Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://eps.site-ym.com/resource/rss/news.rss

  1.  
  2. <rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
  3. <channel>
  4. <title>News &amp; Press</title>
  5. <link>https://members.eps.org/news/</link>
  6. <description><![CDATA[ Read about recent events, essential information and the latest community news.  ]]></description>
  7. <lastBuildDate>Mon, 30 Jun 2025 17:40:58 GMT</lastBuildDate>
  8. <pubDate>Thu, 23 Jan 2025 14:38:00 GMT</pubDate>
  9. <copyright>Copyright &#xA9; 2025 European Physical Society (EPS)</copyright>
  10. <atom:link href="http://members.eps.org/resource/rss/news.rss" rel="self" type="application/rss+xml"></atom:link>
  11. <item>
  12. <title>World&apos;s darkest and clearest skies at risk from industrial megaproject</title>
  13. <link>https://members.eps.org/news/691797/</link>
  14. <guid>https://members.eps.org/news/691797/</guid>
  15. <description><![CDATA[<p class="text_intro pr_first" style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/newsletter-25/potw2124a.jpg" style="width: 750px;" /><br />Image credit: ESO<br /></p><h4 class="text_intro pr_first">On December 24th, AES Andes, a subsidiary
  16. of the US power company AES Corporation, submitted a project for a
  17. massive industrial complex for environmental impact assessment. This
  18. complex threatens the pristine skies above ESO’s Paranal Observatory in
  19. Chile’s Atacama Desert, the darkest and clearest of any astronomical
  20. observatory in the world <a href="https://www.eso.org/public/news/eso2501/#1">[1]</a>.
  21. The industrial megaproject is planned to be located just 5 to 11
  22. kilometres from telescopes at Paranal, which would cause irreparable
  23. damage to astronomical observations, in particular due to light
  24. pollution emitted throughout the project’s operational life. Relocating
  25. the complex would save one of Earth's last truly pristine dark skies.</h4>
  26. <h4 dir="ltr">An irreplaceable heritage for humanity&nbsp;</h4>
  27. <p dir="ltr">Since its inauguration in 1999, Paranal Observatory, built
  28. and operated by the European Southern Observatory (ESO), has led to
  29. significant astronomy breakthroughs, such as the first image of an
  30. exoplanet and confirming the accelerated expansion of the Universe. The
  31. Nobel Prize in Physics in 2020 was awarded for research on the
  32. supermassive black hole at the centre of the Milky Way, in which Paranal
  33. telescopes were instrumental. The observatory is a key asset for
  34. astronomers worldwide, including those in Chile, which has seen its
  35. astronomical community grow substantially in the last decades.
  36. Additionally, the nearby Cerro Armazones hosts the construction of ESO’s
  37. Extremely Large Telescope (ELT), the world’s biggest telescope of its
  38. kind — a revolutionary facility that will dramatically change what we
  39. know about our Universe.</p>
  40. <p dir="ltr"><em>“The proximity of the AES Andes industrial megaproject
  41. to Paranal poses a critical risk to the most pristine night skies on the
  42. planet,”</em> highlighted ESO Director General, Xavier Barcons. <em>“Dust
  43. emissions during construction, increased atmospheric turbulence, and
  44. especially light pollution will irreparably impact the capabilities for
  45. astronomical observation, which have thus far attracted
  46. multi-billion-Euro investments by the governments of the ESO Member
  47. States.”</em></p>
  48. <h4 dir="ltr">The unprecedented impact of a megaproject&nbsp;</h4>
  49. <p dir="ltr">The project encompasses an industrial complex of more than
  50. 3000 hectares, which is close to the size of a city, or district, such
  51. as Valparaiso, Chile or Garching near Munich, Germany. It includes
  52. constructing a port, ammonia and hydrogen production plants and
  53. thousands of electricity generation units near Paranal.</p>
  54. <p dir="ltr">Thanks to its atmospheric stability and lack of light
  55. pollution, the Atacama Desert is a unique natural laboratory for
  56. astronomical research. These attributes are essential for scientific
  57. projects that aim to address fundamental questions, such as the origin
  58. and evolution of the Universe or the quest for life and the habitability
  59. of other planets.</p>
  60. <h4 dir="ltr">A call to protect the Chilean skies&nbsp;</h4>
  61. <p dir="ltr"><em>“Chile, and in particular Paranal, is a truly special
  62. place for astronomy —&nbsp;its dark skies are a natural heritage that
  63. transcends its borders and benefits all humanity,”</em> said Itziar de Gregorio, ESO’s Representative in Chile.<em>
  64. “It is crucial to consider alternative locations for this megaproject
  65. that do not endanger one of the world's most important astronomical
  66. treasures.”</em></p>
  67. <p dir="ltr">The relocation of this project remains the only effective
  68. way to prevent irreversible damage to Paranal's unique skies. This
  69. measure will not only safeguard the future of astronomy but also
  70. preserve one of the last truly pristine dark skies on Earth.</p>
  71. <h3>Notes</h3><p dir="ltr"><a class="anchor" name="1"></a>[1] A <a href="https://academic.oup.com/mnras/article/519/1/26/6936422">study</a> by Falchi and collaborators, published in 2023 in <em>Monthly Notices of the Royal Astronomical Society</em>, compared light pollution at all 28 major astronomical observatories, finding Paranal to be the darkest site among them.</p>
  72.  
  73.  
  74. <h3><br /></h3>]]></description>
  75. <category>News From Europe</category>
  76. <pubDate>Thu, 23 Jan 2025 08:51:00 GMT</pubDate>
  77. </item>
  78. <item>
  79. <title>The CTAO Becomes a European Research Infrastructure Consortium</title>
  80. <link>https://members.eps.org/news/690448/</link>
  81. <guid>https://members.eps.org/news/690448/</guid>
  82. <description><![CDATA[<p style="text-align: center;"><strong><img alt="" src="https://www.eps.org/resource/resmgr/newsletter-25/CTAO_Telescopes-1600x840.jpeg" style="width: 750px;" /></strong></p><p style="text-align: center;"><em>image credit: CTAO</em><strong><em></em><br /></strong></p><p><strong>Bologna, Italy, 7 January 2025 –</strong> On January 7, 2025, the <a href="https://commission.europa.eu/index_en" target="_blank" rel="noreferrer noopener">European Commission</a> established the Cherenkov Telescope Array Observatory (CTAO) as a <a href="https://www.eric-forum.eu/" target="_blank" rel="noreferrer noopener">European Research Infrastructure Consortium (ERIC)</a>,
  83. furthering its mission to become the world’s largest and most powerful
  84. observatory for gamma-ray astronomy. The creation of the CTAO ERIC will
  85. enable the Observatory’s construction to advance rapidly and provide a
  86. framework for distributing its data worldwide, significantly
  87. accelerating its progress toward scientific discovery.</p>
  88.  
  89.  
  90.  
  91. <p>“The ERIC will streamline the construction and operation of the
  92. Observatory in a way that will undoubtedly help the CTAO attract new
  93. talent and investment as it continues to grow,” stated Dr. Aldo Covello,
  94. Chair of the Board of Governmental Representatives (BGR). “The ERIC
  95. status provides the CTAO with the legal stability and administrative
  96. advantages it needs to be sustainable in its worldwide operations and
  97. impact.”</p>
  98.  
  99.  
  100.  
  101. <p>The CTAO ERIC was established with the international support of 11
  102. countries and one intergovernmental organisation that contribute to the
  103. technological development, construction and operation of the
  104. Observatory. The BGR represents this group and has been responsible for
  105. the preparation of the ERIC.</p>
  106.  
  107.  
  108.  
  109. <p>“We are grateful to our founding members for their support and to the
  110. European Commission for reaffirming their confidence in the CTAO as a
  111. world-class research infrastructure,” said Dr. Stuart McMuldroch, CTAO
  112. Managing Director. “This milestone represents the culmination of years
  113. of dedicated planning by the diverse teams contributing to the success
  114. of the Observatory. With the CTAO ERIC, we now have a powerful
  115. instrument to consolidate our efforts and drive the project forward.”</p>
  116.  
  117.  
  118.  
  119. <p>The ERIC not only provides the Central Organisation with a formal
  120. framework to accept and operate the current telescope prototypes, but it
  121. also allows for the immediate start of construction for the full array
  122. of more than 60 telescopes across both telescope sites in Spain and
  123. Chile. On the CTAO-North site, where the Large-Sized Telescope prototype
  124. (LST-1) is under commissioning, three additional LSTs and one
  125. Medium-Sized Telescope (MST) are expected to be built in the next 1-2
  126. years. Meanwhile, on the CTAO-South site, the first five Small-Sized
  127. Telescopes (SSTs) and two MSTs are expected to be delivered by early
  128. 2026. Thus, with the aid of the ERIC, the Observatory is expected to be
  129. able to operate intermediate array configurations as early as 2026.
  130. These sub-sets of the final arrays will already be more sensitive than
  131. any existing instrument, bringing the Observatory’s early science within
  132. reach.</p>
  133.  
  134.  
  135.  
  136. <p>The impact of the ERIC will extend beyond hardware, influencing
  137. several other key areas. In the coming months, the Observatory will
  138. prepare to integrate and operate advanced software designed to control
  139. the telescopes and their supporting devices on-site, as well as to
  140. manage data processing. Additionally, the ongoing recruitment campaign
  141. will continue across all CTAO facilities, including the CTAO
  142. Headquarters in Italy and the CTAO Science Data Management Centre in
  143. Germany, ensuring robust support for these developments.</p>
  144.  
  145.  
  146.  
  147. <p>The CTAO was promoted to a “Landmark” on the <a href="https://www.ctao.org/news/cta-promoted-to-landmark-status-on-2018-esfri-roadmap/" target="_blank" rel="noreferrer noopener">European Forum on Research Infrastructure (ESFRI) Roadmap 2018</a> and was ranked as the main priority among the new ground-based infrastructures in the <a href="https://www.cta-observatory.org/strategic-plan-for-european-astronomy-ranks-ctao-as-priority/" target="_blank" rel="noreferrer noopener">ASTRONET Roadmap 2022-2035</a>.
