642l.358-4h-4v-1.667c0-.955.192-1.333 1.115-1.333h2.885v-5h-3.808c-3.596 0-5.192 1.583-5.192 4.615v3.385z"/></svg><br />
  360. </a>
  361. </li>
  362. <li class="social-icon social-icon-linkedin">
  363. <a href="https://www.linkedin.com/shareArticle?mini=true&#038;url=https%3A%2F%2Fscience.nasa.gov%2Fmissions%2Ftess%2Fnasas-tess-temporarily-pauses-science-observations%2F" aria-label="Share on LinkedIn." rel="noopener"><br />
  364. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M4.98 3.5c0 1.381-1.11 2.5-2.48 2.5s-2.48-1.119-2.48-2.5c0-1.38 1.11-2.5 2.48-2.5s2.48 1.12 2.48 2.5zm.02 4.5h-5v16h5v-16zm7.982 0h-4.968v16h4.969v-8.399c0-4.67 6.029-5.052 6.029 0v8.399h4.988v-10.131c0-7.88-8.922-7.593-11.018-3.714v-2.155z"/></svg><br />
  365. </a>
  366. </li>
  367. <li class="social-icon social-icon-rss">
  368. <a href="/feed/" aria-label="Subscribe to RSS feed."><br />
  369. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" aria-hidden="true"><path d="M493 652H392c0-134-111-244-244-244V307c189 0 345 156 345 345zm71 0c0-228-188-416-416-416V132c285 0 520 235 520 520z"/><circle cx="219" cy="581" r="71"/></svg><br />
  370. </a>
  371. </li>
  372. </ul></div>
  373. </p></div>
  374. </p></div>
  375. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  376. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  377. <div class="margin-bottom-2">
  378. <h2 class="heading-14">Details</h2>
  379. </p></div>
  380. <div class="grid-row margin-bottom-3">
  381. <div class="grid-col-4">
  382. <div class="subheading">Last Updated</div>
  383. </p></div>
  384. <div class="grid-col-8">May 07, 2024</div>
  385. </p></div>
  386. </p></div>
  387. </p></div>
  388. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  389. <div class="padding-top-3 border-top-1px border-color-carbon-black ">
  390. <div class="margin-bottom-2">
  391. <h2 class="heading-14">Related Terms</h2>
  392. </div>
  393. <ul class="article-tags">
  394. <li class="article-tag"><a href="https://science.nasa.gov/astrophysics/" rel="noopener">Astrophysics</a></li>
  395. <li class="article-tag"><a href="https://www.nasa.gov/goddard/">Goddard Space Flight Center</a></li>
  396. <li class="article-tag"><a href="https://science.nasa.gov/mission/tess" rel="noopener">TESS (Transiting Exoplanet Survey Satellite)</a></li>
  397. <li class="article-tag"><a href="https://science.nasa.gov/universe/" rel="noopener">The Universe</a></li>
  398. </ul>
  399. </div>
  400. </div></div>
  401. </section></div>
  402. ]]></content:encoded>
  403. </item>
  404. <item>
  405. <title>NASA Challenge Gives Artemis Generation Coders a Chance to Shine</title>
  406. <link>https://www.nasa.gov/learning-resources/nasa-challenge-gives-artemis-generation-coders-a-chance-to-shine/</link>
  407. <dc:creator><![CDATA[Justin Locke]]></dc:creator>
  408. <pubDate>Tue, 07 May 2024 20:16:41 +0000</pubDate>
  409. <category><![CDATA[Learning Resources]]></category>
  410. <category><![CDATA[For Colleges & Universities]]></category>
  411. <category><![CDATA[General]]></category>
  412. <category><![CDATA[STEM Engagement at NASA]]></category>
  413. <guid isPermaLink="false">https://www.nasa.gov/?p=658661</guid>
  414.  
  415. <description><![CDATA[NASA’s Office of STEM Engagement selected seven student teams to participate in a culminating event for the 2024 App Development Challenge (ADC), one of the agency’s Artemis Student Challenges, at NASA’s Johnson Space Center in Houston from April 15-18, 2024. The coding challenge, celebrating its fifth year and a part of NASA’s Next Generation STEM [&#8230;]]]></description>
  416. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">3 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  417.  
  418.  
  419. <p>NASA’s Office of STEM Engagement <a href="https://www.nasa.gov/learning-resources/nasa-challenge-invites-artemis-generation-coders-to-johnson-space-center/">selected seven student teams</a> to participate in a culminating event for the <a href="https://www.nasa.gov/learning-resources/app-development-challenge/">2024 App Development Challenge</a> (ADC), one of the agency’s <a href="https://www.nasa.gov/learning-resources/join-artemis/">Artemis Student Challenges</a>, at NASA’s Johnson Space Center in Houston from April 15-18, 2024.</p>
  420.  
  421.  
  422. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg"><img loading="lazy" decoding="async" width="2048" height="1639" src="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="The 2024 App Development Challenge top teams in front of the Orion Capsule in the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston." style="transform: scale(1); transform-origin: 51% 100%; object-position: 51% 100%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg 5822w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=300,240 300w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=768,614 768w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=1024,819 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=1536,1229 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=2048,1639 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=400,320 400w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=600,480 600w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=900,720 900w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=1200,960 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-group-with-logo.jpg?resize=2000,1600 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">The 2024 App Development Challenge top teams in front of the Orion Capsule in the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.</div></figcaption></div></div></div>
  423.  
  424.  
  425. <p>The coding challenge, celebrating its fifth year and a part of NASA’s <a href="https://www.nasa.gov/learning-resources/for-educators/">Next Generation STEM project</a>, invites middle and high school student teams to create an application visualizing the Moon’s South Pole region and display essential information for navigating the lunar surface. Additionally, students learn about the complexities of communicating from the lunar surface with Earth-based assets from NASA’s <a href="https://www.nasa.gov/directorates/space-operations/space-communications-and-navigation-scan-program/">Space Communications and Navigation</a> (SCaN) team.</p>
  426.  
  427.  
  428.  
  429. <p>Five of the top ADC teams traveled to Johnson and shared their applications with the public at Space Center Houston, and with the NASA workforce including Deputy Associate Administrator for SCaN Kevin Coggins, flight director Chloe Mehring and NASA astronaut Andre Douglas. Additionally, the teams toured Johnson’s unique facilities including Johnson’s simulation lab, robotics lab, the Space Vehicle Mockup Facility, the Neutral Buoyancy Lab, and Mission Control.</p>
  430.  
  431.  
  432. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg"><img loading="lazy" decoding="async" width="1569" height="1046" src="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?w=1569" class="attachment-2048x2048 size-2048x2048" alt="NASA Astronaut Andre Douglas reviews DV Explorers’, a 2024 App Development Challenge top team from Baton Rouge Magnet School in Baton Rouge, Louisiana, application for traversing the lunar surface. " style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg 1569w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-crew-member-dvexplorers-small.jpg?resize=1200,800 1200w" sizes="(max-width: 1569px) 100vw, 1569px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">NASA Astronaut Andre Douglas reviews DV Explorers’, a 2024 App Development Challenge top team from Baton Rouge Magnet School in Baton Rouge, Louisiana, application for traversing the lunar surface.</div></figcaption></div></div></div>
  433.  
  434.  
  435. <p>Two ADC teams that received honorable mentions were invited to attend virtually where they presented their applications to the NASA workforce including Chief Architect for SCaN and ADC Technical Advisor Jim Schier, and to the five top teams.</p>
  436.  
  437.  
  438.  
  439. <p>“The NASA ADC project helped us learn a lot about Unreal Engine 5, Unity, and Blender,” said Team Big Bang from Falcon Cove Middle School in Weston, Florida. “Not to mention, this project also provided us with life lessons such as communication and time management skills…our team will come out of this project as winners because of everything we learned.”</p>
  440.  
  441.  
  442.  
  443. <p>2024 was the inaugural year for the Artemis Student Challenge awards. Michelle Freeman, the lead teacher for Team Big Bang, was awarded the Artemis Educator Award for the ADC. She was nominated by her student team for inspiring and motivating them to work hard and achieve more than the team thought possible.</p>
  444.  
  445.  
  446.  
  447. <p>Additionally, Team FrostByte from North High School in Des Moines, Iowa, earned the Pay It Forward award. The team conducting impactful education engagement events in their community. There efforts inspired the community to support their efforts and to ensure future ADC teams would have support.</p>
  448.  
  449.  
  450.  
  451. <p>“We’ve said that they are walking an unlit path because no one at our school or in our district has lit it before them. Now, they’re the ones lighting the way,” stated Jessie Nunes, lead teacher of Team FrostByte.</p>
  452.  
  453.  
  454. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg"><img loading="lazy" decoding="async" width="1428" height="1141" src="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?w=1428" class="attachment-2048x2048 size-2048x2048" alt="Student team members of FrostByte, a 2024 App Development Challenge top team from North High School in Des Moines, Iowa, explain their computer application for exploring the lunar surface to members of the public at Space Center Houston." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg 1428w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?resize=300,240 300w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?resize=768,614 768w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?resize=1024,818 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?resize=400,320 400w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?resize=600,479 600w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?resize=900,719 900w, https://www.nasa.gov/wp-content/uploads/2024/05/fy24-adc-team-frostbyte.jpg?resize=1200,959 1200w" sizes="(max-width: 1428px) 100vw, 1428px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Student team members of FrostByte, a 2024 App Development Challenge top team from North High School in Des Moines, Iowa, explain their computer application for exploring the lunar surface to members of the public at Space Center Houston.</div></figcaption></div></div></div>
  455.  
  456.  
  457. <p>The following five schools were selected as top teams:</p>
  458.  
  459.  
  460.  
  461. <ul>
  462. <li>Baton Rouge Magnet High School: Baton Rouge, Louisiana</li>
  463.  
  464.  
  465.  
  466. <li>Dougherty Valley High School: San Ramon, California</li>
  467.  
  468.  
  469.  
  470. <li>North High School: Des Moines, Iowa</li>
  471.  
  472.  
  473.  
  474. <li>Sherman Oaks Center for Enriched Studies: Reseda, California</li>
  475.  
  476.  
  477.  
  478. <li>Trinity Christian School: Morgantown, West Virginia</li>
  479. </ul>
  480.  
  481.  
  482.  
  483. <p>The following schools were selected as honorable mentions:</p>
  484.  
  485.  
  486.  
  487. <ul>
  488. <li>Eddison Academy Magnet School: Edison, New Jersey</li>
  489.  
  490.  
  491.  
  492. <li>Falcon Cove Middle School: Weston, Florida</li>
  493. </ul>
  494.  
  495.  
  496.  
  497. <div style="height:62px" aria-hidden="true" class="wp-block-spacer"></div>
  498.  
  499.  
  500.  
  501. <h4 class="wp-block-heading"><strong>Previous Years</strong></h4>
  502.  
  503.  
  504.  
  505. <p>2024: <a href="https://www.nasa.gov/learning-resources/nasa-challenge-invites-artemis-generation-coders-to-johnson-space-center/">NASA Challenge Invites Artemis Generation Coders to Johnson Space Center &#8211; NASA</a></p>
  506.  
  507.  
  508.  
  509. <p>2023: <a href="https://www.nasa.gov/general/artemis-generation-coders-earn-invite-to-johnson-space-center/">Artemis Generation Coders Earn Invite to Johnson Space Center</a></p>
  510.  
  511.  
  512.  
  513. <p>2021: <a href="https://www.nasa.gov/directorates/somd/space-communications-navigation-program/nasa-app-development-challenge-selects-artemis-generation-coders-for-virtual-culminating-event-2/">NASA App Development Challenge Selects Artemis Generation Coders for Virtual Culminating Event &#8211; NASA</a></p>
  514.  
  515.  
  516. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 hds-module hds-module-full wp-block-nasa-blocks-related-articles"> <section class="hds-related-articles padding-x-0 padding-y-3 desktop:padding-top-7 desktop:padding-bottom-9">
  517. <div class="w-100 grid-row grid-container maxw-widescreen padding-0 text-align-left">
  518. <div class="margin-bottom-4"><h2 style="max-width: 100%;" class="width-full w-full maxw-full">Explore More</h2></div>
  519. </div>
  520. <div class="grid-row grid-container maxw-widescreen padding-0">
  521. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  522. <a href="https://www.nasa.gov/centers-and-facilities/white-sands/white-sands-propulsion-team-tests-3d-printed-orion-engine-component/" class="color-carbon-black">
  523. <div class="margin-bottom-2">
  524. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  525. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="200" src="https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg 5568w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=2000,1333 2000w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  526. </div>
  527. <div class="padding-right-0 desktop:padding-right-10">
  528. <div class="subheading margin-bottom-1">3 min read</div>
  529. <div class="margin-bottom-1"><h3 class="related-article-title">White Sands Propulsion Team Tests 3D-Printed Orion Engine Component</h3></div>
  530. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  531. <span class="display-flex flex-align-center margin-right-2">
  532. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  533. <span>Article</span>
  534. </span>
  535. <span class="">
  536. 17 hours ago </span>
  537. </div>
  538. </div>
  539. </a>
  540. </div>
  541. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  542. <a href="https://www.nasa.gov/missions/roman-space-telescope/how-nasas-roman-mission-will-hunt-for-primordial-black-holes/" class="color-carbon-black">
  543. <div class="margin-bottom-2">
  544. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  545. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="169" src="https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg 2560w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=300,169 300w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=768,432 768w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=1024,576 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=1536,864 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=2048,1152 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=400,225 400w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=600,338 600w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=900,506 900w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=1200,675 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/primordial-black-hole-still-4k-small.jpg?resize=2000,1125 2000w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  546. </div>
  547. <div class="padding-right-0 desktop:padding-right-10">
  548. <div class="subheading margin-bottom-1">5 min read</div>
  549. <div class="margin-bottom-1"><h3 class="related-article-title">How NASA’s Roman Mission Will Hunt for Primordial Black Holes</h3></div>
  550. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  551. <span class="display-flex flex-align-center margin-right-2">
  552. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  553. <span>Article</span>
  554. </span>
  555. <span class="">
  556. 19 hours ago </span>
  557. </div>
  558. </div>
  559. </a>
  560. </div>
  561. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  562. <a href="https://www.nasa.gov/general/a-different-perspective-remembering-james-dean-founder-of-the-nasa-art-program/" class="color-carbon-black">
  563. <div class="margin-bottom-2">
  564. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  565. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="183" src="https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg 3047w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=300,183 300w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=768,469 768w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=1024,625 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=1536,938 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=2048,1251 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=400,244 400w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=600,366 600w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=900,550 900w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=1200,733 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/82-hc-80.jpg?resize=2000,1222 2000w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  566. </div>
  567. <div class="padding-right-0 desktop:padding-right-10">
  568. <div class="subheading margin-bottom-1">4 min read</div>
  569. <div class="margin-bottom-1"><h3 class="related-article-title">A Different Perspective – Remembering James Dean, Founder of the NASA Art Program</h3></div>
  570. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  571. <span class="display-flex flex-align-center margin-right-2">
  572. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  573. <span>Article</span>
  574. </span>
  575. <span class="">
  576. 2 days ago </span>
  577. </div>
  578. </div>
  579. </a>
  580. </div>
  581. </div>
  582. </section>
  583. </div>]]></content:encoded>
  584. </item>
  585. <item>
  586. <title>New Proposals to Help NASA Advance Knowledge of Our Changing Climate</title>
  587. <link>https://www.nasa.gov/news-release/new-proposals-to-help-nasa-advance-knowledge-of-our-changing-climate/</link>
  588. <dc:creator><![CDATA[Tiernan P. Doyle]]></dc:creator>
  589. <pubDate>Tue, 07 May 2024 20:14:35 +0000</pubDate>
  590. <category><![CDATA[Earth Observatory]]></category>
  591. <category><![CDATA[Earth]]></category>
  592. <category><![CDATA[Earth's Atmosphere]]></category>
  593. <category><![CDATA[Greenhouse Gases]]></category>
  594. <category><![CDATA[Oceans]]></category>
  595. <category><![CDATA[Ozone Layer]]></category>
  596. <category><![CDATA[Science Mission Directorate]]></category>
  597. <guid isPermaLink="false">https://www.nasa.gov/?post_type=press-release&#038;p=658733</guid>
  598.  