  148. Now, after years of extensive preparatory work, and with the final
  149. legal entity in place, the CTAO solidifies its standing in the global
  150. research community, facilitating synergies with other international
  151. organisations and observatories.</p>
  152.  
  153.  
  154.  
  155. <p>“The ERIC status strengthens the presence of the CTAO in Europe and
  156. its role as a key player in the European Research Area, but the support
  157. we have received and the scope of the CTAO ERIC’s influence goes far
  158. beyond European borders,” explained Prof. Federico Ferrini, co-Managing
  159. Director. “To build and operate the world’s largest gamma-ray
  160. observatory that serves the ambitious needs of the global scientific
  161. community, we are counting on an increasing number of partners from
  162. around the world.”&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</p>
  163.  
  164.  
  165.  
  166. <p>The CTAO ERIC Members are Austria, Czech Republic, European Southern
  167. Observatory (ESO), France, Germany, Italy, Poland, Slovenia and Spain.
  168. Additionally, Switzerland is an Observer, Japan is a Strategic Partner
  169. and Australia is a Third Party.</p>]]></description>
  170. <category>News From Europe</category>
  171. <pubDate>Tue, 7 Jan 2025 13:29:00 GMT</pubDate>
  172. </item>
  173. <item>
  174. <title>EPS Divisions and Groups prize calls</title>
  175. <link>https://members.eps.org/news/664314/</link>
  176. <guid>https://members.eps.org/news/664314/</guid>
  177. <description><![CDATA[<p>Please visit the EPS Divisions and Groups websites to see the latest calls for prizes.&nbsp; </p><h3 id="divisions">Divisions</h3><a target="_blank" href="https://www.eps.org/members/group.aspx?id=85184" title="EPS Atomic, Molecular and Optical physics Division">Atomic, Molecular and Optical Physics Division</a><span style="font-style: italic;"> </span><p class="text-left">
  178.            <a target="_blank" href="https://www.eps.org/members/group.aspx?id=85187" title="EPS Condensed Matter Division">Condensed Matter Division</a><span style="font-style: italic;"> </span><br />
  179.            <a href="https://www.eps.org/group/PED" target="_blank" title="EPS Physics Education Division" rel="external">Physics Education Division</a><br />
  180.            <br />
  181.            <a href="http://www.eps.org/group/EPD" rel="external">
  182.            Environmental Physics Division<br />
  183.            </a><a href="http://www.eps.org/group/GPD">
  184.            Gravitational Physics Division</a><br />
  185.            <a href="http://eps-hepp.web.cern.ch/eps-hepp/" target="_blank" title="EPS High Energy &amp; Particle Physics Division" rel="external">High Energy &amp; Particle Physics Division</a><br />
  186.            <a target="_blank" href="http://eps.site-ym.com/members/group.aspx?id=85199" title="EPS Nuclear Physics Division">Nuclear Physics Division</a><br />
  187.            <a href="http://www.eps.org/group/DPL" target="_blank" title="EPS Physics in Life Sciences Division" rel="external"><br />
  188.            Division of Physics in Life Sciences</a><br />
  189.            <a href="http://plasma.ciemat.es/eps/" target="_blank" title="EPS Plasma Physics Division" rel="external">Plasma Physics Division</a>
  190.            <span style="font-style: italic;"> </span><br />
  191.            <a href="http://qeod.epsdivisions.org/" target="_blank" title="EPS Quantum Electronics &amp; Optics Division" rel="external">Quantum Electronics &amp; Optics Division</a><br />
  192.            <a href="https://www.eps.org/members/group.aspx?id=85203" target="_blank" title="EPS European Solar Physics Division" rel="external"><br />
  193.            European Solar Physics Division</a><br />
  194.            <a target="_blank" href="https://www.eps.org/members/group.aspx?id=85204" title="EPS Statistical &amp; Nonlinear Physics Division">Statistical &amp; Nonlinear Physics Division</a>
  195.            </p><h3 id="groups">Groups</h3><a target="_blank" href="https://www.eps-ag.org/" title="EPS Accelerator Group">Accelerator Group</a><p class="text-left">
  196.            <a href="https://www.eps.org/computational_physics">Computational Physics Group</a><br />
  197.            <a target="_blank" href="http://epsenergygroup.eu/" title="EPS Energy Group">Energy Group</a><br />
  198.            <a href="http://www.ehphysg.eu/" title="History of Physics Group">History of Physics Group</a><br />
  199.            <a href="http://www.physdev.org">Physics for Development Group</a><br />
  200.            <a href="https://www.eps.org/members/group.aspx?id=85233">Technology and Innovation Group</a>
  201.            </p><p><a href="https://www.eps.org/members/member_engagement/groups.aspx?id=85199"></a><br /></p>]]></description>
  202. <category>News From Prizes</category>
  203. <pubDate>Tue, 6 Feb 2024 15:50:00 GMT</pubDate>
  204. </item>
  205. <item>
  206. <title>ERC: Europe must prioritise research and innovation to be competitive</title>
  207. <link>https://members.eps.org/news/691819/</link>
  208. <guid>https://members.eps.org/news/691819/</guid>
  209. <description><![CDATA[<div class="info-event__date">
  210.    <div class="event-date-range">
  211.        <div class="field field--name-field-publication-date field--type-datetime field--label-hidden field__item"><strong>17 January 2025, op-ed by Jean Tirole and Maria Leptin
  212.            </strong><hr />
  213.            <div class="wef-1anm32a">
  214.                <ul role="list" class="wef-1cws6pr">
  215.                    <li class="wef-9heu1b"><span>Jean
  216. Tirole, Nobel Prize Laureate at Toulouse School of Economics, together
  217. with ERC President Maria Leptin, explain why Europe must take urgent
  218. action to address the major economic growth gap with the US and China.</span></li>
  219.                    <li class="wef-9heu1b"><span>Research and innovation have been identified as key areas to reignite sustainable growth and drive productivity.</span></li>
  220.                    <li class="wef-9heu1b"><span>European leaders need to adopt strategies that prioritize disruptive R&amp;D and create conditions for innovators to thrive.</span></li>
  221.                </ul>
  222.            </div>
  223.            
  224.        </div>
  225.    </div>
  226. </div>
  227. <p><a href="https://erc.europa.eu/news-events/news/europe-must-prioritize-research-and-innovation-be-competitive">Read the complete article on the website of the European Research Council. </a><br /></p>]]></description>
  228. <category>News From Europe</category>
  229. <pubDate>Thu, 23 Jan 2025 15:38:00 GMT</pubDate>
  230. </item>
  231. <item>
  232. <title>Professor Thomas Nilsson is the new Scientific Managing Director of FAIR and GSI</title>
  233. <link>https://members.eps.org/news/688604/</link>
  234. <guid>https://members.eps.org/news/688604/</guid>
  235. <description><![CDATA[<p>GSI, press release, 2nd December 2024<br /></p><p>The renowned Swedish experimental physicist Professor Thomas Nilsson
  236. took up the position of the Scientific Managing Director at the GSI
  237. Helmholtzzentrum für Schwerionenforschung GmbH and the Facility for
  238. Antiproton and Ion Research in Europe (FAIR) GmbH on December 1, 2024.
  239. With his comprehensive experience and internationally recognized
  240. expertise, Professor Thomas Nilsson will play a leading role in shaping
  241. the scientific development of the research facility and the
  242. international accelerator center FAIR which is currently under
  243. construction. He succeeds Professor Paolo Giubellino, who has been
  244. appointed as President of Scientific Commission III at the National
  245. Research Association of Nuclear Physics INFN in Italy. Professor Thomas
  246. Nilsson was Head of the Physics Department at Chalmers University of
  247. Technology in Gothenburg before starting his position in Darmstadt. He
  248. is also a member of the Physics Class of the prestigious Royal Swedish
  249. Academy of Sciences, which is responsible for selecting Nobel Prize
  250. laureates.</p><p>As Scientific Managing Director, Professor Thomas
  251. Nilsson is in charge of the entire scientific division of GSI and FAIR,
  252. and he is also the Spokesperson of the Management Board. Together with
  253. the Administrative Managing Director Dr. Katharina Stummeyer and the
  254. Technical Managing Director Jörg Blaurock, he forms the joint management
  255. board of GSI and FAIR and ensures the implementation of the strategic
  256. goals: To conduct international cutting-edge research on site, to
  257. realize the future FAIR accelerator facility in international
  258. cooperation and to also modernize the campus and the existing
  259. facilities.</p><p>“I am very much looking forward to actively advance
  260. the scientific development of GSI and FAIR in close collaboration with
  261. the international partners and an outstanding team of researchers. For
  262. decades, GSI has stood for excellent, internationally renowned
  263. cutting-edge research. The FAIR accelerator center will expand the
  264. global scale of research in a forward-looking way. My particular focus
  265. is on optimally promoting research work at GSI and FAIR through
  266. strategic planning and on offering researchers ideal conditions for
  267. outstanding scientific achievements. I would like to express my
  268. heartfelt thanks for the trust placed in me,” said Professor Thomas
  269. Nilsson on taking office.</p><p>With the appointment of Professor Thomas
  270. Nilsson, the international selection committee, consisting of
  271. representatives of the GSI Supervisory Board and the FAIR Council as
  272. well as renowned scientists, has gained an outstanding leader. The
  273. managing directors Dr. Katharina Stummeyer and Jörg Blaurock are looking
  274. forward to working together with their new colleague and emphasize:
  275. “GSI and FAIR will benefit significantly from Thomas Nilsson's broad
  276. scientific and strategic expertise. He is recognized worldwide for his
  277. research in the scientific fields relevant to FAIR and GSI. In addition,
  278. he has been closely associated with GSI and FAIR through his dedicated
  279. work on various committees for a long time. The decision to appoint
  280. Professor Nilsson as new Scientific Managing Director is an excellent
  281. choice. Together we will continue to successfully shape the future of
  282. GSI and FAIR.”</p><p>Professor Thomas Nilsson studied Engineering
  283. Physics at Chalmers University of Technology and was a PhD student at
  284. the former TH (now TU) in Darmstadt, among others. From 1998 to 2004, he
  285. worked as a physics coordinator at the ISOLDE facility at the CERN
  286. research center in Switzerland, where he was also deputy group leader of
  287. the ISOLDE physics group. From 2005 to 2006, he worked as a researcher
  288. at TU Darmstadt and Chalmers University. At Chalmers University, he has
  289. been a full professor in physics since 2009 and Head of the Physics
  290. Department and part of the university management group since 2017.</p><p>In
  291. his research, Professor Thomas Nilsson focuses on how fundamental types
  292. of interactions manifest in subatomic systems, in particular in nuclei
  293. with large excesses of neutrons or protons, where exotic structures and
  294. properties emerge. His research is carried out with experiments using
  295. facilities providing beams of exotic nuclei, like CERN (ISOLDE facility)
  296. in Switzerland or GSI/FAIR in Darmstadt. He plays a significant role in
  297. the development of such facilities and the connected instrumentation,
  298. in particular at FAIR.&nbsp;</p><p>With his projects and commitment, the
  299. renowned scientist not only makes important contributions to physics and
  300. research infrastructures, but also has extensive experience in the
  301. strategic planning of large research projects and international
  302. collaborations. He took on scientific tasks in advisory bodies and
  303. program committees, for example, at the Canadian National Accelerator
  304. Center TRIUMF and at the RIKEN Research Center in Japan.</p><p>Professor
  305. Thomas Nilsson has been significantly involved in the FAIR project for a
  306. long time. Now he will develop it further from a different perspective.
  307. He has already served in various positions on the FAIR Council and as a
  308. member of the GSI Supervisory Board. He has also been Vice-Chair of the
  309. Joint Scientific Council of FAIR and Chair of the Scientific Advisory
  310. Board of GSI since 2020. With his deep understanding of the
  311. international research landscape and his ability to develop and
  312. implement complex scientific strategies, Professor Thomas Nilsson will
  313. make a valuable contribution to the future of FAIR and GSI.</p>]]></description>
  314. <category>News From Europe</category>
  315. <pubDate>Fri, 6 Dec 2024 15:52:00 GMT</pubDate>
  316. </item>
  317. <item>
  318. <title>A gold mine for neutrino physics</title>
  319. <link>https://members.eps.org/news/687962/</link>
  320. <guid>https://members.eps.org/news/687962/</guid>
  321. <description><![CDATA[<div><strong> The DUNE experiment is taking shape deep in the same mine
  322. where physicists got the first hint that something was amiss with the
  323. neutrino.<br /><br /></strong></div><div><p>In 1968, deep underground in the
  324. Homestake gold mine in South Dakota, Ray Davis Jr. observed too few
  325. electron neutrinos emerging from the Sun. The reason, we now know, is
  326. that many had changed flavour in flight, thanks to tiny unforeseen
  327. masses.</p><p>At the same time, Steven Weinberg and Abdus Salam were
  328. carrying out major construction work on what would become the Standard
  329. Model of particle physics, building the Higgs mechanism into Sheldon
  330. Glashow’s unification of the electromagnetic and weak interactions. The
  331. Standard Model is still bulletproof today, with one proven exception:
  332. the nonzero neutrino masses for which Davis’s observations were in
  333. hindsight the first experimental evidence.</p><p>Today, neutrinos are
  334. still one of the most promising windows into physics beyond the Standard
  335. Model, with the potential to impact many open questions in fundamental
  336. science (<a href="https://cern-courier.web.cern.ch/a/the-neutrino-mass-puzzle/" data-mce-href="https://cern-courier.web.cern.ch/a/the-neutrino-mass-puzzle/"><span><em>CERN Courier</em></span> May/June 2024 p29</a>).
  337. One of the most ambitious experiments to study them is currently taking
  338. shape in the same gold mine as Davis’s experiment more than half a
  339. century before.</p><h3><strong>Deep underground</strong></h3><p>In
  340. February this year, the international Deep Underground Neutrino
  341. Experiment (DUNE) completed the excavation of three enormous caverns
  342. 1.5&nbsp;kilometres below the surface at the new Sanford Underground Research
  343. Facility (SURF) in the Homestake mine. 800,000&nbsp;tonnes of rock have been
  344. excavated over two years to reveal an underground campus the size of
  345. eight soccer fields, ready to house four 17,500&nbsp;tonne liquid–argon
  346. time-projection chambers (LArTPCs). As part of a diverse scientific
  347. programme, the new experiment will tightly constrain the working model
  348. of three massive neutrinos, and possibly even disprove it.</p><p class="p3">DUNE
  349. will measure the disappearance of muon neutrinos and the appearance of
  350. electron neutrinos over 1300 km and a broad spectrum of energies. Given
  351. the long journey of its accelerator-produced neutrinos from the Long
  352. Baseline Neutrino Facility (LBNF) at Fermilab in Illinois to SURF in
  353. South Dakota, DUNE will be uniquely sensitive to asymmetries between the
  354. appearance of electron neutrinos and antineutrinos. One predicted
  355. asymmetry will be caused by the presence of electrons and the absence of
  356. positrons in the Earth’s crust. This asymmetry will probe neutrino mass
  357. ordering – the still unknown ordering of narrow and broad mass
  358. splittings between the three tiny neutrino masses. In its first phase of
  359. operation, DUNE will definitively establish the neutrino mass ordering
  360. regardless of other parameters.</p><a title="&lt;strong&gt;Vertical drift&lt;/strong&gt; A physicist studies the field cage of a prototype liquid–argon time-projection chamber at CERN. Credit: M Cavazza/CERN-PHOTO-202308-195-28" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_frontis.jpg" data-caption="&lt;strong&gt;Vertical drift&lt;/strong&gt; A physicist studies the field cage of a prototype liquid–argon time-projection chamber at CERN. Credit: M Cavazza/CERN-PHOTO-202308-195-28" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_frontis.jpg"><img src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_frontis-635x357.jpg" alt="The field cage of a prototype liquid–argon time-projection chamber" data-mce-src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_frontis-635x357.jpg" /></a> <a title="&lt;strong&gt;Vertical drift&lt;/strong&gt; A physicist studies the field cage of a prototype liquid–argon time-projection chamber at CERN. Credit: M Cavazza/CERN-PHOTO-202308-195-28" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_frontis.jpg" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_frontis.jpg"><strong><br />Vertical drift</strong> A physicist studies the field cage of a prototype liquid–argon time-projection chamber at CERN. <br />Credit: M Cavazza/CERN-PHOTO-202308-195-28 <br /><br /></a><p>If
  361. CP symmetry is violated, DUNE will then observe a second asymmetry
  362. between electron neutrinos and antineutrinos, which by experimental
  363. design is not degenerate with the first asymmetry. Potentially the first
  364. evidence for CP violation by leptons, this measurement will be an
  365. important experimental input to the fundamental question of how a
  366. matter–antimatter asymmetry developed in the early universe.</p><p>If CP violation is near maximal, DUNE will observe it at 3<span>σ </span>(99.7%
  367. confidence) in its first phase. In DUNE and LBNF’s recently
  368. reconceptualised second phase, which was strongly endorsed by the US
  369. Department of Energy’s Particle Physics Project Prioritization Panel
  370. (P5) in December (<a href="https://cern-courier.web.cern.ch/a/us-unveils-10-year-strategy-for-particle-physics" data-mce-href="https://cern-courier.web.cern.ch/a/us-unveils-10-year-strategy-for-particle-physics"><span><em>CERN Courier </em></span>January/February 2024 p7</a>), 3 <span>σ</span> sensitivity to CP violation will be extended to more than 75% of possible values of <span>δ</span><span class="s3"><sub>CP</sub></span>, the complex phase that parameterises this effect in the three-massive-neutrino paradigm.</p><p>Combining
  371. DUNE’s measurements with those by fellow next-generation experiments
  372. JUNO and Hyper-Kamiokande will test the three-flavour paradigm itself.
  373. This paradigm rotates three massive neutrinos into the mixtures that
  374. interact with charged leptons via the Pontecorvo–Maki–Nakagawa–Sakata
  375. (PMNS) matrix, which features three angles in addition to <span class="s2">δ</span><span><sub>CP</sub></span>.</p><p>As well as promising world-leading resolution on the PMNS angle <span>θ</span><span><sub>23</sub></span>, DUNE’s measurements of <span>θ</span><span><sub>13</sub></span> and the Δm<span><sup>2</sup><sub>32</sub></span>
  376. mass splitting will be different and complementary to those of JUNO in
  377. ways that could be sensitive to new physics. JUNO, which is currently
  378. under construction in China, will operate in the vicinity of a flux of
  379. lower-energy electron antineutrinos from nuclear reactors. DUNE and
  380. Hyper-Kamiokande, which is currently under construction in Japan, will
  381. both study accelerator-produced sources of muon neutrinos and
  382. antineutrinos, though using radically different baselines, energy
  383. spectra and detector designs.</p><h3><strong>Innovative and impressive</strong></h3><p>DUNE’s
  384. detector technology is innovative and impressive, promising
  385. millimetre-scale precision in imaging the interactions of neutrinos from
  386. accelerator and astrophysical sources (see “Millimetre precision”
  387. image). The argon target provides unique sensitivity to low-energy
  388. electron neutrinos from supernova bursts, while the detectors’ imaging
  389. capabilities will be pivotal when searching for
  390. beyond-the-Standard-Model physics such as dark matter, sterile-neutrino
  391. mixing and non-standard neutrino interactions.</p><p>First proposed by
  392. Nobel laureate Carlo Rubbia in 1977, LArTPC technology demonstrated its
  393. effectiveness as a neutrino detector at Gran Sasso’s ICARUS T600
  394. detector more than a decade ago, and also more recently in the
  395. MicroBooNE experiment at Fermilab. Fermilab’s short-baseline neutrino
  396. programme now includes ICARUS and the new Short Baseline Neutrino
  397. Detector, which is due to begin taking neutrino data this year.</p><a title="&lt;strong&gt;Millimetre precision&lt;/strong&gt; A 6 GeV charged pion (left) ejects a proton (top) from an argon nucleus in the single-phase ProtoDUNE detector at CERN. Three charged pions and two photons also emerge from the vertex, and a stopping cosmic-ray muon is seen crossing the event. Credit: NP04 Collaboration" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_precision.jpg" data-caption="&lt;strong&gt;Millimetre precision&lt;/strong&gt; A 6 GeV charged pion (left) ejects a proton (top) from an argon nucleus in the single-phase ProtoDUNE detector at CERN. Three charged pions and two photons also emerge from the vertex, and a stopping cosmic-ray muon is seen crossing the event. Credit: NP04 Collaboration" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_precision.jpg"><img src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_precision-635x357.jpg" alt="A charged pion ejects a proton" data-mce-src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_precision-635x357.jpg" /></a> <br /><a title="&lt;strong&gt;Millimetre precision&lt;/strong&gt; A 6 GeV charged pion (left) ejects a proton (top) from an argon nucleus in the single-phase ProtoDUNE detector at CERN. Three charged pions and two photons also emerge from the vertex, and a stopping cosmic-ray muon is seen crossing the event. Credit: NP04 Collaboration" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_precision.jpg" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_precision.jpg"><strong>Millimetre precision</strong> A 6 GeV charged pion (left) ejects a proton (top) from an argon nucleus in the single-phase ProtoDUNE detector at CERN. <br />Three
  398. charged pions and two photons also emerge from the vertex, and a
  399. stopping cosmic-ray muon is seen crossing the event. Credit: NP04
  400. Collaboration<br /><br /></a><p>The first phase of DUNE will construct one
  401. LArTPC in each of the two detector caverns, with the second phase adding
  402. an additional detector in each. A central utility cavern between the
  403. north and south caverns will house infrastructure to support the
  404. operation of the detectors.</p><p>Following excavation by Thyssen
  405. Mining, final concrete work was completed in all the underground caverns
  406. and drifts, and the installation of power, lighting, plumbing, heating,
  407. ventilation and air conditioning is underway. 90% of the subcontracts
  408. for the installation of the civil infrastructure have already been
  409. awarded, with LBNF and DUNE’s economic impact in Illinois and South
  410. Dakota estimated to be $4.3&nbsp;billion through fiscal years 2022 to 2030.</p><p>Once
  411. the caverns are prepared, two large membrane cryostats will be
  412. installed to house the detectors and their liquid argon. Shipment of
  413. material for the first of the two cryostats being provided by CERN is
  414. underway, with the first of approximately 2000 components having arrived
  415. at SURF in January; the remainder of the steel for the first cryostat
  416. was due to have been shipped from its port in Spain by the end of May.