  599. <description><![CDATA[NASA has selected four proposals for concept studies of missions to help us better understand Earth science key focus areas for the benefit of all including greenhouse gases, the ozone layer, ocean surface currents, and changes in ice and glaciers around the world. These four investigations are part of the agency’s new Earth System Explorers [&#8230;]]]></description>
  600. <content:encoded><![CDATA[<div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg"><img loading="lazy" decoding="async" width="1280" height="720" src="https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?w=1280" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg 1280w, https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?resize=300,169 300w, https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?resize=768,432 768w, https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?resize=1024,576 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?resize=400,225 400w, https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?resize=600,338 600w, https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?resize=900,506 900w, https://www.nasa.gov/wp-content/uploads/2024/05/globe.jpg?resize=1200,675 1200w" sizes="(max-width: 1280px) 100vw, 1280px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">On May 7, 2024, NASA announced the selection of four proposals for concept studies of missions to benefit humanity through the study of Earth science. Most of what we know about Earth has been gathered through NASA’s 60 years of observations from space, such as this image of our home planet as shown as a mosaic of data from MODIS (Moderate Resolution Imaging Spectroradiometer). </div><div class="hds-credits">Credits: NASA</div></figcaption></div></div></div>
  601.  
  602.  
  603. <p>NASA has selected four proposals for concept studies of missions to help us better understand Earth science key focus areas for the benefit of all including greenhouse gases, the ozone layer, ocean surface currents, and changes in ice and glaciers around the world.</p>
  604.  
  605.  
  606.  
  607. <p>These four investigations are part of the agency’s new Earth System Explorers Program – which conducts principal investigator-led space science missions as recommended by the National Academies of Sciences, Engineering, and Medicine <a href="https://www.nationalacademies.org/our-work/decadal-survey-for-earth-science-and-applications-from-space" rel="noopener">2017 Decadal Survey</a> for Earth Science and Applications from Space. The program is designed to enable high-quality Earth system science investigations to focus on previously identified key targets. For this set of missions, NASA is prioritizing greenhouse gases as one of its target observables.</p>
  608.  
  609.  
  610.  
  611. <p>&#8220;The proposals represent another example of NASA’s holistic approach to studying our home planet,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “As we continue to confront our changing climate, and its impacts on humans and our environment, the need for data and scientific research could not be greater. These proposals will help us better prepare for the challenges we face today, and tomorrow.”</p>
  612.  
  613.  
  614.  
  615. <p>As the first step of a two-step selection process, each of these proposals will receive $5 million to conduct a one-year mission concept study. After the study period, NASA will choose two proposals to go forward to launch with readiness dates expected in 2030 and 2032. The total mission cost cap is $310 million for each chosen investigation, excluding the rocket and access to space, which will be provided by NASA.&nbsp;</p>
  616.  
  617.  
  618.  
  619. <p>Most of what we know about our changing planet is rooted in more than 60 years of NASA’s Earth observations. NASA currently has more than two dozen Earth-observing satellites and instruments in orbit. The missions ultimately selected from this set of proposals will make their own unique contributions to this great Earth observatory – which works together to provide layers of complementary information on Earth&#8217;s oceans, land, ice, and atmosphere.</p>
  620.  
  621.  
  622.  
  623. <p>The four proposals selected for concept studies are:&nbsp;</p>
  624.  
  625.  
  626.  
  627. <ul>
  628. <li><strong>The Stratosphere Troposphere Response using Infrared Vertically-Resolved Light Explorer (STRIVE)<br></strong>This mission would provide daily, near-global, high-resolution measurements of temperature, a variety of atmospheric elements, and aerosol properties from the upper troposphere to the mesosphere – at a much higher spatial density than any previous mission. It would also measure vertical profiles of ozone and trace gasses needed to monitor and understand the recovery of the ozone layer – another identified NASA Earth sciences target. The proposal is led by Lyatt Jaegle at the University of Washington in Seattle.</li>
  629.  
  630.  
  631.  
  632. <li><strong>The Ocean Dynamics and Surface Exchange with the Atmosphere (ODYSEA)</strong><br>This satellite would simultaneously measure ocean surface currents and winds to improve our understanding of air-sea interactions and surface current processes that impact weather, climate, marine ecosystems, and human wellbeing. It aims to provide updated ocean wind data in less than three hours and ocean current data in less than six hours. The proposal is led by Sarah Gille at the University of California in San Diego.</li>
  633.  
  634.  
  635.  
  636. <li><strong>Earth Dynamics Geodetic Explorer (EDGE)<br></strong>This mission would observe the three-dimensional structure of terrestrial ecosystems and the surface topography of glaciers, ice sheets, and sea ice as they are changing in response to climate and human activity. The mission would provide a continuation of such measurements that are currently measured from space by ICESat-2 and GEDI (Global Ecosystem Dynamics Investigation). The proposal is led by Helen Amanda Fricker at the University of California in San Diego.</li>
  637.  
  638.  
  639.  
  640. <li><strong>The Carbon Investigation</strong> <strong>(Carbon-I)<br></strong>This investigation would enable simultaneous, multi-species measurements of critical greenhouse gases and potential quantification of ethane – which could help study processes that drive natural and anthropogenic emissions. The mission would provide unprecedented spatial resolution and global coverage that would help us better understand the carbon cycle and the global methane budget. The proposal is led by Christian Frankenberg at the California Institute of Technology in Pasadena.</li>
  641. </ul>
  642.  
  643.  
  644.  
  645. <p>For more information about the Earth System Explorers Program, visit:</p>
  646.  
  647.  
  648.  
  649. <p class="has-text-align-center"><a href="https://explorers.larc.nasa.gov/2023ESE/" rel="noopener">https://explorers.larc.nasa.gov/2023ESE/</a></p>
  650.  
  651.  
  652.  
  653. <p class="has-text-align-center">-end-</p>
  654.  
  655.  
  656.  
  657. <p>Liz Vlock<br>Headquarters, Washington<br>202-358-1600<br><a href="mailto:elizabeth.a.vlock@nasa.gov">elizabeth.a.vlock@nasa.gov</a></p>
  658.  
  659.  
  660. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 article_a hds-module hds-module-full wp-block-nasa-blocks-credits-and-details">
  661. <section class="padding-x-0 padding-top-5 padding-bottom-2 desktop:padding-top-7 desktop:padding-bottom-9">
  662. <div class="grid-row grid-container maxw-widescreen padding-0">
  663. <div class="grid-col-12 desktop:grid-col-2 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  664. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  665. <div class="margin-bottom-2">
  666. <h2 class="heading-14">Share</h2>
  667. </div>
  668. <div class="padding-bottom-2">
  669. <ul class="social-icons social-icons-round">
  670. <li class="social-icon social-icon-x">
  671. <a href="https://x.com/intent/tweet?via=NASA&#038;text=New%20Proposals%20to%20Help%20NASA%20Advance%20Knowledge%20of%20Our%20Changing%20Climate&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fnews-release%2Fnew-proposals-to-help-nasa-advance-knowledge-of-our-changing-climate%2F" aria-label="Share on X.">
  672. <svg width="1200" height="1227" viewBox="0 0 1200 1227" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M714.163 519.284L1160.89 0H1055.03L667.137 450.887L357.328 0H0L468.492 681.821L0 1226.37H105.866L515.491 750.218L842.672 1226.37H1200L714.137 519.284H714.163ZM569.165 687.828L521.697 619.934L144.011 79.6944H306.615L611.412 515.685L658.88 583.579L1055.08 1150.3H892.476L569.165 687.854V687.828Z" fill="white"/></svg>
  673. </a>
  674. </li>
  675. <li class="social-icon social-icon-facebook">
  676. <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.nasa.gov%2Fnews-release%2Fnew-proposals-to-help-nasa-advance-knowledge-of-our-changing-climate%2F" aria-label="Share on Facebook.">
  677. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M9 8h-3v4h3v12h5v-12h3.642l.358-4h-4v-1.667c0-.955.192-1.333 1.115-1.333h2.885v-5h-3.808c-3.596 0-5.192 1.583-5.192 4.615v3.385z"/></svg>
  678. </a>
  679. </li>
  680. <li class="social-icon social-icon-linkedin">
  681. <a href="https://www.linkedin.com/shareArticle?mini=true&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fnews-release%2Fnew-proposals-to-help-nasa-advance-knowledge-of-our-changing-climate%2F" aria-label="Share on LinkedIn.">
  682. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M4.98 3.5c0 1.381-1.11 2.5-2.48 2.5s-2.48-1.119-2.48-2.5c0-1.38 1.11-2.5 2.48-2.5s2.48 1.12 2.48 2.5zm.02 4.5h-5v16h5v-16zm7.982 0h-4.968v16h4.969v-8.399c0-4.67 6.029-5.052 6.029 0v8.399h4.988v-10.131c0-7.88-8.922-7.593-11.018-3.714v-2.155z"/></svg>
  683. </a>
  684. </li>
  685. <li class="social-icon social-icon-rss">
  686. <a href="/feed/" aria-label="Subscribe to RSS feed.">
  687. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" aria-hidden="true"><path d="M493 652H392c0-134-111-244-244-244V307c189 0 345 156 345 345zm71 0c0-228-188-416-416-416V132c285 0 520 235 520 520z"/><circle cx="219" cy="581" r="71"/></svg>
  688. </a>
  689. </li>
  690. </ul>
  691. </div>
  692. </div>
  693. </div>
  694. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  695. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  696. <div class="margin-bottom-2">
  697. <h2 class="heading-14">Details</h2>
  698. </div>
  699. <div class="grid-row margin-bottom-3">
  700. <div class="grid-col-4">
  701. <div class="subheading">Last Updated</div>
  702. </div>
  703. <div class="grid-col-8">May 07, 2024</div>
  704. </div>
  705. <div class="grid-row"><div class="grid-col-4"><div class="subheading">Location</div></div><div class="grid-col-8"><a class="hds-location-tag-name" href="https://www.nasa.gov/nasa-headquarters/"><span class="hds-meta-heading">NASA Headquarters</span></a></div></div> </div>
  706. </div>
  707. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0"><div class="padding-top-3 border-top-1px border-color-carbon-black "><div class="margin-bottom-2"><h2 class="heading-14">Related Terms</h2></div><ul class="article-tags"><li class="article-tag"><a href="https://science.nasa.gov/earth/multimedia/" rel="noopener">Earth Observatory</a></li><li class="article-tag"><a href="https://science.nasa.gov/earth/" rel="noopener">Earth</a></li><li class="article-tag"><a href="https://www.nasa.gov/earth/earth-atmosphere/">Earth&#039;s Atmosphere</a></li><li class="article-tag"><a href="https://www.nasa.gov/earth/climate-change/greenhouse-gases/">Greenhouse Gases</a></li><li class="article-tag"><a href="https://www.nasa.gov/specials/ocean-worlds/">Oceans</a></li><li class="article-tag"><a href="https://www.nasa.gov/earth/climate-change/ozone-layer/">Ozone Layer</a></li><li class="article-tag"><a href="https://science.nasa.gov/about-us/" rel="noopener">Science Mission Directorate</a></li></ul></div></div>
  708. </div>
  709. </section>
  710. </div>]]></content:encoded>
  711. </item>
  712. <item>
  713. <title>Jupiter’s Great Red Spot</title>
  714. <link>https://www.nasa.gov/image-article/jupiters-great-red-spot-2/</link>
  715. <dc:creator><![CDATA[Monika Luabeya]]></dc:creator>
  716. <pubDate>Tue, 07 May 2024 18:07:04 +0000</pubDate>
  717. <category><![CDATA[Juno]]></category>
  718. <category><![CDATA[Jupiter]]></category>
  719. <category><![CDATA[The Great Red Spot]]></category>
  720. <guid isPermaLink="false">https://www.nasa.gov/?post_type=image-article&#038;p=658615</guid>
  721.  
  722. <description><![CDATA[This April 1, 2018, enhanced-color image of Jupiter’s Great Red Spot was captured by NASA’s Juno spacecraft. The image is a combination of three separate images taken as Juno performed its 12th close flyby of the planet. The Great Red Spot, a swirling oval of clouds twice as wide as Earth, has been observed on [&#8230;]]]></description>
  723. <content:encoded><![CDATA[<div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg"><img loading="lazy" decoding="async" width="1653" height="1080" src="https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?w=1653" class="attachment-2048x2048 size-2048x2048" alt="Jupiter&#039;s Great Red Spot is at top left of this image taken by NASA&#039;s Juno spacecraft. Many smaller storms are visible as well." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg 1653w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=300,196 300w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=768,502 768w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=1024,669 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=1536,1004 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=400,261 400w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=600,392 600w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=900,588 900w, https://www.nasa.gov/wp-content/uploads/2024/05/47462090512-65ac1cde76-o.jpg?resize=1200,784 1200w" sizes="(max-width: 1653px) 100vw, 1653px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-credits">NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran</div></figcaption></div></div></div>
  724.  
  725.  