  417. The manufacture of the second cryostat by Horta Coslada is ongoing (see
  418. “Cryostat creation” image).</p><p>Procedures for lifting and
  419. manipulating the components will be tested in South Dakota in spring
  420. 2025, allowing the collaboration to ensure that it can safely and
  421. efficiently handle bulky components with challenging weight
  422. distributions in an environment where clearances can reach as little as
  423. 3 inches on either side. Lowering detector components down the Homestake
  424. mine’s Ross shaft will take four months.</p><h3><strong>Two configurations</strong></h3><p>The
  425. two far-detector modules needed for phase one of the DUNE experiment
  426. will use the same LArTPC technology, though with different anode and
  427. high-voltage configurations. A “horizontal-drift” far detector will use
  428. 150 6 m-by-2.3 m anode plane assemblies (APAs). Each will be wound with
  429. 4000 150 μm diameter copper-beryllium wires to collect ionisation
  430. signals from neutrino interactions with the argon.</p><a title="&lt;strong&gt;Cryostat creation&lt;/strong&gt; The pre-assembly of a section of the second cryostat for DUNE at the factory in Arteixo, Spain. Credit: CERN" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_cryostat.jpg" data-caption="&lt;strong&gt;Cryostat creation&lt;/strong&gt; The pre-assembly of a section of the second cryostat for DUNE at the factory in Arteixo, Spain. Credit: CERN" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_cryostat.jpg"><img src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_cryostat-635x357.jpg" alt="A section of the second cryostat for DUNE" data-mce-src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_cryostat-635x357.jpg" /></a> <br /><a title="&lt;strong&gt;Cryostat creation&lt;/strong&gt; The pre-assembly of a section of the second cryostat for DUNE at the factory in Arteixo, Spain. Credit: CERN" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_cryostat.jpg" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_cryostat.jpg"><strong>Cryostat creation</strong> The pre-assembly of a section of the second cryostat for DUNE at the factory in Arteixo, Spain. <br />Credit: CERN<br /><br /></a><p><span>A
  431. second “vertical-drift” far detector will instead use charge readout
  432. planes (CRPs) – printed circuit boards perforated with an array of holes
  433. to capture the ionisation signals. Here, a horizontal cathode plane
  434. will divide the detector into two vertically stacked volumes. This
  435. design yields a slightly larger instrumented volume, which is highly
  436. modular in design, and simpler and more cost-effective to construct and
  437. install. A small amount of xenon doping will significantly enhance photo
  438. detection, allowing more light to be collected beyond a drift length of
  439. 4 m.</span></p><p>The construction of the horizontal-drift APAs is well
  440. underway at STFC Daresbury Laboratory in the UK and at the University
  441. of Chicago in the US. Each APA takes several weeks to produce,
  442. motivating the parallelisation of production across five machines in
  443. Daresbury and one in Chicago. Each machine automates the winding of
  444. 24 km of wire onto each APA (see “Wind it up” image). Technicians then
  445. solder thousands of joints and use a laser system to ensure the wires
  446. are all wound to the required tension.</p><p>Two large ProtoDUNE
  447. detectors at CERN are an essential part of developing and validating
  448. DUNE’s detector design. Four APAs are currently installed in a
  449. horizontal-drift prototype that will take data this summer as a final
  450. validation of the design of the full detector. A vertical-drift
  451. prototype (see “Vertical drift” image) will then validate the production
  452. of CRP anodes and optimise their electronics. A full-scale test of
  453. vertical-drift-detector installation will take place at CERN later this
  454. year.</p><h3><strong>Phase transition</strong></h3><p><span>Alongside
  455. the deployment of two additional far-detector modules, phase two of the
  456. DUNE experiment will include an increase in beam power beyond 2 MW and
  457. the deployment of a more capable near detector (MCND) featuring a
  458. magnetised high-pressure gaseous-argon TPC. These enhancements pursue
  459. increased statistics, lower energy thresholds, better energy resolution
  460. and lower intrinsic backgrounds. They are key to DUNE’s measurement of
  461. the parameters governing long-baseline neutrino oscillations, and will
  462. expand the experiment’s physics scope, including searches for anomalous
  463. tau-neutrino appearance, long-lived particles, low-mass dark matter and
  464. solar neutrinos.</span></p><a title="&lt;strong&gt;Wind it up&lt;/strong&gt; A winding machine producing a ProtoDUNE anode plane assembly
  465. at Daresbury Laboratory in the UK. Credit: Daresbury Laboratory" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_winding.jpg" data-caption="&lt;strong&gt;Wind it up&lt;/strong&gt; A winding machine producing a ProtoDUNE anode plane assembly at Daresbury Laboratory in the UK. Credit: Daresbury Laboratory" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_winding.jpg"><img src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_winding-635x357.jpg" alt="A winding machine producing a ProtoDUNE anode plane assembly" data-mce-src="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_winding-635x357.jpg" /></a> <a title="&lt;strong&gt;Wind it up&lt;/strong&gt; A winding machine producing a ProtoDUNE anode plane assembly
  466. at Daresbury Laboratory in the UK. Credit: Daresbury Laboratory" href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_winding.jpg" data-mce-href="https://cerncourier.com/wp-content/uploads/2024/07/CCJulAug24_NEUTRINO_winding.jpg"><strong><br />Wind it up</strong> A winding machine producing a ProtoDUNE anode plane assembly at Daresbury Laboratory in the UK. <br />Credit: Daresbury Laboratory</a><p><br />Phase-one
  467. vertical-drift technology is the starting point for phase-two
  468. far-detector R&amp;D – a global programme under ECFA in Europe and CPAD
  469. in the US that seeks to reduce costs and improve performance.
  470. Charge-readout R&amp;D includes improving charge-readout strips, 3D
  471. pixel readout and 3D readout using high-performance fast cameras.
  472. Light-readout R&amp;D seeks to maximise light coverage by integrating
  473. bare silicon photomultipliers and photoconductors into the detector’s
  474. field-cage structure.</p><p>A water-based liquid scintillator module
  475. capable of separately measuring scintillation and Cherenkov light is
  476. currently being explored as a possible alternative technology for the
  477. fourth “module of opportunity”. This would require modifications to the
  478. near detector to include corresponding non-argon targets.</p><h3><strong>Intense work</strong></h3><p><span>At
  479. Fermilab, site preparation work is already underway for LBNF, and
  480. construction will begin in 2025. The project will produce the world’s
  481. most intense beam of neutrinos. Its wide-band beam will cover more than
  482. one oscillation period, allowing unique access to the shape of the
  483. oscillation pattern in a long-baseline accelerator-neutrino experiment. </span></p><p>LBNF
  484. will need modest upgrades to the beamline to handle the 2 MW beam power
  485. from the upgrade to the Fermilab accelerator complex, which was
  486. recently endorsed by P5. The bigger challenge to the facility will be
  487. the proton-target upgrades needed for operation at this beam power.
  488. R&amp;D is now taking place at Fermilab and at the Rutherford Appleton
  489. Laboratory in the UK, where DUNE’s phase-one 1.2 MW target is being
  490. designed and built.</p><blockquote class="quoteleft"><p><strong>"The next generation of big neutrino experiments promises to bring new insights into the nature of our universe"</strong></p></blockquote><p>DUNE
  491. highlights the international and collaborative nature of modern
  492. particle physics, with the collaboration boasting more than 1400
  493. scientists and engineers from 209 institutions in 37 countries. A
  494. milestone was achieved late last year when the international community
  495. came together to sign the first major multi-institutional memorandum of
  496. understanding with the US Department of Energy, affirming commitments to
  497. the construction of detector components for DUNE and pushing the
  498. project to its next stage. US contributions are expected to cover
  499. roughly half of what is needed for the far detectors and the MCND, with
  500. the international community contributing the other half, including the
  501. cryostat for the third far detector.</p><p>DUNE is now accelerating into
  502. its construction phase. Data taking is due to start towards the end of
  503. this decade, with the goal of having the first far-detector module
  504. operational before the end of 2028.</p><p>The next generation of big
  505. neutrino experiments promises to bring new insights into the nature of
  506. our universe – whether it is another step towards understanding the
  507. preponderance of matter, the nature of the supernovae explosions that
  508. produced the stardust of which we are all made, or even possible
  509. signatures of dark matter… or something wholly unexpected!</p><div><hr /></div><div><h3>Further reading</h3><p>DUNE Collab. 2022 <span class="s1"><em>JINST</em></span> <span><strong>17</strong></span> P01005.</p></div></div><div><div><p><span><strong>Sergio Bertolucci</strong></span><em> University of Bologna, </em><span><strong>Mary Bishai</strong></span><em> Brookhaven National Laboratory, </em><span><strong>Andrew Chappell</strong></span><em> University of Warwick and </em> <span><strong>Kate Shaw </strong></span><span><em>University of Sussex.</em></span></p><p><span><em>CERN Courier, 5th July 2024 (https://cerncourier.com/a/a-gold-mine-for-neutrino-physics/)<br /></em></span></p></div></div>]]></description>
  510. <category>News From Europe</category>
  511. <pubDate>Tue, 26 Nov 2024 09:05:00 GMT</pubDate>
  512. </item>
  513. <item>
  514. <title>CERN Council selects Mark Thomson as next Director-General, starting in 2026</title>
  515. <link>https://members.eps.org/news/687712/</link>
  516. <guid>https://members.eps.org/news/687712/</guid>
  517. <description><![CDATA[<div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><span style="font-family: Arial;"><em><span style="font-size: 12px;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/cern-20241107.jpg" style="width: 750px;" /></span></em></span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><span style="font-family: Arial;"><em><span style="font-size: 12px;">Professor Mark Thomson selected as the new Director-General of CERN, starting in 2026 (Image: CERN)</span></em></span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><span style="font-family: Arial;">&nbsp;</span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><strong><span style="font-family: Arial;"><span style="font-size: 10pt;"></span><em><span style="font-size: 14px;">Professor Thomson’s five-year mandate will begin on 1 January 2026</span></em></span></strong></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;"><span style="font-family: Arial;">&nbsp;</span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;"><p style="margin: 0in;"><span style="font-size: 14px; font-family: Arial;"><span lang="EN-GB">Geneva, 6 November 2024. Today, the CERN <sup><span class="Apple-converted-space"></span></sup>Council selected British physicist Mark Thomson as the Organization’s next Director-General. The appointment will be formalised at the December session of the Council and Professor Thomson’s five-year mandate will begin on 1 January 2026.<span class="Apple-converted-space"></span></span></span></p><p style="margin: 0in;"><span style="font-family: Arial;">&nbsp;</span></p><p style="margin: 0in;"><span style="font-size: 14px; font-family: Arial;"><span lang="EN-GB">“Congratulations to Professor Mark Thomson on his selection as the next CERN Director-General from January 2026,” said CERN’s President of Council, Professor Eliezer Rabinovici. “I extend my heartfelt thanks to all the exceptional candidates. The outstanding qualities Mark Thomson displays give CERN Council assurance that he will successfully take his place in the line of visionary Directors-General who have guided CERN.”</span></span></p><p style="margin: 0in;"><span style="font-family: Arial;">&nbsp;</span></p><p style="margin: 0in;"><span style="font-size: 14px; font-family: Arial;"><span lang="EN-GB">“Mark Thomson is a talented physicist with great managerial experience,” said CERN Director-General Fabiola Gianotti. “I have had the opportunity to collaborate with him in several contexts over the past years and I am confident he will make an excellent Director-General. I am pleased to hand over this important role to him at the end of 2025.”<span class="Apple-converted-space"></span></span></span></p><p style="margin: 0in;"><span style="font-family: Arial;">&nbsp;</span></p><p style="margin: 0in;"><span style="font-size: 14px; font-family: Arial;"><span lang="EN-GB">“Built on long-term European collaboration, CERN is a beacon of scientific excellence and innovation, providing global leadership in research at its most fundamental level,” said Professor Thomson. “CERN’s mission is to unravel the mysteries of the universe, contributing to our collective pursuit of knowledge. CERN’s exciting future promises groundbreaking research and discoveries that will shape our understanding of physics and, in doing so, inspire future generations of young scientists. I am honoured to become CERN’s Director-General and am committed to pursuing the Organization’s scientific mission, further developing technologies that will benefit society as a whole, while uniting nations in a shared commitment to advancing science for the betterment of humanity.”</span></span></p><p style="margin: 0in;"><span style="font-family: Arial;">&nbsp;</span></p><p style="margin: 0in;"><span style="font-size: 14px; font-family: Arial;"><span lang="EN-GB">Professor Thomson is currently the Executive Chair of the Science and Technology Facilities Council (STFC) in the United Kingdom and a Professor of Experimental Particle Physics at the University of Cambridge. He has dedicated much of his career to CERN, where he initially contributed to precision measurements of the W and Z bosons in the 1990s, as part of the OPAL experiment at CERN’s Large Electron–Positron Collider. At CERN’s Large Hadron Collider (LHC), he has been a member of the ATLAS collaboration.</span></span></p><p style="margin: 0in;"><span style="font-family: Arial;">&nbsp;</span></p><p style="margin: 0in;"><span style="font-size: 14px; font-family: Arial;"><span lang="EN-GB">Since completing his doctorate in particle physics at the University of Oxford, Professor Thomson has played a significant role in advancing neutrino physics and research for future colliders. Notably, he served as co-spokesperson for the Deep Underground Neutrino Experiment (DUNE), a collaborative project led by Fermilab, which CERN supports through its neutrino platform and the construction of large cryostats to be installed deep underground in South Dakota. He has also played a pivotal role in the design and optimisation of detectors for future colliders, particularly for linear electron–positron colliders such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC).</span></span></p><p style="margin: 0in;"><span style="font-family: Arial;">&nbsp;</span></p><p style="margin: 0in;"><span style="font-size: 14px; font-family: Arial;"><span lang="EN-GB">Mark Thomson is credited in over 1000 publications and authored the widely adopted textbook&nbsp;<em>Modern Particle Physics</em>, used in universities globally. Beyond his research, he has held various research leadership and oversight roles at national and international level, including serving as the UK delegate to CERN’s Council since 2018. <br /></span></span></p></div>]]></description>
  518. <category>News From Europe</category>
  519. <pubDate>Fri, 22 Nov 2024 11:36:00 GMT</pubDate>
  520. </item>
  521. <item>
  522. <title>Professor Costas Fountas elected as next President of the CERN Council </title>
  523. <link>https://members.eps.org/news/684518/</link>
  524. <guid>https://members.eps.org/news/684518/</guid>
  525. <description><![CDATA[<div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/CERN_council-pdt-202410.jpg" style="width: 750px;" /></span></span></em></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;">Professor Costas Fountas 25th President of the CERN Council. (Image: CERN)</span></span></em></div><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;">&nbsp;</span></span></em></p><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: left;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><em><strong>The CERN Council has announced that Professor Costas Fountas will become its 25th President beginning on 1 January 2025</strong></em></span></span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;">&nbsp;</div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;"><p style="margin: 0cm; text-align: justify;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Geneva, 30&nbsp;September 2024. Last week, the CERN Council elected Professor Costas Fountas as its 25<sup>th</sup>&nbsp;President, for a period of one year, renewable twice, with a mandate starting on 1 January 2025. He will take over from Professor Eliezer Rabinovici, who concludes his term at the end of December.</span></span></p><p style="margin: 0cm; text-align: justify;">&nbsp;</p><p style="margin: 0cm; text-align: justify;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">“Professor Fountas is an experimentalist of the highest calibre, who has played key roles in the CMS collaboration at the LHC and also in the former ZEUS collaboration at DESY in Germany. As Vice President of the CERN Council since 2022, his professionalism and advice have been of great benefit to discussions, and I am confident that he will make an excellent President at this very important time for the long-term future of the Organization” said Professor Eliezer Rabinovici, current President of Council.</span></span></p><p style="margin: 0cm; text-align: justify;">&nbsp;</p><p style="margin: 0cm; text-align: justify;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Professor Fountas is Professor of physics and heads the high-energy physics group at the University of Ioannina in Greece. After completing his PhD at Columbia University in 1989, studying neutrino production at the Tevatron, he worked on the data-acquisition electronics for Fermilab’s CCRF experiment. He then moved to the University of Wisconsin and worked on the trigger system of the ZEUS experiment at DESY. In 2000, he started work at Imperial College London and joined the CMS collaboration where, among several roles, he took responsibility for the design and implementation of the Global Calorimeter Trigger; his group also developed the first model of the CMS track trigger. Later, based at the University of Ioannina, he developed and built the CMS Barrel Muon Track Finder using cutting-edge FPGAs and optical-link technologies. At the LHC his physics interests have focused on jet cross sections and searches for new fundamental interactions.</span></span></p><p style="margin: 0cm; text-align: justify;">&nbsp;</p><p style="margin: 0cm; text-align: justify;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Alongside his expertise in delivering detector systems and conducting physics analyses, Professor Fountas has held several management roles in CMS and been a member of many councils and advisory committees. He was appointed Greek scientific delegate to the CERN Council in 2016 and Vice President of Council in 2022.<span class="Apple-converted-space"></span></span></span></p><p style="margin: 0cm; text-align: justify;">&nbsp;</p><p style="margin: 0cm; text-align: justify;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">“My focus will be to support the CERN Management and the experiments so as to ensure that the High-Luminosity LHC is completed successfully and in a timely manner. I will also make sure that discussions on the next major project at CERN are held in such a way that everybody has a voice. It is a critical time for CERN, and as President of Council, my commitment will be to do everything I can to bring consensus and guarantee the brightest future possible for the Organization,” said Professor Costas Fountas.</span></span></p><p style="margin: 0cm; text-align: justify;">&nbsp;</p><p style="margin: 0cm; text-align: justify;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">CERN Council is the supreme decision-making authority of the Organization, composed of delegates of all its twenty-four Member States.</span></span></p></div>]]></description>
  526. <category>News From Europe</category>
  527. <pubDate>Tue, 15 Oct 2024 16:39:00 GMT</pubDate>
  528. </item>
  529. <item>
  530. <title>ESO — EHT scientists make highest-resolution observations yet from the surface of Earth</title>
  531. <link>https://members.eps.org/news/681143/</link>
  532. <guid>https://members.eps.org/news/681143/</guid>
  533. <description><![CDATA[<p class="text_intro pr_first"><strong><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/eso2411a.jpg" style="width: 700px;" /></strong></p><p class="text_intro pr_first" style="text-align: center;"><em>The illustration shows Earth in 3D on the left, with red dots on it. Some of the dots are brightened up in a yellow glow. To the right, a distant active galaxy, which is so far away that it is viewed as a star-like point of light, is depicted, with concentric circles around it that take up the entire frame. Illustration of the highest-resolution detections ever made from the surface of Earth - image credit: ESO<br /></em></p><p class="text_intro pr_first" style="text-align: left;"><strong>ESO, 27th August 2024. The Event Horizon Telescope (EHT)
  534. Collaboration has conducted test observations, using the Atacama Large
  535. Millimeter/submillimeter Array (ALMA) and other facilities, that
  536. achieved the highest resolution ever obtained from the surface of Earth <a href="https://www.eso.org/public/news/eso2411/#1" data-mce-href="https://www.eso.org/public/news/eso2411/#1">[1]</a>.