  726. <p>This April 1, 2018, enhanced-color image of Jupiter’s Great Red Spot was captured by NASA’s <a href="https://science.nasa.gov/mission/juno" rel="noopener">Juno</a> spacecraft. The image is a combination of three separate images taken as Juno performed its 12<sup>th</sup> close flyby of the planet.</p>
  727.  
  728.  
  729.  
  730. <p>The Great Red Spot, a swirling oval of clouds twice as wide as Earth, has been observed on the giant planet for more than 300 years.&nbsp;In 2021, <a href="https://www.nasa.gov/news-release/nasas-juno-science-results-offer-first-3d-view-of-jupiter-atmosphere/?_gl=1*v158kh*_ga*MTA1MDIyMjUxNy4xNzA0NDc0NjA2">findings from Juno</a> showed that Jupiter’s storms are far taller than expected, with some extending 60 miles (100 kilometers) below the cloud tops and others, including the Great Red Spot, extending over 200 miles (350 kilometers).</p>
  731.  
  732.  
  733.  
  734. <p>Juno is a solar-powered spacecraft that spans the width of a basketball court and makes long, looping orbits around <a href="https://science.nasa.gov/jupiter/" rel="noopener">Jupiter</a>. It seeks answers to questions about the origin and evolution of Jupiter, our solar system, and giant planets across the cosmos.</p>
  735.  
  736.  
  737.  
  738. <p><em>Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran</em></p>
  739. ]]></content:encoded>
  740. </item>
  741. <item>
  742. <title>International SWOT Mission Can Improve Flood Prediction</title>
  743. <link>https://www.nasa.gov/missions/swot/international-swot-mission-can-improve-flood-prediction/</link>
  744. <dc:creator><![CDATA[Anthony Greicius]]></dc:creator>
  745. <pubDate>Tue, 07 May 2024 17:05:02 +0000</pubDate>
  746. <category><![CDATA[SWOT (Surface Water and Ocean Topography)]]></category>
  747. <category><![CDATA[Earth Science]]></category>
  748. <category><![CDATA[Water on Earth]]></category>
  749. <guid isPermaLink="false">https://www.nasa.gov/?p=658486</guid>
  750.  
  751. <description><![CDATA[A partnership between NASA and the French space agency, the satellite is poised to help improve forecasts of where and when flooding will occur in Earth’s rivers, lakes, and reservoirs. Rivers, lakes, and reservoirs are like our planet’s arteries, carrying life-sustaining water in interconnected networks. When Earth’s water cycle runs too fast, flooding can result, [&#8230;]]]></description>
  752. <content:encoded><![CDATA[<div id="" class="padding-top-5 padding-bottom-3 width-full maxw-full hds-module hds-module-full wp-block-nasa-blocks-article-intro"><div class="width-full maxw-full article-header"><div class="margin-bottom-2 width-full maxw-full"><p class="label carbon-60 margin-0 margin-bottom-3 padding-0">6 min read</p><h1 class="display-48 margin-bottom-2">Preparations for Next Moonwalk Simulations Underway (and Underwater)</h1></div></div></div>
  753.  
  754. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-none "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg"><img loading="lazy" decoding="async" width="1125" height="536" src="https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg?w=1125" class="attachment-2048x2048 size-2048x2048" alt="Flooding on the Souris River" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg 1125w, https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg?resize=300,143 300w, https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg?resize=768,366 768w, https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg?resize=1024,488 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg?resize=400,191 400w, https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg?resize=600,286 600w, https://www.nasa.gov/wp-content/uploads/2024/05/1-swot-souris-river-flooding-the-city-of-minot-2011.jpg?resize=900,429 900w" sizes="(max-width: 1125px) 100vw, 1125px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Flooding on the Souris River inundated this community in North Dakota in 2011. The U.S.-French SWOT satellite is giving scientists and water managers a new tool to look at floods in 3D, information that can improve predictions of where and how often flooding will occur.</div><div class="hds-credits">Credit: North Dakota State Water Commission</div></figcaption></div></div></div>
  755.  
  756.  
  757. <p><em>A partnership between NASA and the French space agency, the satellite is poised to help improve forecasts of where and when flooding will occur in Earth’s rivers, lakes, and reservoirs.</em></p>
  758.  
  759.  
  760.  
  761. <p>Rivers, lakes, and reservoirs are like our planet’s arteries, carrying life-sustaining water in interconnected networks. When Earth’s water cycle runs too fast, flooding can result, threatening lives and property. That risk is increasing as climate change alters precipitation patterns and more people are living in flood-prone areas <a href="https://earthobservatory.nasa.gov/images/148866/research-shows-more-people-living-in-floodplains" rel="noopener">worldwide</a>.</p>
  762.  
  763.  
  764.  
  765. <p>Scientists and water managers use many types of data to predict flooding. This year they have a new tool at their disposal: freshwater data from the Surface Water and Ocean Topography (<a href="https://swot.jpl.nasa.gov/" rel="noopener">SWOT</a>) satellite. The observatory, a collaboration between NASA and the French space agency, CNES (Centre National d’Études Spatiales), is measuring the height of <a href="https://www.jpl.nasa.gov/news/joint-nasa-cnes-water-tracking-satellite-reveals-first-stunning-views" rel="noopener">nearly all water surfaces</a> on Earth. SWOT was designed to measure every major river wider than about 300 feet (100 meters), and preliminary results suggest it may be able to observe much smaller rivers.</p>
  766.  
  767.  
  768. <div id="" class="hds-image-carousel grid-container grid-container-block padding-top-8 padding-bottom-8 hds-module hds-module-full wp-block-nasa-blocks-image-carousel"> <div class="hds-carousel-wrapper">
  769. <div class="image-carousel-slider margin-0" id="image-carousel-slider">
  770. <div class="display-block width-full">
  771. <figure class="margin-0">
  772. <div class="hds-cover-wrapper hds-image-carousel-slide margin-bottom-2">
  773. <div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><img loading="lazy" decoding="async" width="640" height="360" src="https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg" class="attachment-full size-full" alt="Flooding from monsoon rains" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg 3864w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=300,169 300w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=768,432 768w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=1024,576 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=1536,864 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=2048,1152 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=400,225 400w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=600,337 600w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=900,506 900w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=1200,675 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/e1a-pia26343-swot-bangladesh-figure-complete-16.jpg?resize=2000,1125 2000w" sizes="(max-width: 640px) 100vw, 640px" /></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Flooding from monsoon rains covers a wide region of northeast Bangladesh in this Oct. 8, 2023, image showing data from SWOT. The U.S.-French satellite is the first to provide timely, precise water surface elevation information over entire regions at high resolution, enabling improved flooding forecasts. </div><div class="hds-credits">Credit: NASA/JPL-Caltech/UNC-Chapel Hill/Google Earth</div></figcaption></div> </div>
  774. </figure>
  775. </div>
  776. <div class="display-block width-full">
  777. <figure class="margin-0">
  778. <div class="hds-cover-wrapper hds-image-carousel-slide margin-bottom-2">
  779. <div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><img loading="lazy" decoding="async" width="640" height="360" src="https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg" class="attachment-full size-full" alt="SWOT river slope data" style="transform: scale(1.02); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg 2336w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=300,169 300w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=768,432 768w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=1024,576 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=1536,864 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=2048,1152 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=400,225 400w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=600,338 600w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=900,506 900w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=1200,675 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/e1b-swot-sacramentoslope-figure-may32024-16.jpg?resize=2000,1125 2000w" sizes="(max-width: 640px) 100vw, 640px" /></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">SWOT river slope data — like that depicted here for California’s Sacramento River — can improve predictions of how fast water flows through rivers and off landscapes. To calculate slope, scientists subtract the lower water elevation (right) from the higher one (left) and divide by segment length. </div><div class="hds-credits">Credit: NASA/JPL-Caltech/UNC-Chapel Hill/Google Earth</div></figcaption></div> </div>
  780. </figure>
  781. </div>
  782. </div>
  783. <div class="hds-carousel-nav display-flex margin-left-auto margin-right-0">
  784. <button class="hds-carousel-nav-arrow hds-carousel-arrow-prev">
  785. <svg version="1.1" x="0px" y="0px" width="9px" height="9px" viewBox="0 0 9 9"><path class="st0" d="M3.5,4.5l3.7-3.6L6.3,0L1.8,4.5L6.3,9l0.9-0.9L3.5,4.5z"></path></svg>
  786. </button>
  787. <button class="hds-carousel-nav-arrow hds-carousel-arrow-next margin-right-0">
  788. <svg version="1.1" xmlns="http://www.w3.org/2000/svg" x="0px" y="0px" width="9px" height="9px" viewBox="0 0 9 9"><path class="st0" d="M5.5,4.5L1.8,8.1L2.7,9l4.5-4.5L2.7,0L1.8,0.9L5.5,4.5z"></path></svg>
  789. </button>
  790. </div>
  791. </div>
  792. </div>
  793.  
  794.  
  795. <p>Stream gauges can accurately measure water levels in rivers, but only at individual locations, often spaced far apart. Many rivers have no stream gauges at all, particularly in countries without resources to maintain and monitor them. Gauges can also be disabled by floods and are unreliable when water overtops the riverbank and flows into areas they cannot measure.</p>
  796.  
  797.  
  798.  
  799. <p>SWOT provides a more comprehensive, 3D look at floods, measuring their height, width, and slope. Scientists can use this data to better track how floodwaters pulse across a landscape, improving predictions of where flooding will occur and how often.</p>
  800.  
  801.  
  802.  
  803. <h3 class="wp-block-heading"><strong>Building a Better Flood Model</strong></h3>
  804.  
  805.  
  806.  
  807. <p>One effort to incorporate SWOT data into flood models is led by J. Toby Minear of the Cooperative Institute for Research in Environmental Sciences (CIRES) in Boulder, Colorado. Minear is investigating how to incorporate SWOT data into the National Oceanic and Atmospheric Administration’s <a href="https://water.noaa.gov/about/nwm" rel="noopener">National Water Model</a>, which predicts the potential for flooding and its timing along U.S. rivers. SWOT freshwater data will fill in spatial gaps between gauges and help scientists like Minear determine the water levels (heights) at which flooding occurs at specific locations along rivers.&nbsp;</p>
  808.  
  809.  
  810. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="UNC-Chapel Hill doctoral student Marissa Hughes" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg 5865w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/e2-swot-new-zealand-cal-val.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">UNC-Chapel Hill doctoral student Marissa Hughes levels a tripod to install a GPS unit to precisely measure the water surface elevation of a segment of New Zealand’s Waimakariri River. The measurements were used to calibrate and validate data from the U.S.-French SWOT satellite.</div><div class="hds-credits">Credit: Alyssa LaFaro/UNC Research</div></figcaption></div></div></div>
  811.  
  812.  
  813. <p>He expects SWOT to improve National Water Model data in multiple ways. For example, it will provide more accurate estimates of river slopes and how they change with streamflow. Generally speaking, the steeper a river’s slope, the faster its water flows. Hydrologic modelers use slope data to predict the speed water moves through a river and off a landscape.</p>
  814.  
  815.  
  816.  
  817. <p>SWOT will also help scientists and water managers quantify how much water lakes and reservoirs can store. While there are about 90,000 relatively large U.S. reservoirs, only a few thousand of them have water-level data that’s incorporated into the National Water Model. This limits scientists’ ability to know how reservoir levels relate to surrounding land elevations and potential flooding. SWOT is measuring tens of thousands of U.S. reservoirs, along with nearly all natural U.S. lakes larger than about two football fields combined.</p>
  818.  
  819.  
  820.  
  821. <p>Some countries, including the U.S., have made significant investments in river gauging networks and detailed local flood models. But in Africa, South Asia, parts of South America, and the Arctic, there’s little data for lakes and rivers. In such places, flood risk assessments often rely on rough estimates. Part of SWOT’s potential is that it will allow hydrologists to fill these gaps, providing information on where water is stored on landscapes and how much is flowing through rivers.</p>
  822.  
  823.  
  824.  
  825. <p>Tamlin Pavelsky, NASA’s SWOT freshwater science lead and a researcher at the University of North Carolina at Chapel Hill, says SWOT can help address the growing threat of flooding from extreme storms fueled by climate change. “Think about Houston and Hurricane Harvey in 2017,” he said. “It’s very unlikely we would have seen 60 inches of rain from one storm without climate change. Societies will need to update engineering design standards and floodplain maps as intense precipitation events become more common.”</p>
  826.  
  827.  
  828.  
  829. <p>Pavelsky says these changes in Earth’s water cycle are altering society’s assumptions about floods and what a floodplain is. “Hundreds of millions of people worldwide will be at increased risk of flooding in the future as rainfall events become increasingly intense and population growth occurs in flood-prone areas,” he added.</p>
  830.  
  831.  
  832.  
  833. <p>SWOT flood data will have other practical applications. For example, insurers can use models informed by SWOT data to improve flood hazard maps to better estimate an area’s potential damage and loss risks. A major reinsurance company, FM Global, is among SWOT’s 40 current <a href="https://swot.jpl.nasa.gov/applications/early-adopters/" rel="noopener">early adopters</a> — a global community of organizations working to incorporate SWOT data into their decision-making activities.</p>
  834.  
  835.  
  836.  
  837. <p>“Companies like FM Global and government agencies like the U.S. Federal Emergency Management Agency can fine tune their flood models by comparing them to SWOT data,” Pavelsky said. “Those better models will give us a more accurate picture of where and how often floods are likely to happen.”</p>
  838.  
  839.  
  840.  
  841. <h3 class="wp-block-heading"><strong>More About the Mission</strong></h3>
  842.  
  843.  
  844.  
  845. <p><a href="https://www.jpl.nasa.gov/news/nasa-launches-international-mission-to-survey-earths-water" rel="noopener">Launched</a> on Dec. 16, 2022, from Vandenberg Space Force Base in central California, SWOT is now in its operations phase, collecting data that will be used for research and other purposes.</p>
  846.  
  847.  
  848.  
  849. <p>SWOT was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the project’s U.S. component. For the flight system payload, NASA provided the KaRIn instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. CNES provided the Doppler Orbitography and Radioposition Integrated by Satellite (DORIS) system, dual frequency Poseidon altimeter (developed by Thales Alenia Space), KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations. CSA provided the KaRIn high-power transmitter assembly. NASA provided the launch vehicle and the agency’s Launch Services Program, based at Kennedy Space Center, and managed the associated launch services.</p>
  850.  
  851.  
  852.  
  853. <p>For more on SWOT, visit:</p>
  854.  
  855.  
  856.  
  857. <p><a href="https://swot.jpl.nasa.gov/." rel="noopener">https://swot.jpl.nasa.gov/.</a></p>
  858.  
  859.  
  860.  