  537. They managed this feat by detecting light from distant galaxies at a
  538. frequency of around 345 GHz, equivalent to a wavelength of 0.87 mm. The
  539. Collaboration estimates that in future they will be able to make black
  540. hole images that are 50% more detailed than was possible before,
  541. bringing the region immediately outside the boundary of nearby
  542. supermassive black holes into sharper focus. They will also be able to
  543. image more black holes than they have done so far. The new detections,
  544. part of a pilot experiment, were published today in The Astronomical
  545. Journal.</strong></p><p dir="ltr">The EHT Collaboration released images of M87*, the supermassive black hole at the centre of the M87 galaxy, <a href="https://www.eso.org/public/news/eso1907/" data-mce-href="https://www.eso.org/public/news/eso1907/">in 2019</a>, and of Sgr A*, the black hole at the heart of our Milky Way galaxy,<a href="https://www.eso.org/public/news/eso2208-eht-mw/" data-mce-href="https://www.eso.org/public/news/eso2208-eht-mw/"> in 2022</a>.
  546. These images were obtained by linking together multiple radio
  547. observatories across the planet, using a technique called very long
  548. baseline interferometry (VLBI), to form a single ‘Earth-sized’ virtual
  549. telescope.&nbsp;</p><p dir="ltr">To get higher-resolution images, astronomers
  550. typically rely on bigger telescopes — or a larger separation between
  551. observatories working as part of an interferometer. But since the EHT
  552. was already the size of Earth, increasing the resolution of their
  553. ground-based observations called for a different approach. Another way
  554. to increase the resolution of a telescope is to observe light of a
  555. shorter wavelength — and that’s what the EHT Collaboration has now done.</p><p dir="ltr">“<em>With
  556. the EHT, we saw the first images of black holes using the 1.3-mm
  557. wavelength observations, but the bright ring we saw, formed by light
  558. bending in the black hole’s gravity, still looked blurry because we were
  559. at the absolute limits of how sharp we could make the images</em>,”
  560. said the study's co-lead Alexander Raymond, previously a postdoctoral
  561. scholar at the Center for Astrophysics | Harvard &amp; Smithsonian
  562. (CfA), and now at the Jet Propulsion Laboratory, both in the United
  563. States. “<em>At 0.87 mm, our images will be sharper and more detailed,
  564. which in turn will likely reveal new properties, both those that were
  565. previously predicted and maybe some that weren’t.</em>”&nbsp;</p><p dir="ltr">To
  566. show that they could make detections at 0.87 mm, the Collaboration
  567. conducted test observations of distant, bright galaxies at this
  568. wavelength <a href="https://www.eso.org/public/news/eso2411/#2" data-mce-href="https://www.eso.org/public/news/eso2411/#2">[2]</a>.
  569. Rather than using the full EHT array, they employed two smaller
  570. subarrays, both of which included ALMA and the Atacama Pathfinder
  571. EXperiment (APEX) in the Atacama Desert in Chile. The European Southern
  572. Observatory (ESO) is a partner in ALMA and co-hosts and co-operates
  573. APEX. Other facilities used include the IRAM 30-meter telescope in Spain
  574. and the NOrthern Extended Millimeter Array (NOEMA) in France, as well
  575. as the Greenland Telescope and the Submillimeter Array in Hawaiʻi.</p><p dir="ltr">In
  576. this pilot experiment, the Collaboration achieved observations with
  577. detail as fine as 19 microarcseconds, meaning they observed at the
  578. highest-ever resolution from the surface of Earth. They have not been
  579. able to obtain images yet, though: while they made robust detections of
  580. light from several distant galaxies, not enough antennas were used to be
  581. able to accurately reconstruct an image from the data.&nbsp;</p><p dir="ltr">This
  582. technical test has opened up a new window to study black holes. With
  583. the full array, the EHT could see details as small as 13
  584. microarcseconds, equivalent to seeing a bottle cap on the Moon from
  585. Earth. This means that, at 0.87 mm, they will be able to get images with
  586. a <a href="https://www.eso.org/public/images/eso2411c/" data-mce-href="https://www.eso.org/public/images/eso2411c/">resolution about 50% higher</a> than that of previously released M87* and SgrA* <a href="https://www.eso.org/public/news/eso2411/#3" data-mce-href="https://www.eso.org/public/news/eso2411/#3">[3]</a>
  587. 1.3-mm images. In addition, there’s potential to observe more distant,
  588. smaller and fainter black holes than the two the Collaboration has
  589. imaged thus far.</p><p dir="ltr">EHT Founding Director Sheperd “Shep” Doeleman, an astrophysicist at the CfA and study co-lead, says:<em>&nbsp;“Looking
  590. at changes in the surrounding gas at different wavelengths will help us
  591. solve the mystery of how black holes attract and accrete matter, and
  592. how they can launch powerful jets that stream over galactic distances.</em>”&nbsp;</p><p dir="ltr">This
  593. is the first time that the VLBI technique has been successfully used at
  594. the 0.87 mm wavelength. While the ability to observe the night sky at
  595. 0.87 mm existed before the new detections, using the VLBI technique at
  596. this wavelength has always presented challenges that took time and
  597. technological advances to overcome. For example, water vapour in the
  598. atmosphere absorbs waves at 0.87 mm much more than it does at 1.3 mm,
  599. making it more difficult for radio telescopes to receive signals from
  600. black holes at the shorter wavelength. Combined with increasingly
  601. pronounced atmospheric turbulence and noise buildup at shorter
  602. wavelengths, and an inability to control global weather conditions
  603. during atmospherically sensitive observations, progress to shorter
  604. wavelengths for VLBI — especially those that cross the barrier into the
  605. submillimetre regime — has been slow. But with these new detections,
  606. that’s all changed.</p><p dir="ltr">"<em>These VLBI signal detections at
  607. 0.87 mm are groundbreaking since they open a new observing window for
  608. the study of supermassive black holes</em>", states Thomas Krichbaum, a
  609. co-author of the study from the Max Planck Institute for Radio Astronomy
  610. in Germany, an institution that operates the APEX telescope together
  611. with ESO. He adds: "<em>In the future, the combination of the IRAM
  612. telescopes in Spain (IRAM-30m) and France (NOEMA) with ALMA and APEX
  613. will enable imaging of even smaller and fainter emission than has been
  614. possible thus far at two wavelengths, 1.3 mm and 0.87 mm,
  615. simultaneously.</em>"</p><h3>Notes</h3><p dir="ltr"><a class="anchor mceItemAnchor" name="1"></a>[1]
  616. There have been astronomical observations with higher resolution, but
  617. these were obtained by combining signals from telescopes on the ground
  618. with a telescope in space: <a href="https://www.mpifr-bonn.mpg.de/pressreleases/2022/2" data-mce-href="https://www.mpifr-bonn.mpg.de/pressreleases/2022/2">https://www.mpifr-bonn.mpg.de/pressreleases/2022/2</a>. The new observations released today are the highest-resolution ones ever obtained using only ground-based telescopes.&nbsp;</p><p dir="ltr"><a class="anchor mceItemAnchor" name="2"></a>[2]
  619. To test their observations, the EHT Collaboration pointed the antennas
  620. to very distant ‘active’ galaxies, which are powered by supermassive
  621. black holes at their cores and are very bright. These types of sources
  622. help to calibrate the observations before pointing the EHT to fainter
  623. sources, like nearby black holes.</p><p dir="ltr"><a class="anchor mceItemAnchor" name="3"></a>[3]&nbsp;The GRAVITY instrument on ESO’s Very Large Telescope Interferometer has also obtained <a href="https://www.eso.org/public/news/eso1835/" data-mce-href="https://www.eso.org/public/news/eso1835/">extremely detailed observations of Sgr A*</a>,
  624. pinpointing the exact location of the black hole and the material
  625. orbiting it with an accuracy of a few tenths of microarcseconds.</p>]]></description>
  626. <category>News From Europe</category>
  627. <pubDate>Tue, 3 Sep 2024 14:59:00 GMT</pubDate>
  628. </item>
  629. <item>
  630. <title>CERN welcomes Estonia as its 24th Member State</title>
  631. <link>https://members.eps.org/news/681114/</link>
  632. <guid>https://members.eps.org/news/681114/</guid>
  633. <description><![CDATA[<div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><span style="font-family: Arial;"><span style="font-size: small;"><em><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/cern-202408-pr.jpg" style="width: 700px;" /></em></span></span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><span style="font-family: Arial;"><span style="font-size: small;"><em>As Estonia becomes a full Member State of CERN, the Estonian flag is photographed along with the CERN flag (image: CERN). <span lang="EN-GB"><span style="color: black;" data-mce-style="color: black;">Estonia becomes the first Baltic country to join CERN as a full Member State</span></span>&nbsp;</em></span></span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;"><span style="font-family: Arial;"><span style="font-size: small;">&nbsp;</span></span></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;"><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><strong><span style="font-size: small; font-family: Arial;"><span lang="EN-GB">Geneva, 30 August 2024. Today, CERN&nbsp;is welcoming Estonia as its 24th Member State, marking the end of the<span class="Apple-converted-space">&nbsp;</span></span>formal application process that started in 2018 and crowning a period of cooperation that stretches back three decades.<span class="Apple-converted-space"></span></span></strong></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">&nbsp;</span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;"><span lang="EN-GB">“Estonia
  634. is delighted to join CERN as a full Member because CERN accelerates
  635. more than tiny particles, it also accelerates international scientific
  636. collaboration and our economies. We have seen this potential during our
  637. time as Associate Member State and we are keen to begin our full
  638. contribution,” said Alar Karis, President of Estonia.</span></span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">&nbsp;</span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;"><span lang="EN-GB">“On
  639. behalf of the CERN Council, I warmly welcome Estonia as the newest
  640. Member State of CERN,” said Eliezer Rabinovici, President of the CERN
  641. Council. “I am happy to see&nbsp;the community of CERN&nbsp;Member&nbsp;States
  642. enlarging, and I am looking forward to&nbsp;the enhanced&nbsp;participation of
  643. Estonia in the CERN Council and to its additional scientific
  644. contributions to CERN.”</span></span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">&nbsp;</span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;"><span lang="EN-GB">“Estonia
  645. and CERN have been collaborating closely for some 30 years, and I am
  646. very pleased to welcome Estonia to the ever-growing&nbsp;group of&nbsp;CERN Member
  647. States,” said Fabiola Gianotti, CERN Director-General. “I am sure the
  648. country and its scientific community will benefit from increased
  649. opportunities in fundamental research, technology development, and
  650. education and training.”<span class="Apple-converted-space"></span></span></span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">&nbsp;</span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;"><span lang="EN-GB">The
  651. bilateral relationship formally began in 1996, when Estonia and CERN
  652. signed a first cooperation agreement. A second such agreement, which
  653. further developed their scientific and technical cooperation, was
  654. concluded between the parties in 2010.<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC8ZXHNsL-2BKkAA6qAPVQqHzIocjcye4AmKqGPF5-2B4c853uefl5XK8M2Zx7KmRqr96ALzPEZ1hNUNwgvWuda-2FmwPaM6upiGvkQC4CLBWq-2FurY8-2BTNmcfgsm5okQMNQGdBHXQ-3D-3DevPp_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuG9OLRSO3XFmyqd4socI9QsHZ2bK-2FBEXm73enNHf3B4w-2BYhdDvAOjCWsiy8tuWyBziDXovm60-2B-2Bfgv1J1p9-2BQuZNcNWGKwI-2BSUlNHYrA7aMBSV2HayLqX-2FrvtZab-2BN456A-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC8ZXHNsL-2BKkAA6qAPVQqHzIocjcye4AmKqGPF5-2B4c853uefl5XK8M2Zx7KmRqr96ALzPEZ1hNUNwgvWuda-2FmwPaM6upiGvkQC4CLBWq-2FurY8-2BTNmcfgsm5okQMNQGdBHXQ-3D-3DevPp_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuG9OLRSO3XFmyqd4socI9QsHZ2bK-2FBEXm73enNHf3B4w-2BYhdDvAOjCWsiy8tuWyBziDXovm60-2B-2Bfgv1J1p9-2BQuZNcNWGKwI-2BSUlNHYrA7aMBSV2HayLqX-2FrvtZab-2BN456A-3D-3D">On&nbsp;19 June 2020</a>,
  655. the parties signed an agreement concerning the granting to Estonia of
  656. the status of Associate Member State in the pre-stage to Membership of
  657. CERN, which entered into force on<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC9TjT6N8QGQo6iQkNk7OZqm7xSVL5dW6iWpxCePOG-2FEcLGAXMhnocOhrIqHOECeIS926bKeQEBRJyiWHfDMS282yJIorU6aI-2FL-2FkuhRWIkHyrM6bGynJxKkTM51SClz8Gg-3D-3DCsgl_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuINL-2F1pJUMFFkKV5r9G0pDUM6W8yBuX5DAhGysIdcoT8xSByBgn-2BeFW1VWn64JB-2B90EknVyTBRB61T34rD9Gb4Qd8-2BJg9BGmqszKj4WVWiTswHs56q2OfMGHm0rAZAG22w-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC9TjT6N8QGQo6iQkNk7OZqm7xSVL5dW6iWpxCePOG-2FEcLGAXMhnocOhrIqHOECeIS926bKeQEBRJyiWHfDMS282yJIorU6aI-2FL-2FkuhRWIkHyrM6bGynJxKkTM51SClz8Gg-3D-3DCsgl_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuINL-2F1pJUMFFkKV5r9G0pDUM6W8yBuX5DAhGysIdcoT8xSByBgn-2BeFW1VWn64JB-2B90EknVyTBRB61T34rD9Gb4Qd8-2BJg9BGmqszKj4WVWiTswHs56q2OfMGHm0rAZAG22w-3D-3D">1 February 2021</a>.</span></span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">&nbsp;</span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">Estonia
  658. has a broad engagement in the CERN scientific programme, and has been
  659. part of the CMS collaboration since 1997. Estonia’s<span class="Apple-converted-space"></span><a style="color: #467886; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.bpzodWZF-2FY-2B0jFZLbAyA86cSHiVlBshuN0ZLsiuw-2F2qZDr39eXDDLVBPE8gCqwF1-2BXjbZ79ZNA8ZkEaUu8pY-2FQ-3D-3D1HeH_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuGEqbdgRESPYMa-2BQ-2F-2F2oLl3byjw0VPjHTF1zaPXhAHuXGeDv0-2F-2BdpRrr-2FVLZ24OJrTJes39rI-2FlUIkHY4j-2B4K117jVSCca7ljm0oP9Rvz7Akgr8h-2Bst4ZmW3hRR8tCT2ig-3D-3D" target="_blank" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.bpzodWZF-2FY-2B0jFZLbAyA86cSHiVlBshuN0ZLsiuw-2F2qZDr39eXDDLVBPE8gCqwF1-2BXjbZ79ZNA8ZkEaUu8pY-2FQ-3D-3D1HeH_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuGEqbdgRESPYMa-2BQ-2F-2F2oLl3byjw0VPjHTF1zaPXhAHuXGeDv0-2F-2BdpRrr-2FVLZ24OJrTJes39rI-2FlUIkHY4j-2B4K117jVSCca7ljm0oP9Rvz7Akgr8h-2Bst4ZmW3hRR8tCT2ig-3D-3D" data-mce-style="color: #467886; text-decoration: underline;">CMS</a>&nbsp;team participates in data analysis and the<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgcP4c2KIJ30MvJKeSU-2BDH7sXI6iSSJyfpBOCe-2BozaxxRw-3D-3D1Kk3_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuEkXfX00OOivAWkJkSj-2FqG2tFBKEJC9vIc6IXhfLEeZPOkQ1VQAqzwxdvqCltZ7ckgOAulJAdBzvoiYFmOCm-2Bn3dy5BP7TLz-2FWbTb2muzjCt-2BkaOIHt3zR-2Fa1-2Fuaiqnqqg-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgcP4c2KIJ30MvJKeSU-2BDH7sXI6iSSJyfpBOCe-2BozaxxRw-3D-3D1Kk3_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuEkXfX00OOivAWkJkSj-2FqG2tFBKEJC9vIc6IXhfLEeZPOkQ1VQAqzwxdvqCltZ7ckgOAulJAdBzvoiYFmOCm-2Bn3dy5BP7TLz-2FWbTb2muzjCt-2BkaOIHt3zR-2Fa1-2Fuaiqnqqg-3D-3D">Worldwide LHC Computing Grid</a><span class="Apple-converted-space">&nbsp;</span>(W<span lang="EN-GB">LCG),
  660. for which Estonia operates one of the Tier 2 centres, located in
  661. Tallinn. Scientists from Estonia also contribute to other experiments,
  662. including<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgfOV3-2BAnGgEi3C8p5B9mtpxiyCP4PROla-2F-2BpgKIcYBG8A-3D-3DH-DF_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuD-2FIKGgwKOsuYO3j1gZVvMakqgYGkWSB0yJ7pSGfbsi1dhHM69OiO66w1XIbvln0yRkwxLa1RVADwMamaZ5fMJ07pIfH68H8kGYP2Dvm6oNbUZig7sQVfhlKwp-2BX-2BytFhw-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgfOV3-2BAnGgEi3C8p5B9mtpxiyCP4PROla-2F-2BpgKIcYBG8A-3D-3DH-DF_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuD-2FIKGgwKOsuYO3j1gZVvMakqgYGkWSB0yJ7pSGfbsi1dhHM69OiO66w1XIbvln0yRkwxLa1RVADwMamaZ5fMJ07pIfH68H8kGYP2Dvm6oNbUZig7sQVfhlKwp-2BX-2BytFhw-3D-3D">CLOUD</a>,<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgdqzCsjJHO-2FX5yUvZyhxZl51VdK5emX5RQMbRTccYlGoQ-3D-3DNKL9_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuOnkovKcv-2FV1gAe3sjy-2BbITZIl-2Fz9w5cdFFcvTjTCMrktzLfZvAZ01FjiryqR84NMvHSct8WwfLiDCUT6DcAYhieoPslv2VMgltRgp5Aah8iCHDJbQKlrFgI6B1BW3acCw-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgdqzCsjJHO-2FX5yUvZyhxZl51VdK5emX5RQMbRTccYlGoQ-3D-3DNKL9_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuOnkovKcv-2FV1gAe3sjy-2BbITZIl-2Fz9w5cdFFcvTjTCMrktzLfZvAZ01FjiryqR84NMvHSct8WwfLiDCUT6DcAYhieoPslv2VMgltRgp5Aah8iCHDJbQKlrFgI6B1BW3acCw-3D-3D">COMPASS</a>,<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC-2Bvec3sMlgiksZsXnY4oBtBUXDjcPmxQdsAeR08DeJu0ZyE__WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuLccE-2B4KL7Jor7RLQmNYLC59GnV3AmYhMaNGJ4Cp0WdmuUUBjg7Qbat9Ei3dgzle2eSsr9LJofT3oLErAp50hxfp6ghICOiknETS4E7TcoxSTAL2BwumUDEybNZTEfGnuw-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC-2Bvec3sMlgiksZsXnY4oBtBUXDjcPmxQdsAeR08DeJu0ZyE__WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuLccE-2B4KL7Jor7RLQmNYLC59GnV3AmYhMaNGJ4Cp0WdmuUUBjg7Qbat9Ei3dgzle2eSsr9LJofT3oLErAp50hxfp6ghICOiknETS4E7TcoxSTAL2BwumUDEybNZTEfGnuw-3D-3D">NA66</a><span