  861. <h3 class="wp-block-heading"><strong>News Media Contacts</strong></h3>
  862.  
  863.  
  864.  
  865. <p>Jane J. Lee / Andrew Wang<br>Jet Propulsion Laboratory, Pasadena, Calif.<br>818-354-0307 / 626-379-6874<br><a href="mailto:jane.j.lee@jpl.nasa.gov">jane.j.lee@jpl.nasa.gov</a> / <a href="mailto:andrew.wang@jpl.nasa.gov">andrew.wang@jpl.nasa.gov</a></p>
  866.  
  867.  
  868.  
  869. <p>Written by Alan Buis<strong><u></u></strong></p>
  870.  
  871.  
  872.  
  873. <p>2024-060</p>
  874.  
  875.  
  876. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 nasa_template_article_a hds-module hds-module-full wp-block-nasa-blocks-credits-and-details">
  877. <section class="padding-x-0 padding-top-5 padding-bottom-2 desktop:padding-top-7 desktop:padding-bottom-9">
  878. <div class="grid-row grid-container maxw-widescreen padding-0">
  879. <div class="grid-col-12 desktop:grid-col-2 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  880. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  881. <div class="margin-bottom-2">
  882. <h2 class="heading-14">Share</h2>
  883. </div>
  884. <div class="padding-bottom-2">
  885. <ul class="social-icons social-icons-round">
  886. <li class="social-icon social-icon-x">
  887. <a href="https://x.com/intent/tweet?via=NASA&#038;text=International%20SWOT%20Mission%20Can%20Improve%20Flood%20Prediction&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fmissions%2Fswot%2Finternational-swot-mission-can-improve-flood-prediction%2F" aria-label="Share on X.">
  888. <svg width="1200" height="1227" viewBox="0 0 1200 1227" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M714.163 519.284L1160.89 0H1055.03L667.137 450.887L357.328 0H0L468.492 681.821L0 1226.37H105.866L515.491 750.218L842.672 1226.37H1200L714.137 519.284H714.163ZM569.165 687.828L521.697 619.934L144.011 79.6944H306.615L611.412 515.685L658.88 583.579L1055.08 1150.3H892.476L569.165 687.854V687.828Z" fill="white"/></svg>
  889. </a>
  890. </li>
  891. <li class="social-icon social-icon-facebook">
  892. <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.nasa.gov%2Fmissions%2Fswot%2Finternational-swot-mission-can-improve-flood-prediction%2F" aria-label="Share on Facebook.">
  893. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M9 8h-3v4h3v12h5v-12h3.642l.358-4h-4v-1.667c0-.955.192-1.333 1.115-1.333h2.885v-5h-3.808c-3.596 0-5.192 1.583-5.192 4.615v3.385z"/></svg>
  894. </a>
  895. </li>
  896. <li class="social-icon social-icon-linkedin">
  897. <a href="https://www.linkedin.com/shareArticle?mini=true&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fmissions%2Fswot%2Finternational-swot-mission-can-improve-flood-prediction%2F" aria-label="Share on LinkedIn.">
  898. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M4.98 3.5c0 1.381-1.11 2.5-2.48 2.5s-2.48-1.119-2.48-2.5c0-1.38 1.11-2.5 2.48-2.5s2.48 1.12 2.48 2.5zm.02 4.5h-5v16h5v-16zm7.982 0h-4.968v16h4.969v-8.399c0-4.67 6.029-5.052 6.029 0v8.399h4.988v-10.131c0-7.88-8.922-7.593-11.018-3.714v-2.155z"/></svg>
  899. </a>
  900. </li>
  901. <li class="social-icon social-icon-rss">
  902. <a href="/feed/" aria-label="Subscribe to RSS feed.">
  903. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" aria-hidden="true"><path d="M493 652H392c0-134-111-244-244-244V307c189 0 345 156 345 345zm71 0c0-228-188-416-416-416V132c285 0 520 235 520 520z"/><circle cx="219" cy="581" r="71"/></svg>
  904. </a>
  905. </li>
  906. </ul>
  907. </div>
  908. </div>
  909. </div>
  910. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  911. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  912. <div class="margin-bottom-2">
  913. <h2 class="heading-14">Details</h2>
  914. </div>
  915. <div class="grid-row margin-bottom-3">
  916. <div class="grid-col-4">
  917. <div class="subheading">Last Updated</div>
  918. </div>
  919. <div class="grid-col-8">May 07, 2024</div>
  920. </div>
  921. </div>
  922. </div>
  923. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0"><div class="padding-top-3 border-top-1px border-color-carbon-black "><div class="margin-bottom-2"><h2 class="heading-14">Related Terms</h2></div><ul class="article-tags"><li class="article-tag"><a href="https://science.nasa.gov/mission/swot" rel="noopener">SWOT (Surface Water and Ocean Topography)</a></li><li class="article-tag"><a href="https://science.nasa.gov/earth-science/" rel="noopener">Earth Science</a></li><li class="article-tag"><a href="https://www.nasa.gov/earth/water-on-earth/">Water on Earth</a></li></ul></div></div>
  924. </div>
  925. </section>
  926. </div>
  927.  
  928. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 hds-module hds-module-full wp-block-nasa-blocks-related-articles"> <section class="hds-related-articles padding-x-0 padding-y-3 desktop:padding-top-7 desktop:padding-bottom-9">
  929. <div class="w-100 grid-row grid-container maxw-widescreen padding-0 text-align-left">
  930. <div class="margin-bottom-4"><h2 style="max-width: 100%;" class="width-full w-full maxw-full">Explore More</h2></div>
  931. </div>
  932. <div class="grid-row grid-container maxw-widescreen padding-0">
  933. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  934. <a href="https://science.nasa.gov/earth/climate-change/international-swot-mission-can-improve-flood-prediction/" class="color-carbon-black" rel="noopener">
  935. <div class="margin-bottom-2">
  936. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  937. <figure class="hds-media-background  "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://science.nasa.gov/wp-content/uploads/2024/05/1-the-mouse-souris-river-flooding-the-city-of-width-1024.jpg" ></figure> </div>
  938. </div>
  939. <div class="padding-right-0 desktop:padding-right-10">
  940. <div class="subheading margin-bottom-1">6 min read</div>
  941. <div class="margin-bottom-1"><h3 class="related-article-title">International SWOT Mission Can Improve Flood Prediction </h3></div>
  942. <p class="p-md color-carbon-60">A partnership between NASA and the French space agency, the satellite is poised to help&hellip;</p>
  943. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  944. <span class="display-flex flex-align-center margin-right-2">
  945. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  946. <span>Article</span>
  947. </span>
  948. <span class="">
  949. 11 hours ago </span>
  950. </div>
  951. </div>
  952. </a>
  953. </div>
  954. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  955. <a href="https://science.nasa.gov/earth/nasa-is-helping-protect-tigers-jaguars-and-elephants-heres-how/" class="color-carbon-black" rel="noopener">
  956. <div class="margin-bottom-2">
  957. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  958. <figure class="hds-media-background  "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://science.nasa.gov/wp-content/uploads/2024/04/photo-4-amur-tigers-credit-dale-miquelle.jpg" ></figure> </div>
  959. </div>
  960. <div class="padding-right-0 desktop:padding-right-10">
  961. <div class="subheading margin-bottom-1">5 min read</div>
  962. <div class="margin-bottom-1"><h3 class="related-article-title">NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.</h3></div>
  963. <p class="p-md color-carbon-60">As human populations grow, habitat loss threatens many creatures. Mapping wildlife habitat using satellites is&hellip;</p>
  964. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  965. <span class="display-flex flex-align-center margin-right-2">
  966. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  967. <span>Article</span>
  968. </span>
  969. <span class="">
  970. 6 days ago </span>
  971. </div>
  972. </div>
  973. </a>
  974. </div>
  975. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  976. <a href="https://science.nasa.gov/get-involved/citizen-science/nasa-partner-zooniverse-receives-white-house-open-science-award/" class="color-carbon-black" rel="noopener">
  977. <div class="margin-bottom-2">
  978. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  979. <figure class="hds-media-background  "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://science.nasa.gov/wp-content/uploads/2024/05/zooniverse-avatars-laura-trouille.png" ></figure> </div>
  980. </div>
  981. <div class="padding-right-0 desktop:padding-right-10">
  982. <div class="subheading margin-bottom-1">2 min read</div>
  983. <div class="margin-bottom-1"><h3 class="related-article-title">NASA Partner Zooniverse Receives White House Open Science Award</h3></div>
  984. <p class="p-md color-carbon-60">Congrats to NASA partner Zooniverse for being named winners in the White House’s Year of Open Science Recognition&hellip;</p>
  985. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  986. <span class="display-flex flex-align-center margin-right-2">
  987. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  988. <span>Article</span>
  989. </span>
  990. <span class="">
  991. 6 days ago </span>
  992. </div>
  993. </div>
  994. </a>
  995. </div>
  996. </div>
  997. </section>
  998. </div>
  999.  
  1000. <div id="" class="hds-topic-cards nasa-gb-align-full maxw-full width-full padding-y-6 padding-x-3 color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-topic-cards"> <div class="grid-container grid-container-block-lg padding-x-0">
  1001. <div class="grid-row flex-align-center margin-bottom-3">
  1002. <div class="desktop:grid-col-8 margin-bottom-2 desktop:margin-bottom-0">
  1003. <div class="label color-carbon-60 margin-bottom-2">Keep Exploring</div>
  1004. <h2 class="heading-36 line-height-sm">Discover Related Topics</h2>
  1005. </div>
  1006. </div>
  1007. <div class="grid-row grid-gap-2 hds-topic-cards-wrapper">
  1008. <a href="#" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1009. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1010. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1011. <div>
  1012. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1013. <span>Missions</span>
  1014. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1015. </p>
  1016. </div>
  1017. </div>
  1018. <figure class="hds-media-background  "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://www.nasa.gov/wp-content/plugins/nasa-blocks/assets/images/topic-cards/topic-card-sample-1.jpg" ></figure> </div>
  1019. </a>
  1020. <a href="#" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1021. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1022. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1023. <div>
  1024. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1025. <span>Humans in Space</span>
  1026. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1027. </p>
  1028. </div>
  1029. </div>
  1030. <figure class="hds-media-background  "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://www.nasa.gov/wp-content/plugins/nasa-blocks/assets/images/topic-cards/topic-card-sample-2.jpg" ></figure> </div>
  1031. </a>
  1032. <a href="#" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1033. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1034. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1035. <div>
  1036. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1037. <span>Climate Change</span>
  1038. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1039. </p>
  1040. </div>
  1041. </div>
  1042. <figure class="hds-media-background  "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://www.nasa.gov/wp-content/plugins/nasa-blocks/assets/images/topic-cards/topic-card-sample-3.jpg" ></figure> </div>
  1043. </a>
  1044. <a href="#" class="mobile:grid-col-12 tablet:grid-col-6 desktop:grid-col-3 topic-card margin-bottom-4 desktop:margin-bottom-0">
  1045. <div class="hds-topic-card hds-cover-wrapper cover-hover-zoom bg-carbon-black">
  1046. <div class="skrim-overlay skrim-overlay-dark skrim-left mobile-skrim-top padding-3 display-flex flex-align-end flex-justify-start z-200">
  1047. <div>
  1048. <p class="hds-topic-card-heading heading-29 color-spacesuit-white line-height-sm margin-top-0 margin-bottom-1">
  1049. <span>Solar System</span>
  1050. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="color-nasa-red" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1051. </p>
  1052. </div>
  1053. </div>
  1054. <figure class="hds-media-background  "><img decoding="async" loading="lazy" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" src="https://www.nasa.gov/wp-content/plugins/nasa-blocks/assets/images/topic-cards/topic-card-sample-4.jpg" ></figure> </div>
  1055. </a>
  1056. </div>
  1057. </div>
  1058. </div>]]></content:encoded>
  1059. </item>
  1060. <item>
  1061. <title>White Sands Propulsion Team Tests 3D-Printed Orion Engine Component</title>
  1062. <link>https://www.nasa.gov/centers-and-facilities/white-sands/white-sands-propulsion-team-tests-3d-printed-orion-engine-component/</link>
  1063. <dc:creator><![CDATA[Linda E. Grimm]]></dc:creator>
  1064. <pubDate>Tue, 07 May 2024 16:05:00 +0000</pubDate>
  1065. <category><![CDATA[White Sands Test Facility]]></category>
  1066. <category><![CDATA[General]]></category>
  1067. <category><![CDATA[Johnson Space Center]]></category>
  1068. <guid isPermaLink="false">https://www.nasa.gov/?p=658442</guid>
  1069.  
  1070. <description><![CDATA[When the Orion spacecraft carries the first Artemis crews to the Moon and back, it will rely on the European Service Module contributed by ESA (European Space Agency) to make the journey. The service module provides electrical power generation, propulsion, temperature control, and consumable storage for Orion, up to the moment it separates from the [&#8230;]]]></description>
  1071. <content:encoded><![CDATA[
  1072. <p>When the Orion spacecraft carries the first Artemis crews to the Moon and back, it will rely on the European Service Module contributed by ESA (European Space Agency) to make the journey. The service module provides electrical power generation, propulsion, temperature control, and consumable storage for Orion, up to the moment it separates from the crew module prior to re-entry into Earth’s atmosphere.</p>
  1073.  
  1074.  
  1075.  
  1076. <p></p>
  1077.  
  1078.  
  1079.  
  1080. <p>For the first six Artemis missions – Artemis I through Artemis VI – NASA and ESA will use a refurbished Orbital Maneuvering System (OMS) engine from the space shuttle program as the European Service Module’s main engine. Beyond Artemis VI, NASA will need a new engine to support Orion.</p>
  1081.  
  1082.  
  1083.  
  1084. <p></p>
  1085.  
  1086.  
  1087.  
  1088. <p>That need will be met by the Orion Main Engine (OME) in development with Aerojet Rocketdyne (now L3 Harris), but before the OME can fly, all of its components must be thoroughly tested.</p>
  1089.  
  1090.  
  1091.  
  1092. <p></p>
  1093.  
  1094.  
  1095.  
  1096. <p>Enter the Propulsion Test Office at NASA’s White Sands Test Facility. From November 2023 to January 2024, this team led rigorous testing of a critical OME component: the injector that delivers propellants to power the engine and provides the thrust necessary to return Orion home from the Moon.</p>
  1097.  
  1098.  
  1099. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg"><img loading="lazy" decoding="async" width="2048" height="1365" src="https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="A group of 24 men dressed in casual outdoor clothing stands in front of a white metal test stand used to test a rocket engine injector." style="transform: scale(1.2); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg 5568w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=1024,683 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=1536,1024 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=2048,1365 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=900,600 900w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=1200,800 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/wstf2023e16413.jpg?resize=2000,1333 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Orion Main Engine injector test team members at NASA’s White Sands Test Facility.</div><div class="hds-credits">NASA/Reed Elliott </div></figcaption></div></div></div>
  1100.  
  1101.  
  1102. <p>The tests were performed on Test Stand 301A in White Sands’ Propulsion 300 Area. The injector was mounted to a test engine that fired multiple times for three seconds each, for a total of 21 tests. With each test, the White Sands team sought to demonstrate the OME injector’s ability to maintain consistent and controlled combustion and to return to normal operations if the combustion process was artificially perturbed.</p>
  1103.  
  1104.  
  1105.  
  1106. <p></p>
  1107.  
  1108.  
  1109.  
  1110. <p>Many White Sands team members were involved in this effort. James Hess, project manager and operations director, ensured the tests were completed safely and successfully by overseeing operations, and confirming test requirements were met. James Mahoney handled the test schedule and budget as project lead, while Jordan Aday directed operations and the actual tests. Other key roles included lead electrical engineer Sal Muniz, and instrumentation engineer Jesus Lujan-Martino. Aerojet Rocketdyne’s Shaun DeSouza served as test article director, working to ensure the injector operated as expected and that test condition requirements were met. Additional support was provided by OME Program team members at NASA’s Johnson Space Center and Glenn Research Center.</p>
  1111.  
  1112.  
  1113.  
  1114. <p></p>
  1115.  
  1116.  
  1117. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png"><img loading="lazy" decoding="async" width="2048" height="1226" src="https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?w=2048" class="attachment-2048x2048 size-2048x2048" alt="A rocket engine mounted to a metal test stand is firing." style="transform: scale(1.2); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png 3173w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=300,180 300w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=768,460 768w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=1024,613 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=1536,919 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=2048,1226 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=400,239 400w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=600,359 600w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=900,539 900w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=1200,718 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/hsome6.png?resize=2000,1197 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Orion Main Engine injector test engine firing.</div><div class="hds-credits">NASA</div></figcaption></div></div></div>
  1118.  
  1119.  
  1120. <p>The results confirmed that the OME injector could maintain stable combustion, and the team determined the tests were successful. A unique aspect of the OME injector is that it was fabricated through an additive manufacturing process called selective laser machining – basically 3D printing with metallic powders instead of plastics. Demonstrating the effectiveness of 3D printed components could help NASA and its partners lower costs and increase efficiencies in development processes.</p>
  1121.  
  1122.  
  1123.  
  1124. <p></p>
  1125.  
  1126.  
  1127.  
  1128. <p>The injector design will now be incorporated into a full OME that will be tested as a full engine assembly at White Sands once it is ready. &nbsp;</p>
  1129. ]]></content:encoded>
  1130. </item>
  1131. <item>
  1132. <title>Ken Carpenter: Ensuring Top-Tier Science from Moon to Stars</title>
  1133. <link>https://www.nasa.gov/centers-and-facilities/goddard/ken-carpenter-ensuring-top-tier-science-from-moon-to-stars/</link>
  1134. <dc:creator><![CDATA[Madison Olson]]></dc:creator>
  1135. <pubDate>Tue, 07 May 2024 15:43:38 +0000</pubDate>
  1136. <category><![CDATA[Goddard Space Flight Center]]></category>
  1137. <category><![CDATA[Hubble Space Telescope]]></category>
  1138. <category><![CDATA[Nancy Grace Roman Space Telescope]]></category>
  1139. <category><![CDATA[People of Goddard]]></category>
  1140. <category><![CDATA[People of NASA]]></category>
  1141. <guid isPermaLink="false">https://www.nasa.gov/?p=656789</guid>
  1142.  
  1143. <description><![CDATA[Today, Ken Carpenter is a scientist for NASA’s Hubble and Roman space telescopes, but in 1967 he was just a teenager at his local library out to fact-check a “Star Trek” episode. Name: Kenneth G. CarpenterTitle: Operations Project Scientist for Hubble Space Telescope; Ground System Scientist for Roman Space Telescope; and a NASA Innovative Advanced [&#8230;]]]></description>
  1144. <content:encoded><![CDATA[
  1145. <p>Today, Ken Carpenter is a scientist for NASA’s Hubble and Roman space telescopes, but in 1967 he was just a teenager at his local library out to fact-check a “Star Trek” episode.</p>
  1146.  
  1147.  
  1148.  
  1149. <p><strong>Name</strong>: Kenneth G. Carpenter<br><strong>Title</strong>: Operations Project Scientist for Hubble Space Telescope; Ground System Scientist for Roman Space Telescope; and a NASA Innovative Advanced Concepts (NIAC) Fellow and Principal Investigator for the Artemis-Enabled Stellar Imager (AeSI) NIAC Study.<br><strong>Formal Job Classification</strong>: Astrophysicist<br><strong>Organization</strong>: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Directorate (Code 667)</p>
  1150.  
  1151.  
  1152. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg"><img loading="lazy" decoding="async" width="1752" height="1600" src="https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?w=1752" class="attachment-2048x2048 size-2048x2048" alt="Ken Carpenter smiles wearing a blue dress shirt with a navy jacket. The background is an image of stars with diffraction spikes visible and a chart to the far right." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg 1752w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=300,274 300w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=768,701 768w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=1024,935 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=1536,1403 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=400,365 400w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=600,548 600w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=900,822 900w, https://www.nasa.gov/wp-content/uploads/2024/05/profile-photo-dec2015-cropped.jpg?resize=1200,1096 1200w" sizes="(max-width: 1752px) 100vw, 1752px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">Ken Carpenter is an operations project scientist for Hubble Space Telescope; ground system scientist for Roman Space Telescope; and a NASA innovative advanced concepts (NIAC) fellow and principal investigator for the Artemis-Enabled Stellar Imager (AeSI) NIAC Study.</div><div class="hds-credits">NASA/Bill Hrybyk</div></figcaption></div></div></div>
  1153.  
  1154.  
  1155. <p><strong>What do you do and what is most interesting about your role here at Goddard?</strong></p>
  1156.  
  1157.  
  1158.  
  1159. <p>As the operations project scientist for Hubble Space Telescope, I represent the astronomical community to the project management and help ensure that Hubble produces the best quality science possible consistent with other project requirements like cost and schedule.</p>
  1160.  
  1161.  
  1162.  
  1163. <p>I am also the ground system scientist for Roman Space Telescope, a role that entails overseeing the design and operation of the ground system and advising management to ensure we maximize the science.</p>
  1164.  
  1165.  
  1166.  
  1167. <p>As a NIAC fellow and principal investigator for the AeSI mission concept study, I am studying the possibility of building a large baseline UV-optical interferometer on the lunar surface in conjunction with the Artemis campaign.</p>
  1168.  
  1169.  
  1170.  
  1171. <p><strong>What is your educational background?</strong></p>
  1172.  
  1173.  
  1174.  
  1175. <p>In 1977, I graduated from Wesleyan University with a bachelor’s and master’s in astronomy. In 1983, I graduated from The Ohio State University with a Ph.D. in astronomy. That same year, I took a post-doctoral research position at the University of Colorado in Boulder.</p>
  1176.  
  1177.  
  1178.  
  1179. <p><strong>What brought you to Goddard?</strong></p>
  1180.  
  1181.  
  1182.  
  1183. <p>While at the University of Colorado, my mentor told me about an opportunity at Ball Aerospace to help put a new detector into one of Hubble’s instruments. I helped calibrate that detector for the Goddard High Resolution Spectrograph (GHRS) while in my research position. As a result, the University of Colorado offered me a new position at Goddard to help coordinate the development of the GHRS ground system.</p>
  1184.  
  1185.  
  1186.  
  1187. <p>Doing the extra work for Ball Aerospace while with the University of Colorado was an unusual path to take, but it led to my job at Goddard. The lesson here is do not be afraid of an unusual career path because a nontraditional path may lead to a great opportunity.</p>
  1188.  
  1189.  
  1190.  
  1191. <p><strong>What is the most interesting thing you do as the operations project scientist for Hubble?</strong></p>
  1192.  
  1193.  
  1194.  
  1195. <p>I get to be deeply involved in one of NASA’s flagship missions and help astronomers all over the world explore the leading edge of astronomy. I agreed to take this position for only three years in the early ’90s, but it has remained so exciting, challenging, and rewarding that I am still involved today. Working for Hubble has been an amazing experience and a constant delight. Being involved with enabling Hubble’s ground-breaking science and astronomy has been extraordinarily rewarding for me for more than three decades now.</p>
  1196.  
  1197.  
  1198. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg"><img loading="lazy" decoding="async" width="2048" height="1152" src="https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Three people stand at a booth at a conference with a Hubble model on the table and a sign for the &quot;Lost Universe&quot; table top role playing game. " style="transform: scale(1.2); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg 4032w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=300,169 300w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=768,432 768w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=1024,576 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=1536,864 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=2048,1152 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=400,225 400w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=600,338 600w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=900,506 900w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=1200,675 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/20240310-094033.jpg?resize=2000,1125 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">&#8220;One of the most fun parts of my job is talking to people. I enjoy enabling Goddard’s world class science, but I really enjoy seeing a kid’s eyes light up with excitement when explaining some of our cool discoveries,&#8221; said Ken (right), shown here at an AwesomeCon booth with Christina Mitchell (left) and Faith Vowler (middle).</div><div class="hds-credits">Courtesy of Ken Carpenter</div></figcaption></div></div></div>
  1199.  
  1200.  
  1201. <p><strong>How did your work on Hubble lead to your involvement in bringing the Roman project forward?</strong></p>
  1202.  
  1203.  
  1204.  
  1205. <p>My experience in Hubble’s operations and ground systems led me to get involved with the same for Roman at a very early stage. I was involved in developing the early concepts for Roman and helping it get selected as an official NASA mission. I was in the right place at the right time again. This is another example of taking advantage of an opportunity as it presented itself.</p>
  1206.  
  1207.  
  1208.  
  1209. <p><strong>What is your role as the NIAC fellow and principal investigator for the AeSI mission concept study?</strong></p>
  1210.  
  1211.  
  1212.  
  1213. <p>I was recently selected as a NIAC fellow to study <a href="https://www.nasa.gov/general/lunar_long_baseline_optical_imaging_interferometer/">the possibility of building an interferometer on the surface of the Moon</a> in conjunction with the Artemis campaign. An interferometer is an array of telescope mirrors that work together. A large baseline means that the outer diameter of this array will be about one-third of a mile. We are investigating whether the Artemis infrastructure makes building this on the Moon competitive with, or better than, building such a telescope in free-space.</p>
  1214.  
  1215.  
  1216.  
  1217. <p>NIAC fellows are selected to lead visionary studies for technically challenging mission concepts and technologies. We are selected under a NASA-wide program that offers three levels of study. My 2024 Phase One NIAC study is one of <a href="https://www.nasa.gov/general/niac-2024-selections/">only 13 accepted in 2024</a>. We proposed our study four years in a row before we were finally awarded the study this year, reinforcing the lesson that persistence and patience are often needed to achieve great things.</p>
  1218.  
  1219.  
  1220.  
  1221. <p><strong>You do a lot of outreach. What is your message?</strong></p>
  1222.  
  1223.  
  1224.  
  1225. <p>I do a lot of public outreach, in particular for Hubble, Roman and our new NIAC program. This includes talks and exhibit tables at middle schools, high schools, astronomy societies, and large sci-fi and pop culture conventions, including DragonCon and AwesomeCon.</p>
  1226.  
  1227.  
  1228.  
  1229. <p>I try to convey to the audience the excitement of the science results from our various missions and about NASA’s plans for future missions. At schools, I often talk about paths to working at NASA and the job of working here. I point out that NASA needs people with a wide variety of skills, not just scientists and engineers. I usually conclude with an informal question-and-answer period.</p>
  1230.  
  1231.  
  1232.  
  1233. <p>One the most fun parts of my job is talking to people. I enjoy enabling Goddard’s world class science, but I really enjoy seeing a kid’s eyes light up with excitement when explaining some of our cool discoveries.</p>
  1234.  
  1235.  
  1236. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg"><img loading="lazy" decoding="async" width="2048" height="1302" src="https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="The Hubble outreach team smiles for a photo in front of the Hubble model at NASA Goddard. " style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg 8190w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=300,191 300w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=768,488 768w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=1024,651 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=1536,977 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=2048,1302 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=400,254 400w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=600,382 600w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=900,572 900w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=1200,763 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/outreachteam-faceon-img-0313edt.jpg?resize=2000,1272 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">&#8220;Working for Hubble has been an amazing experience and a constant delight,&#8221; said Ken, shown here with the Hubble outreach team. &#8220;Being involved with enabling Hubble’s ground-breaking science and astronomy has been extraordinarily rewarding for me for more than three decades now.&#8221;</div><div class="hds-credits">NASA/Robert Andreoli </div></figcaption></div></div></div>
  1237.  
  1238.  
  1239. <p><strong>What is your message as a mentor?</strong></p>
  1240.  
  1241.  
  1242.  
  1243. <p>I have mentored people from high school through post-doctoral fellows. I try to give them the benefit of some of the lessons I have learned. I tell them not to be afraid to take nontraditional paths and to take a risk if you see something interesting because it might lead to something even better. I also tell them to look for and take advantage of such opportunities and I try to give them opportunities to be part of investigations, to help write papers and to feel involved so that they experience the excitement of a Goddard and technical career in general.</p>
  1244.  
  1245.  
  1246.  
  1247. <p>Most of the people I have mentored have gone on to very exciting careers in astronomy and related fields. Perhaps the most unexpected and exciting result of mentoring for me was a Harvard undergraduate studying astronomy who turned into a deep-sea explorer, a scientist of a different sort. &nbsp;</p>
  1248.  
  1249.  
  1250.  
  1251. <p><strong>What are your hobbies and interests?</strong></p>
  1252.  
  1253.  
  1254.  
  1255. <p>I am an amateur photographer of landscapes and also of my everyday experiences and travels. I am also very enthusiastic about all things related to Disney and Star Trek. My Disney fandom includes loving the films and also traveling to their theme parks as often as life permits. If I was not an astronomer, I like to think I might have become a Disney Imagineer, someone who conceives of and designs their attractions and experiences.</p>
  1256.  
  1257.  
  1258.  
  1259. <p>As a Trekkie, I attend sci-fi and pop culture conventions, and now I give science talks at them too. I know the science adviser to the modern Star Trek series, and we talk constantly about the synergies between Trek and NASA. I have met over the years a fair number of the stars from all of the series. After 50 years of fandom, this is very neat. Star Trek has always inspired me!</p>
  1260.  