class="Apple-converted-space">&nbsp;</span>and<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgdShQQeKMmM3-2BxpDCAagiJLwqIyTEZu5F3ZSOWAGFmeUw-3D-3DO4sk_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuNi3H7Jmg9bcyLKJlKHR0XMJFTvqmV1-2BfTnaMGWKEzQwsHfdFaAht0VysbkW7EbCLmaI8QzjZ6468id7remQKXdWyFg1w-2BdZfbOjR7d-2F2zjPqqwnfjyndsRueXc7h0NsfQ-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgdShQQeKMmM3-2BxpDCAagiJLwqIyTEZu5F3ZSOWAGFmeUw-3D-3DO4sk_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuNi3H7Jmg9bcyLKJlKHR0XMJFTvqmV1-2BfTnaMGWKEzQwsHfdFaAht0VysbkW7EbCLmaI8QzjZ6468id7remQKXdWyFg1w-2BdZfbOjR7d-2F2zjPqqwnfjyndsRueXc7h0NsfQ-3D-3D">TOTEM</a>, and to studies for future colliders (<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgdR7Acc0jtbOHNd9iG-2BFcxPJmUr4VNvcOufiFiPBQ-2B9TLGWSKPvTNyFwx-2Bew8AYePI-3DpNnL_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuFnE050-2Bat4ObeXxCihzarEeUdCQ1Akos47pVm4-2F6fKcVPMbN1OXUgnUOSXGERzlC-2FtDbiqD6-2Bu2hJB-2BH-2FSx7uzetPnNOjOnDp7Ys-2BhQJEh3oY7j3RFQNAXzymhZjWLAgg-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgdR7Acc0jtbOHNd9iG-2BFcxPJmUr4VNvcOufiFiPBQ-2B9TLGWSKPvTNyFwx-2Bew8AYePI-3DpNnL_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuFnE050-2Bat4ObeXxCihzarEeUdCQ1Akos47pVm4-2F6fKcVPMbN1OXUgnUOSXGERzlC-2FtDbiqD6-2Bu2hJB-2BH-2FSx7uzetPnNOjOnDp7Ys-2BhQJEh3oY7j3RFQNAXzymhZjWLAgg-3D-3D">CLIC</a><span class="Apple-converted-space">&nbsp;</span>and the Future Circular Collider,<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgcGKbtp3TI9nxQnaSYSwJ7PumfCIfi1TimIo515AT1pGmhJlgUx-2BmrlBz0hZIFhmGc-3DtxhA_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuFQMep5N57pIOSZJLv5yM-2FEYB8o6zSAiuA0URceAmQYnIwmEKnn-2FbGvP-2BJhXhD6UN1wuLtI6noN7DrrZo1XO1v8UQw1g1y-2Bv0MBSq-2FAHyDIKq8hqJpA3vwhJ-2Bk8cKjk4vw-3D-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC7zD6wHJFsa7sX2pyacmRgcGKbtp3TI9nxQnaSYSwJ7PumfCIfi1TimIo515AT1pGmhJlgUx-2BmrlBz0hZIFhmGc-3DtxhA_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREwAs7KBE2hdkMi1kqCmLm-2F-2FWWEO-2FDgHcGr9LhdWHGqfzTDzarXrbSZLmRLh1x-2BwWSUTgdskwOr1E3ZKV22rDWSUi9TyYZeTQrwys7wp3QsImnxfefYmLa-2Bg0X4bz5o4SANcsNpPndXCIh8kt3yDsOsuFQMep5N57pIOSZJLv5yM-2FEYB8o6zSAiuA0URceAmQYnIwmEKnn-2FbGvP-2BJhXhD6UN1wuLtI6noN7DrrZo1XO1v8UQw1g1y-2Bv0MBSq-2FAHyDIKq8hqJpA3vwhJ-2Bk8cKjk4vw-3D-3D">FCC</a>). Estonian theorists are also very much involved in collaborations with CERN.&nbsp;</span></span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">&nbsp;</span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">As
  663. a CERN Member State, Estonia will have voting rights in the Council,
  664. CERN’s highest decision-making authority. Membership will enhance
  665. opportunities for Estonian nationals to be recruited by CERN and for
  666. Estonian industry to bid for CERN contracts.<span class="Apple-converted-space"></span></span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">&nbsp;</span></p><p style="text-align: justify; margin: 0cm;" data-mce-style="text-align: justify; margin: 0cm;"><span style="font-size: small; font-family: Arial;">Science
  667. is CERN’s primary mission, and Estonia’s membership shows that the
  668. Organization’s exciting scientific programme continues to attract
  669. interest and support across the world.</span></p></div>]]></description>
  670. <category>News From Europe</category>
  671. <pubDate>Tue, 3 Sep 2024 08:43:00 GMT</pubDate>
  672. </item>
  673. <item>
  674. <title>Students from Estonia, Japan and the USA win the 11th edition of Beamline for Schools</title>
  675. <link>https://members.eps.org/news/676186/</link>
  676. <guid>https://members.eps.org/news/676186/</guid>
  677. <description><![CDATA[<p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm 0cm 8pt;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm 0cm 8pt;"><span style="font-family: tahoma, arial, helvetica, sans-serif; font-size: small;"><span style="line-height: 18.75pt;" data-mce-style="line-height: 18.75pt;"><span lang="EN-GB"><span style="color: #333333;" data-mce-style="color: #333333;"><img alt="" src="https://www.eps.org/resource/resmgr/newsletter-24/cern-20240625.jpg" style="width: 750px;" /></span></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm 0cm 8pt;" data-mce-style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm 0cm 8pt;"><span style="font-family: tahoma, arial, helvetica, sans-serif; font-size: small;"><span style="line-height: 18.75pt;" data-mce-style="line-height: 18.75pt;"><span lang="EN-GB"><span style="color: #333333;" data-mce-style="color: #333333;"><em style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;"><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: normal;"><span lang="EN-GB"><span style="color: #292929;"><span>Winners of the 2024 CERN Beamline for Schools competition: “Mavericks” from Estonia (top right), “SPEEDers” from the USA (bottom right) and “Sakura Particles” from Japan (left) (Images: Mavericks, SPEEDers, Sakura Particles)</span></span></span></span></span></span></em></span></span></span></span></p><p>&nbsp;</p><p><span><span><span><span><span lang="EN-GB"><span>Geneva and Hamburg, 25 June 2024.&nbsp; </span></span><span lang="EN-GB"><a href="https://beamlineforschools.cern/"><span><span>Beamline for Schools (BL4S)</span></span></a></span><span lang="EN-GB"><span>&nbsp;is a physics competition run by </span></span><span lang="EN-GB"><a href="https://home.cern/"><span>CERN</span></a></span><span lang="EN-GB"><span>,
  678. the European laboratory for particle physics, open to secondary school
  679. pupils from all around the world. Participants are invited to prepare a
  680. proposal for a physics experiment that can be undertaken at the beamline
  681. of a particle accelerator, either at CERN or at </span></span><span lang="EN-GB"><a href="https://www.desy.de/index_eng.html"><span>DESY</span></a></span><span lang="EN-GB"><span>
  682. (Deutsches&nbsp;Elektronen-Synchrotron in Hamburg, Germany). In 2024, three
  683. winning teams have been chosen, based on the scientific merit of their
  684. proposal and the communication merit of their video. </span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>“Mavericks”, a team from the </span></span><span lang="EN-GB"><a href="https://real.edu.ee/en/about/"><span>Secondary School of Sciences</span></a></span><span lang="EN-GB"><span> in Tallinn and the </span></span><span lang="EN-GB"><a href="https://www.htg.tartu.ee/"><span>Hugo Treffner Gymnasium</span></a></span><span lang="EN-GB"><span> in Tartu, Estonia, and the team “Sakura Particles”, which brings together pupils from </span></span><span lang="EN-GB"><a href="https://www.pen-kanagawa.ed.jp/kawawa-h/"><span>Kawawa Senior High School</span></a></span><span lang="EN-GB"><span> in Kanagawa, </span></span><span lang="EN-GB"><a href="https://www.joshigakuin.ed.jp/"><span>Joshigakuin Senior High School</span></a></span><span lang="EN-GB"><span> and </span></span><span lang="EN-GB"><a href="https://www.junten.ed.jp/contents/englishsite/"><span>Junten High School</span></a></span><span lang="EN-GB"><span> in Tokyo, </span></span><span lang="EN-GB"><a href="https://kawagoejoshi-h.spec.ed.jp/English"><span>Kawagoe Girls High School</span></a></span><span lang="EN-GB"><span> in Saitama and </span></span><span lang="EN-GB"><a href="https://www2.osaka-c.ed.jp/kitano/"><span>Kitano High School</span></a></span><span lang="EN-GB"><span> in Osaka, Japan, will travel to CERN in September 2024 to perform the experiments that they proposed. The team “SPEEDers” from </span></span><span lang="EN-GB"><a href="https://aps1.net/302/Andover-High-School"><span>Andover</span> <span>High School</span></a></span><span lang="EN-GB"><span> in Andover, USA, will carry out their experiment at a DESY beamline.</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>A beamline is a
  685. facility that provides high-energy fluxes of subatomic particles that
  686. can be used to conduct experiments in different fields, including
  687. fundamental physics, material science and medicine.&nbsp;</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>BL4S started in 2014
  688. in the context of CERN’s 60th anniversary. Over the past 