  1261.  
  1262. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg"><img loading="lazy" decoding="async" width="2048" height="2048" src="https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Ken Carpenter and Nichelle Nichols smile for a photo. Nichelle is holding her left hand in the Vulcan salute hand gesture." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg 2268w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=150,150 150w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=300,300 300w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=768,768 768w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=1024,1024 1024w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=1536,1536 1536w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=2048,2048 2048w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=50,50 50w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=100,100 100w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=200,200 200w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=400,400 400w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=600,600 600w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=900,900 900w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=1200,1200 1200w, https://www.nasa.gov/wp-content/uploads/2024/05/11998.jpg?resize=2000,2000 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">&#8220;Growing up, I read a lot of science fiction, said Ken, shown here with actor Nichelle Nichols, who played Lt. Uhura on the original Star Trek series. &#8220;The original Star Trek series greatly inspired me,&#8221; he said.</div><div class="hds-credits">Courtesy of Ken Carpenter</div></figcaption></div></div></div>
  1263.  
  1264. <div id="" class="nasa-gb-align-center nasa-button-link padding-y-1 padding-x-0 hds-module wp-block-nasa-blocks-related-link">
  1265. <a href="https://www.nasa.gov/centers-and-facilities/goddard/star-trek-adviser-discusses-sci-fis-real-science-at-nasa-goddard/" target="_blank" class="button-primary button-primary-md link-external-true" aria-label="&#039;Star Trek&#039; Adviser Discusses Sci-Fi&#039;s Real Science at NASA Goddard">
  1266. <span class="line-height-alt-1">&#039;Star Trek&#039; Adviser Discusses Sci-Fi&#039;s Real Science at NASA Goddard</span>
  1267. <svg viewBox="0 0 32 32" fill="none" xmlns="http://www.w3.org/2000/svg"><circle class="button-primary-circle" cx="16" cy="16" r="16"></circle><path d="M8 16.956h12.604l-3.844 4.106 1.252 1.338L24 16l-5.988-6.4-1.252 1.338 3.844 4.106H8v1.912z" class="color-spacesuit-white"></path></svg>
  1268. </a>
  1269.  
  1270. </div>
  1271.  
  1272.  
  1273. <p>I also enjoy exploring the past through attending Renaissance festivals. I am lucky that the Maryland Renaissance Festival is one of the top festivals in the county and easy for me to access!</p>
  1274.  
  1275.  
  1276.  
  1277. <p><strong>What inspired you to become an astronomer?</strong></p>
  1278.  
  1279.  
  1280.  
  1281. <p>Growing up, I read a lot of science fiction. The original Star Trek series greatly inspired me. I also visited the 1964-1965 New York World’s Fair, which showed us the wonderful possibilities for the future that science and technology might create. This was before the internet and was a place where one could see one of the first color TVs, a very early edition Frisbee and be shown many other wonderful things that science and technology would contribute to our exciting future. They even had a Space Park with a rocket garden and memorabilia of the early space programs.</p>
  1282.  
  1283.  
  1284.  
  1285. <p>Walt Disney built some of the most popular attractions at the fair and brought them back to his theme parks after the fair ended. This included “It’s a Small World”, the first animatronic Abraham Lincoln, the Ford exhibit that featured cars going through ancient landscapes and seeing “live” animatronic dinosaurs, and the Carousel of Progress, which has the audience revolving around a central area with multiple stages to show how technology supports improvements in everyday living, as houses went from having ice boxes to talking refrigerators.</p>
  1286.  
  1287.  
  1288.  
  1289. <p>What got me into the library to pick up an astronomy book for the first time was a particular Star Trek episode during their second season called “Who Mourns for Adonais.” It included a reference to a star named Beta Gem (Pollux) and I wanted to see if it was a real star. In the process of going to the library and confirming the name was real, I also picked up an astronomy book, which hooked me immediately. From that point on, I wanted to be an astronomer. I was around 13. Fifty-plus years later, I actually met the actor, Mike Forest, who guest starred in that episode as the Greek god Apollo, and my mind was appropriately blown!</p>
  1290.  
  1291.  
  1292.  
  1293. <p><strong>Who would you like to thank?</strong></p>
  1294.  
  1295.  
  1296.  
  1297. <p>I would like to thank my wife Susan and our children David and Bryce for their support over the years including tolerating my long hours at work and their unwavering support as I pursued my dreams in exploring the universe and working at NASA. I could not have done all this amazing work without their love and support.</p>
  1298.  
  1299.  
  1300.  
  1301. <p>Beyond the immediate family, there are of course many, many others who have helped steer me through this amazing career and all have my thanks even if I can’t include them here. In particular I want to note folks who helped me so much during my “early career” stages, from Bob Wing at The Ohio State University, Jeff Linsky at the University of Colorado, and Sally Heap and Steve Maran at NASA Goddard. All were instrumental in ensuring my successful entry into the NASA universe.</p>
  1302.  
  1303.  
  1304.  
  1305. <p><strong>What are your two favorite phrases that you live by?</strong></p>
  1306.  
  1307.  
  1308.  
  1309. <p>“Dreamers need to stick together.” This is from the 2015 Disney movie “Tomorrowland,” one of my favorite movies of all time.</p>
  1310.  
  1311.  
  1312.  
  1313. <p>I would also add “IDIC,” for “Infinite Diversity in Infinite Combinations,” which is a Star Trek phrase expressing its core philosophy that people of all different cultures can work together in peace to create a wonderful and accepting future.</p>
  1314.  
  1315.  
  1316. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-fit "><a href="https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png"><img loading="lazy" decoding="async" width="1041" height="320" src="https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png?w=1041" class="attachment-2048x2048 size-2048x2048" alt="A graphic with a collection of people&#039;s portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text &quot;Conversations with Goddard&quot; is in white on the far right." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png 1041w, https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png?resize=300,92 300w, https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png?resize=768,236 768w, https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png?resize=1024,315 1024w, https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png?resize=400,123 400w, https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png?resize=600,184 600w, https://www.nasa.gov/wp-content/uploads/2022/10/cwg-banner.png?resize=900,277 900w" sizes="(max-width: 1041px) 100vw, 1041px" /></a></figure></div></div></div>
  1317.  
  1318.  
  1319. <p><strong><em>Conversations With Goddard&nbsp;</em></strong><em>is a collection of Q&amp;A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on&nbsp;</em><a href="https://www.nasa.gov/centers/goddard/about/people/index.html">Goddard’s<em> “Our People” webpage</em></a><em>.</em></p>
  1320.  
  1321.  
  1322.  
  1323. <p><a href="https://www.nasa.gov/goddard"><em><strong>By <a href="mailto:elizabeth.m.jarrell@nasa.gov">Elizabeth M. Jarrell</a></strong></em></a><br><a href="https://www.nasa.gov/goddard"><strong><em>NASA’s Goddard Space Flight Center</em></strong></a><strong><em>, Greenbelt, Md.</em></strong></p>
  1324.  
  1325.  
  1326. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 article_a hds-module hds-module-full wp-block-nasa-blocks-credits-and-details">
  1327. <section class="padding-x-0 padding-top-5 padding-bottom-2 desktop:padding-top-7 desktop:padding-bottom-9">
  1328. <div class="grid-row grid-container maxw-widescreen padding-0">
  1329. <div class="grid-col-12 desktop:grid-col-2 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  1330. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  1331. <div class="margin-bottom-2">
  1332. <h2 class="heading-14">Share</h2>
  1333. </div>
  1334. <div class="padding-bottom-2">
  1335. <ul class="social-icons social-icons-round">
  1336. <li class="social-icon social-icon-x">
  1337. <a href="https://x.com/intent/tweet?via=NASA&#038;text=Ken%20Carpenter%3A%20Ensuring%20Top-Tier%20Science%20from%20Moon%20to%20Stars&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fcenters-and-facilities%2Fgoddard%2Fken-carpenter-ensuring-top-tier-science-from-moon-to-stars%2F" aria-label="Share on X.">
  1338. <svg width="1200" height="1227" viewBox="0 0 1200 1227" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M714.163 519.284L1160.89 0H1055.03L667.137 450.887L357.328 0H0L468.492 681.821L0 1226.37H105.866L515.491 750.218L842.672 1226.37H1200L714.137 519.284H714.163ZM569.165 687.828L521.697 619.934L144.011 79.6944H306.615L611.412 515.685L658.88 583.579L1055.08 1150.3H892.476L569.165 687.854V687.828Z" fill="white"/></svg>
  1339. </a>
  1340. </li>
  1341. <li class="social-icon social-icon-facebook">
  1342. <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fwww.nasa.gov%2Fcenters-and-facilities%2Fgoddard%2Fken-carpenter-ensuring-top-tier-science-from-moon-to-stars%2F" aria-label="Share on Facebook.">
  1343. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M9 8h-3v4h3v12h5v-12h3.642l.358-4h-4v-1.667c0-.955.192-1.333 1.115-1.333h2.885v-5h-3.808c-3.596 0-5.192 1.583-5.192 4.615v3.385z"/></svg>
  1344. </a>
  1345. </li>
  1346. <li class="social-icon social-icon-linkedin">
  1347. <a href="https://www.linkedin.com/shareArticle?mini=true&#038;url=https%3A%2F%2Fwww.nasa.gov%2Fcenters-and-facilities%2Fgoddard%2Fken-carpenter-ensuring-top-tier-science-from-moon-to-stars%2F" aria-label="Share on LinkedIn.">
  1348. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M4.98 3.5c0 1.381-1.11 2.5-2.48 2.5s-2.48-1.119-2.48-2.5c0-1.38 1.11-2.5 2.48-2.5s2.48 1.12 2.48 2.5zm.02 4.5h-5v16h5v-16zm7.982 0h-4.968v16h4.969v-8.399c0-4.67 6.029-5.052 6.029 0v8.399h4.988v-10.131c0-7.88-8.922-7.593-11.018-3.714v-2.155z"/></svg>
  1349. </a>
  1350. </li>
  1351. <li class="social-icon social-icon-rss">
  1352. <a href="/feed/" aria-label="Subscribe to RSS feed.">
  1353. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" aria-hidden="true"><path d="M493 652H392c0-134-111-244-244-244V307c189 0 345 156 345 345zm71 0c0-228-188-416-416-416V132c285 0 520 235 520 520z"/><circle cx="219" cy="581" r="71"/></svg>
  1354. </a>
  1355. </li>
  1356. </ul>
  1357. </div>
  1358. </div>
  1359. </div>
  1360. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  1361. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  1362. <div class="margin-bottom-2">
  1363. <h2 class="heading-14">Details</h2>
  1364. </div>
  1365. <div class="grid-row margin-bottom-3">
  1366. <div class="grid-col-4">
  1367. <div class="subheading">Last Updated</div>
  1368. </div>
  1369. <div class="grid-col-8">May 07, 2024</div>
  1370. </div>
  1371. <div class="grid-row margin-bottom-3"><div class="grid-col-4"><div class="subheading">Editor</div></div><div class="grid-col-8">Madison Olson</div></div><div class="grid-row margin-bottom-3"><div class="grid-col-4"><div class="subheading">Contact</div></div><div class="grid-col-8"><div class="margin-bottom-3"><div>Rob Garner</div><div><a href="mailto:r&#111;&#98;&#46;g&#97;&#114;ner&#64;&#110;asa&#46;gov">&#114;o&#98;&#46;&#103;&#97;&#114;ne&#114;&#64;n&#97;sa.&#103;ov</a></div></div></div></div><div class="grid-row"><div class="grid-col-4"><div class="subheading">Location</div></div><div class="grid-col-8">Goddard Space Flight Center</div></div> </div>
  1372. </div>
  1373. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0"><div class="padding-top-3 border-top-1px border-color-carbon-black "><div class="margin-bottom-2"><h2 class="heading-14">Related Terms</h2></div><ul class="article-tags"><li class="article-tag"><a href="https://www.nasa.gov/goddard/">Goddard Space Flight Center</a></li><li class="article-tag"><a href="https://science.nasa.gov/mission/hubble" rel="noopener">Hubble Space Telescope</a></li><li class="article-tag"><a href="https://science.nasa.gov/mission/roman-space-telescope" rel="noopener">Nancy Grace Roman Space Telescope</a></li><li class="article-tag"><a href="https://www.nasa.gov/people-of-nasa/goddard-people/">People of Goddard</a></li><li class="article-tag"><a href="https://www.nasa.gov/people-of-nasa/">People of NASA</a></li></ul></div></div>
  1374. </div>
  1375. </section>
  1376. </div>
  1377.  
  1378. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 hds-module hds-module-full wp-block-nasa-blocks-related-articles"> <section class="hds-related-articles padding-x-0 padding-y-3 desktop:padding-top-7 desktop:padding-bottom-9">
  1379. <div class="w-100 grid-row grid-container maxw-widescreen padding-0 text-align-left">
  1380. <div class="margin-bottom-4"><h2 style="max-width: 100%;" class="width-full w-full maxw-full">Explore More</h2></div>
  1381. </div>
  1382. <div class="grid-row grid-container maxw-widescreen padding-0">
  1383. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1384. <a href="https://www.nasa.gov/centers-and-facilities/goddard/lynn-bassford-prioritizes-learning-as-a-hubble-mission-manager/" class="color-carbon-black">
  1385. <div class="margin-bottom-2">
  1386. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1387. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="290" src="https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg 1667w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=300,290 300w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=768,743 768w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=1024,990 1024w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=1536,1485 1536w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=400,387 400w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=600,580 600w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=900,870 900w, https://www.nasa.gov/wp-content/uploads/2023/10/lynn-bassford-headshot-crop2.jpg?resize=1200,1160 1200w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  1388. </div>
  1389. <div class="padding-right-0 desktop:padding-right-10">
  1390. <div class="subheading margin-bottom-1">6 min read</div>
  1391. <div class="margin-bottom-1"><h3 class="related-article-title">Lynn Bassford Prioritizes Learning as a Hubble Mission Manager</h3></div>
  1392. <p class="p-md color-carbon-60">Lynn Bassford levels decades of experience and a desire for self-growth as she helps lead&hellip;</p>
  1393. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1394. <span class="display-flex flex-align-center margin-right-2">
  1395. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  1396. <span>Article</span>
  1397. </span>
  1398. <span class="">
  1399. 7 months ago </span>
  1400. </div>
  1401. </div>
  1402. </a>
  1403. </div>
  1404. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1405. <a href="https://www.nasa.gov/centers-and-facilities/goddard/melissa-harris-propelling-space-telescopes-toward-success/" class="color-carbon-black">
  1406. <div class="margin-bottom-2">
  1407. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1408. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="200" src="https://www.nasa.gov/wp-content/uploads/2023/06/fd56e0b2-5731-41e4-b48d-91930eaf3b50.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2023/06/fd56e0b2-5731-41e4-b48d-91930eaf3b50.jpg 985w, https://www.nasa.gov/wp-content/uploads/2023/06/fd56e0b2-5731-41e4-b48d-91930eaf3b50.jpg?resize=300,200 300w, https://www.nasa.gov/wp-content/uploads/2023/06/fd56e0b2-5731-41e4-b48d-91930eaf3b50.jpg?resize=768,512 768w, https://www.nasa.gov/wp-content/uploads/2023/06/fd56e0b2-5731-41e4-b48d-91930eaf3b50.jpg?resize=400,267 400w, https://www.nasa.gov/wp-content/uploads/2023/06/fd56e0b2-5731-41e4-b48d-91930eaf3b50.jpg?resize=600,400 600w, https://www.nasa.gov/wp-content/uploads/2023/06/fd56e0b2-5731-41e4-b48d-91930eaf3b50.jpg?resize=900,600 900w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  1409. </div>
  1410. <div class="padding-right-0 desktop:padding-right-10">
  1411. <div class="subheading margin-bottom-1">5 min read</div>
  1412. <div class="margin-bottom-1"><h3 class="related-article-title">Melissa Harris: Propelling Space Telescopes Toward Success</h3></div>
  1413. <p class="p-md color-carbon-60">Melissa Harris is an engineer working on the propulsion system for the Nancy Grace Roman&hellip;</p>
  1414. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1415. <span class="display-flex flex-align-center margin-right-2">
  1416. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  1417. <span>Article</span>
  1418. </span>
  1419. <span class="">
  1420. 11 months ago </span>
  1421. </div>
  1422. </div>
  1423. </a>
  1424. </div>
  1425. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1426. <a href="https://www.nasa.gov/centers-and-facilities/goddard/glenn-bazemore-professional-problem-solver/" class="color-carbon-black">
  1427. <div class="margin-bottom-2">
  1428. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1429. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="219" height="300" src="https://www.nasa.gov/wp-content/uploads/2023/08/microsoftteams-image_17_3.png?w=219" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://www.nasa.gov/wp-content/uploads/2023/08/microsoftteams-image_17_3.png 320w, https://www.nasa.gov/wp-content/uploads/2023/08/microsoftteams-image_17_3.png?resize=219,300 219w, https://www.nasa.gov/wp-content/uploads/2023/08/microsoftteams-image_17_3.png?resize=292,400 292w" sizes="(max-width: 219px) 100vw, 219px" /></figure> </div>
  1430. </div>
  1431. <div class="padding-right-0 desktop:padding-right-10">
  1432. <div class="subheading margin-bottom-1">6 min read</div>
  1433. <div class="margin-bottom-1"><h3 class="related-article-title">Glenn Bazemore: Professional Problem-Solver</h3></div>
  1434. <p class="p-md color-carbon-60">Glenn Bazemore is a mechanical engineer working on the Nancy Grace Roman Space Telescope Team.&hellip;</p>
  1435. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1436. <span class="display-flex flex-align-center margin-right-2">
  1437. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  1438. <span>Article</span>
  1439. </span>
  1440. <span class="">
  1441. 9 months ago </span>
  1442. </div>
  1443. </div>
  1444. </a>
  1445. </div>
  1446. </div>
  1447. </section>
  1448. </div>]]></content:encoded>
  1449. </item>
  1450. <item>
  1451. <title>Breaking the Scaling Limits: New Ultralow-noise Superconducting Camera for Exoplanet Searches</title>
  1452. <link>https://science.nasa.gov/science-research/astrophysics/breaking-the-scaling-limits-new-ultralow-noise-superconducting-camera-for-exoplanet-searches/</link>
  1453. <dc:creator><![CDATA[]]></dc:creator>
  1454. <pubDate>Tue, 07 May 2024 14:48:41 +0000</pubDate>
  1455. <category><![CDATA[Astrophysics]]></category>
  1456. <category><![CDATA[Exoplanet Science]]></category>
  1457. <category><![CDATA[Exoplanets]]></category>
  1458. <category><![CDATA[Science-enabling Technology]]></category>
  1459. <category><![CDATA[Studying Exoplanets]]></category>
  1460. <category><![CDATA[Technology Highlights]]></category>
  1461. <category><![CDATA[The Universe]]></category>
  1462. <guid isPermaLink="false">https://science.nasa.gov/science-research/astrophysics/breaking-the-scaling-limits-new-ultralow-noise-superconducting-camera-for-exoplanet-searches/</guid>
  1463.  
  1464. <description><![CDATA[When imaging faint objects such as distant stars or exoplanets, capturing every last bit of light is crucial to get the most out of a scientific mission. These cameras must be extremely low-noise, and be able to detect the smallest quantities of light—single photons.  Superconducting cameras excel in both of these criteria, but have historically […]]]></description>
  1465. <content:encoded><![CDATA[<div id="" class="hds-article-hero-header nasa-gb-align-full bg-carbon-90 width-full maxw-full color-mode-dark hds-module hds-module-full wp-block-nasa-blocks-article-hero-header"> <div class="hds-cover-wrapper width-full maxw-full minh-tablet grid-container minh-tablet flex-column padding-0">
  1466. <div class="hds-foreground-wrapper display-flex flex-direction-column">
  1467. <div class="grid-container grid-container-block margin-top-auto width-full maxw-desktop-lg padding-y-9 padding-x-3 desktop:padding-x-0 z-400">
  1468. <div class="z-400 grid-col-12 tablet:grid-col-12 desktop:grid-col-7 z-400">
  1469. <div class="margin-0">
  1470. <div class="label color-spacesuit-white margin-bottom-2">6 Min Read</div>
  1471. <h1 class="heading-41 line-height-md color-spacesuit-white-important">
  1472. Breaking the Scaling Limits: New Ultralow-noise Superconducting Camera for Exoplanet Searches </h1>
  1473. </div>
  1474. </div>
  1475. <div class="grid-col-12 tablet:grid-col-12 desktop:grid-col-5"></div>
  1476. <div class="skrim-overlay skrim-left mobile-skrim-top z-200"></div>
  1477. <figure class="hds-media-background  "><img fetchpriority="high" decoding="async" width="1536" height="1152" src="https://science.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?w=1536" class="attachment-1536x1536 size-1536x1536" alt="A microscope image of a rectangular chip, showing the different parts of the superconducting camera, including imaging area and ancillary electronics. The chip has a colorful patina, with hues of yellow on the left, red in the center, and blue on the right." style="transform: scale(1); transform-origin: 51% 48%; object-position: 51% 48%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg 2048w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=300,225 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=768,576 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=1024,768 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=1536,1152 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=400,300 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=600,450 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=900,675 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=1200,900 1200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=2000,1500 2000w" sizes="(max-width: 1536px) 100vw, 1536px" loading="eager" /></figure> </div>
  1478. </div>
  1479. </div>
  1480. <div class="padding-y-3 padding-x-3">
  1481. <div class="grid-container grid-container-block padding-x-0">
  1482. </div>
  1483. </div>
  1484. </div>
  1485.  
  1486.  
  1487. <p>When imaging faint objects such as distant stars or exoplanets, capturing every last bit of light is crucial to get the most out of a scientific mission. These cameras must be extremely low-noise, and be able to detect the smallest quantities of light—single photons.  Superconducting cameras excel in both of these criteria, but have historically not been widely applicable because their camera sizes have been small, rarely exceeding a few thousand pixels, which limits their ability to capture high-resolution images.  However, a team of researchers has recently shattered that barrier, developing a superconducting camera with 400,000 pixels, which could be used to detect faint astronomical signals in a wide range of wavelengths—from the ultraviolet to the infrared.</p>
  1488.  
  1489.  
  1490. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://science.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg" rel="noopener"><img loading="lazy" decoding="async" width="2048" height="1536" src="https://science.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="A microscope image of a rectangular chip, showing the different parts of the superconducting camera, including imaging area and ancillary electronics. The chip has a colorful patina, with hues of yellow on the left, red in the center, and blue on the right." style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg 2048w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=300,225 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=768,576 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=1024,768 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=1536,1152 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=400,300 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=600,450 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=900,675 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=1200,900 1200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/20220808-131853.jpg?resize=2000,1500 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">The 400,000 pixel superconducting camera based on superconducting-nanowire single photon detectors </div><div class="hds-credits">Credit: Adam McCaughan/NIST</div></figcaption></div></div></div>
  1491.  
  1492.  
  1493. <p>While plenty of other camera technologies exist, cameras using superconducting detectors are very appealing for use in astronomical missions due to their extremely low-noise operation.  When imaging faint sources, it is crucial that a camera report the quantity of received light faithfully, and not skew the amount of light received or inject its own false signals.   Superconducting detectors are more than capable of this task, owing to their low-temperature operation and unique composition. As described by project lead Dr. Adam McCaughan, “with these detectors you could take data all day long, capturing billions of photons, and fewer than ten of those photons would be the result of noise.”</p>
  1494.  
  1495.  
  1496. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://science.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg" rel="noopener"><img loading="lazy" decoding="async" width="2048" height="1538" src="https://science.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="Two NIST team members stand beside an exposed cryogenic refrigerator, wearing gloves while affixing an aluminum sample box with wires coming out of it to a copper sample stage" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg 4624w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=300,225 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=768,577 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=1024,769 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=1536,1153 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=2048,1538 2048w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=400,300 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=600,451 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=900,676 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=1200,901 1200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/pxl-20231109-212035127.jpg?resize=2000,1502 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">NIST team members Bakhrom Oripov (left) and Ryan Morgenstern (right) mount the superconducting camera to a specialized cryogenic stage </div><div class="hds-credits">Credit: Adam McCaughan/NIST</div></figcaption></div></div></div>
  1497.  
  1498.  
  1499. <p>But while superconducting detectors hold great promise for astronomical applications, their usage in that field has been stymied by small camera sizes that permit relatively few pixels.  Because these detectors are so sensitive, it is difficult to pack a lot of them into a small area without them interfering with each other.  In addition, since these detectors need to be kept cold in a cryogenic refrigerator, only a handful of wires can be used to carry the signals from the camera to the warmer readout electronics.</p>
  1500.  
  1501.  
  1502.  
  1503. <p>To overcome these limitations, researchers at the National Institute of Standards and Technology (NIST), the NASA Jet Propulsion Laboratory (JPL), and the University of Colorado Boulder applied time-domain multiplexing technology to the interrogation of two-dimensional superconducting-nanowire single photon detector (SNSPD) arrays. The individual SNSPD nanowires are arranged as intersecting rows and columns. When a photon arrives, the times it takes to trigger a row detector and a column detector are measured to ascertain which pixel sent the signal. This method allows the camera to efficiently encode its many rows and columns onto just a few readout wires instead of thousands of wires. </p>
  1504.  
  1505.  
  1506. <div id="" class="width-full maxw-full margin-left-auto margin-right-auto hds-media-align-inline hds-module wp-block-nasa-blocks-video"><div class="hds-cover-wrapper width-full maxw-full flex-column"><div class="hds-video-container width-full embed-container"><video title="single-photon-superconducting-camera-video-download" id="nasa-plus-dJvfO" class="video-js video-player vjs-fluid width-full" data-setup='{"controls":true,"preload":"auto","plugins":{"mux":{"debug":false,"data":{"env_key":"91nns8oppqdfqc44lgo4b1gni","player_name":"www.nasa.gov Player","video_name":"single-photon-superconducting-camera-video-download"}}}}'  ><source src="https://science.nasa.gov/wp-content/uploads/2024/05/single-photon-superconducting-camera-video-download.mp4" type="video/mp4"><p class="vjs-no-js">To view this video please enable JavaScript, and consider upgrading to a web browser that
  1507. <a href="https://videojs.com/html5-video-support/" target="_blank" rel="noopener">supports HTML5 video</a></p></video></div></div><div class="hds-media-caption hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0"><div>This animation depicts the newly developed readout system that made it possible for researchers to build a 400,000 single-wire superconducting camera, the highest resolution camera of its type.</div></div><div class="hds-credits"><div>Credit: S. Kelley/NIST</div></div></div></div>
  1508.  
  1509.  
  1510. <p>SNSPDs are one type of detector in a collection of many such superconducting detector technologies, including microwave kinetic inductance detectors (MKID), transition-edge sensors (TES), and quantum capacitance detectors (QCD).  SNSPDs are unique in that they are able to operate much warmer than the millikelvin temperatures required by those other technologies, and can have extremely good timing resolution, although they are not able to resolve the color of individual photons.  SNSPDs have been collaboratively researched by NIST, JPL, and others in the community for almost two decades, and this most recent work was only possible thanks to the advances generated by the wider superconducting detector community.</p>
  1511.  
  1512.  
  1513.  
  1514. <p>Once the team implemented this readout architecture, they found it immediately became straightforward to construct superconducting cameras with extremely large numbers of pixels. As described by technical lead Dr. Bakhrom Oripov, “The big advance here is that the detectors are truly independent, so if you want a camera with more pixels, you just add more detectors to the chip.” The researchers note that while their recent project was a 400,000 pixel device, they also have an upcoming demonstration of a device with over a million pixels, and have not found an upper limit yet. </p>
  1515.  
  1516.  
  1517.  
  1518. <p>One of the most exciting things that the researchers think their camera could be useful for is a search for Earth-like planets outside of our solar system. To detect these planets successfully, future space telescopes will observe distant stars and look for tiny portions of reflected or emitted light coming from orbiting planets. Detecting and analyzing these signals is extremely challenging and requires very long exposures, which means that every photon collected by the telescope is very valuable. A reliable, low-noise camera will be critical to detect these incredibly small quantities of light.</p>
  1519.  
  1520.  
  1521. <div id="" class="hds-media hds-module wp-block-image"><div class="margin-left-auto margin-right-auto nasa-block-align-inline"><div class="hds-media-wrapper margin-left-auto margin-right-auto"><figure class="hds-media-inner hds-cover-wrapper hds-media-ratio-cover "><a href="https://science.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg" rel="noopener"><img loading="lazy" decoding="async" width="2048" height="1045" src="https://science.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?w=2048" class="attachment-2048x2048 size-2048x2048" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg 5830w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=300,153 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=768,392 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=1024,523 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=1536,784 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=2048,1045 2048w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=400,204 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=600,306 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=900,459 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=1200,613 1200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/emanuelandrewjasonboris.jpg?resize=2000,1021 2000w" sizes="(max-width: 2048px) 100vw, 2048px" /></a></figure><figcaption class="hds-caption padding-y-2"><div class="hds-caption-text p-sm margin-0">JPL team members with two prototype cryocoolers that will be used to test the superconducting camera at far-ultraviolet wavelengths. From left to right, Emanuel Knehr, Boris Korzh, Jason Allmaras, and Andrew Beyer </div><div class="hds-credits">Credit: Boris Korzh/NASA JPL</div></figcaption></div></div></div>
  1522.  
  1523.  
  1524. <p>SNSPD cameras can also be used on Earth to detect optical communication signals from missions in deep space. In fact, NASA is currently demonstrating this capability via the <a href="https://www.nasa.gov/mission/deep-space-optical-communications-dsoc/">Deep Space Optical Communications (DSOC) project,</a> which is the first demonstration of free-space optical communication from interplanetary space. DSOC is sending data from a spacecraft called Psyche—which was launched on October 13 and is on its way to the Psyche asteroid—to an SNSPD-based ground terminal at Palomar Observatory. Optical links can transmit data at a much higher rate than radio frequency links from interplanetary distances. The excellent timing resolution of the camera developed for the ground station receiving Psyche data allows it to decode optical data from the spacecraft, which enables much more data to be received in a given time than if radio signals were employed.</p>
  1525.  
  1526.  
  1527.  
  1528. <p>These sensors will also be useful for many applications on Earth. Because the operating wavelength of this camera is very flexible, it could be optimized for applications in biomedical imaging to detect faint signals from cells and molecules, which were previously not detectable. Dr. McCaughan noted, “We would love to get these cameras in the hands of neuroscientists. This technology could provide them with a new tool to study our brains, in a completely non-intrusive way.”</p>
  1529.  
  1530.  
  1531.  
  1532. <p>Finally, the rapidly growing field of quantum technology, which promises to change the way we secure communications and transactions as well as the way we simulate and optimize complex processes, also stands to gain from this exciting technology. A single photon can be used to transfer or compute a single bit of quantum information. Many companies and governments are currently trying to scale up quantum computers and communication links and access to a single-photon camera that is so easily scalable, could overcome one of the major hurdles to unlocking the full potential of quantum technologies.</p>
  1533.  
  1534.  
  1535.  
  1536. <p>According to the research team, the next steps will be to take this initial demonstration and optimize it for space applications.  “Right now, we have a proof-of-concept demonstration,” says co-project lead Dr. Boris Korzh, “but we’ll need to optimize it to show its full potential.” The research team is currently planning ultra-high-efficiency camera demonstrations that will validate the utility of this new technology in both the ultraviolet and the infrared.</p>
  1537.  
  1538.  
  1539.  
  1540. <h3 class="wp-block-heading" id="h-project-leads">PROJECT LEADS</h3>
  1541.  
  1542.  
  1543.  
  1544. <p>Dr. Adam McCaughan (NIST) and Dr. Boris Korzh (JPL)</p>
  1545.  
  1546.  
  1547.  
  1548. <h3 class="wp-block-heading" id="h-sponsoring-organizations">SPONSORING ORGANIZATIONS</h3>
  1549.  
  1550.  
  1551.  
  1552. <p>Astrophysics Research and Analysis (APRA) Program, DARPA Invisible Headlight Program</p>
  1553.  
  1554.  
  1555. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 article_a hds-module hds-module-full wp-block-nasa-blocks-credits-and-details">
  1556. <section class="padding-x-0 padding-top-5 padding-bottom-2 desktop:padding-top-7 desktop:padding-bottom-9">
  1557. <div class="grid-row grid-container maxw-widescreen padding-0">
  1558. <div class="grid-col-12 desktop:grid-col-2 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  1559. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  1560. <div class="margin-bottom-2">
  1561. <h2 class="heading-14">Share</h2>
  1562. </div>
  1563. <div class="padding-bottom-2">
  1564. <ul class="social-icons social-icons-round">
  1565. <li class="social-icon social-icon-x">
  1566. <a href="https://x.com/intent/tweet?via=NASA&#038;text=Breaking%20the%20Scaling%20Limits%3A%20New%20Ultralow-noise%20Superconducting%20Camera%20for%20Exoplanet%20Searches&#038;url=https%3A%2F%2Fscience.nasa.gov%2Fscience-research%2Fastrophysics%2Fbreaking-the-scaling-limits-new-ultralow-noise-superconducting-camera-for-exoplanet-searches%2F" aria-label="Share on X.">
  1567. <svg width="1200" height="1227" viewBox="0 0 1200 1227" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M714.163 519.284L1160.89 0H1055.03L667.137 450.887L357.328 0H0L468.492 681.821L0 1226.37H105.866L515.491 750.218L842.672 1226.37H1200L714.137 519.284H714.163ZM569.165 687.828L521.697 619.934L144.011 79.6944H306.615L611.412 515.685L658.88 583.579L1055.08 1150.3H892.476L569.165 687.854V687.828Z" fill="white"/></svg>
  1568. </a>
  1569. </li>
  1570. <li class="social-icon social-icon-facebook">
  1571. <a href="https://www.facebook.com/sharer.php?u=https%3A%2F%2Fscience.nasa.gov%2Fscience-research%2Fastrophysics%2Fbreaking-the-scaling-limits-new-ultralow-noise-superconducting-camera-for-exoplanet-searches%2F" aria-label="Share on Facebook." rel="noopener">
  1572. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M9 8h-3v4h3v12h5v-12h3.642l.358-4h-4v-1.667c0-.955.192-1.333 1.115-1.333h2.885v-5h-3.808c-3.596 0-5.192 1.583-5.192 4.615v3.385z"/></svg>
  1573. </a>
  1574. </li>
  1575. <li class="social-icon social-icon-linkedin">
  1576. <a href="https://www.linkedin.com/shareArticle?mini=true&#038;url=https%3A%2F%2Fscience.nasa.gov%2Fscience-research%2Fastrophysics%2Fbreaking-the-scaling-limits-new-ultralow-noise-superconducting-camera-for-exoplanet-searches%2F" aria-label="Share on LinkedIn." rel="noopener">
  1577. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" aria-hidden="true"><path d="M4.98 3.5c0 1.381-1.11 2.5-2.48 2.5s-2.48-1.119-2.48-2.5c0-1.38 1.11-2.5 2.48-2.5s2.48 1.12 2.48 2.5zm.02 4.5h-5v16h5v-16zm7.982 0h-4.968v16h4.969v-8.399c0-4.67 6.029-5.052 6.029 0v8.399h4.988v-10.131c0-7.88-8.922-7.593-11.018-3.714v-2.155z"/></svg>
  1578. </a>
  1579. </li>
  1580. <li class="social-icon social-icon-rss">
  1581. <a href="/feed/" aria-label="Subscribe to RSS feed.">
  1582. <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 800 800" aria-hidden="true"><path d="M493 652H392c0-134-111-244-244-244V307c189 0 345 156 345 345zm71 0c0-228-188-416-416-416V132c285 0 520 235 520 520z"/><circle cx="219" cy="581" r="71"/></svg>
  1583. </a>
  1584. </li>
  1585. </ul>
  1586. </div>
  1587. </div>
  1588. </div>
  1589. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0">
  1590. <div class="padding-top-3 border-top-1px border-color-carbon-black">
  1591. <div class="margin-bottom-2">
  1592. <h2 class="heading-14">Details</h2>
  1593. </div>
  1594. <div class="grid-row margin-bottom-3">
  1595. <div class="grid-col-4">
  1596. <div class="subheading">Last Updated</div>
  1597. </div>
  1598. <div class="grid-col-8">May 07, 2024</div>
  1599. </div>
  1600. </div>
  1601. </div>
  1602. <div class="grid-col-12 desktop:grid-col-5 padding-right-4 margin-bottom-5 desktop:margin-bottom-0"><div class="padding-top-3 border-top-1px border-color-carbon-black "><div class="margin-bottom-2"><h2 class="heading-14">Related Terms</h2></div><ul class="article-tags"><li class="article-tag"><a href="https://science.nasa.gov/astrophysics/" rel="noopener">Astrophysics</a></li><li class="article-tag"><a href="https://science.nasa.gov/category/science-research/astrophysics/exoplanet-science/" rel="noopener">Exoplanet Science</a></li><li class="article-tag"><a href="https://science.nasa.gov/exoplanets/" rel="noopener">Exoplanets</a></li><li class="article-tag"><a href="https://science.nasa.gov/technology" rel="noopener">Science-enabling Technology</a></li><li class="article-tag"><a href="https://science.nasa.gov/astrophysics/programs/exep/" rel="noopener">Studying Exoplanets</a></li><li class="article-tag"><a href="https://science.nasa.gov/technology-highlights/" rel="noopener">Technology Highlights</a></li><li class="article-tag"><a href="https://science.nasa.gov/universe/" rel="noopener">The Universe</a></li></ul></div></div>
  1603. </div>
  1604. </section>
  1605. </div>
  1606.  
  1607. <div id="" class="nasa-gb-align-full width-full maxw-full padding-x-3 padding-y-0 hds-module hds-module-full wp-block-nasa-blocks-related-articles"> <section class="hds-related-articles padding-x-0 padding-y-3 desktop:padding-top-7 desktop:padding-bottom-9">
  1608. <div class="w-100 grid-row grid-container maxw-widescreen padding-0 text-align-left">
  1609. <div class="margin-bottom-4"><h2 style="max-width: 100%;" class="width-full w-full maxw-full">Explore More</h2></div>
  1610. </div>
  1611. <div class="grid-row grid-container maxw-widescreen padding-0">
  1612. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1613. <a href="https://science.nasa.gov/supermassive-black-holes/new-nasa-black-hole-visualization-takes-viewers-beyond-the-brink/" class="color-carbon-black" rel="noopener">
  1614. <div class="margin-bottom-2">
  1615. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1616. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="169" src="https://science.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg 1281w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?resize=300,169 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?resize=768,432 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?resize=1024,576 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?resize=400,225 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?resize=600,337 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?resize=900,506 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/black-hole-approach-1.jpg?resize=1200,674 1200w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  1617. </div>
  1618. <div class="padding-right-0 desktop:padding-right-10">
  1619. <div class="subheading margin-bottom-1">5 min read</div>
  1620. <div class="margin-bottom-1"><h3 class="related-article-title">New NASA Black Hole Visualization Takes Viewers Beyond the Brink</h3></div>
  1621. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1622. <span class="display-flex flex-align-center margin-right-2">
  1623. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  1624. <span>Article</span>
  1625. </span>
  1626. <span class="">
  1627. 22 hours ago </span>
  1628. </div>
  1629. </div>
  1630. </a>
  1631. </div>
  1632. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1633. <a href="https://science.nasa.gov/missions/hubble/hubble-views-a-galaxy-with-a-voracious-black-hole/" class="color-carbon-black" rel="noopener">
  1634. <div class="margin-bottom-2">
  1635. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1636. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="290" src="https://science.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg 4058w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=300,290 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=768,743 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=1024,991 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=1536,1486 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=2048,1982 2048w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=400,387 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=600,581 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=900,871 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=1200,1161 1200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ngc4951-1ok-flatcrop-final.jpg?resize=2000,1935 2000w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  1637. </div>
  1638. <div class="padding-right-0 desktop:padding-right-10">
  1639. <div class="subheading margin-bottom-1">2 min read</div>
  1640. <div class="margin-bottom-1"><h3 class="related-article-title">Hubble Views a Galaxy with a Voracious Black Hole</h3></div>
  1641. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1642. <span class="display-flex flex-align-center margin-right-2">
  1643. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  1644. <span>Article</span>
  1645. </span>
  1646. <span class="">
  1647. 1 day ago </span>
  1648. </div>
  1649. </div>
  1650. </a>
  1651. </div>
  1652. <div class="grid-col-12 desktop:grid-col-4 margin-bottom-4 desktop:margin-bottom-0 desktop:padding-right-3">
  1653. <a href="https://science.nasa.gov/missions/hubble/hubble-hunts-visible-light-sources-of-x-rays/" class="color-carbon-black" rel="noopener">
  1654. <div class="margin-bottom-2">
  1655. <div class="hds-cover-wrapper cover-hover-zoom bg-carbon-black minh-mobile">
  1656. <figure class="hds-media-background  "><img loading="lazy" decoding="async" width="300" height="300" src="https://science.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?w=300" class="attachment-medium size-medium" alt="" style="transform: scale(1); transform-origin: 50% 50%; object-position: 50% 50%; object-fit: cover;" block_context="nasa-block" srcset="https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg 2608w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=150,150 150w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=300,300 300w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=768,768 768w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=1024,1024 1024w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=1536,1536 1536w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=2048,2048 2048w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=50,50 50w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=100,100 100w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=200,200 200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=400,400 400w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=600,600 600w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=900,900 900w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=1200,1200 1200w, https://smd-cms.nasa.gov/wp-content/uploads/2024/05/hubble-ic776-potw2418a.jpg?resize=2000,2000 2000w" sizes="(max-width: 300px) 100vw, 300px" /></figure> </div>
  1657. </div>
  1658. <div class="padding-right-0 desktop:padding-right-10">
  1659. <div class="subheading margin-bottom-1">2 min read</div>
  1660. <div class="margin-bottom-1"><h3 class="related-article-title">Hubble Hunts Visible Light Sources of X-Rays</h3></div>
  1661. <div class="display-flex flex-align-center label related-article-label margin-bottom-1 color-carbon-60">
  1662. <span class="display-flex flex-align-center margin-right-2">
  1663. <svg version="1.1" class="square-2 margin-right-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="16px" height="16px" viewBox="0 0 16 16" style="enable-background:new 0 0 16 16;" xml:space="preserve"><g><g><path d="M8,0C3.5,0-0.1,3.7,0,8.2C0.1,12.5,3.6,16,8,16c4.4,0,8-3.6,8-8C16,3.5,12.4,0,8,0z M8,15.2 C4,15.2,0.8,12,0.8,8C0.8,4,4,0.8,8,0.8c3.9,0,7.2,3.2,7.2,7.1C15.2,11.9,12,15.2,8,15.2z"/><path d="M5.6,12c0.8-0.8,1.6-1.6,2.4-2.4c0.8,0.8,1.6,1.6,2.4,2.4c0-2.7,0-5.3,0-8C8.8,4,7.2,4,5.6,4 C5.6,6.7,5.6,9.3,5.6,12z"/></g></g></svg>
  1664. <span>Article</span>
  1665. </span>
  1666. <span class="">
  1667. 4 days ago </span>
  1668. </div>
  1669. </div>
  1670. </a>
  1671. </div>
  1672. </div>
  1673. </section>
  1674. </div>]]></content:encoded>
  1675. </item>
  1676. </channel>
  1677. </rss>
  1678.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//www.nasa.gov/rss/breaking_news.rss

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda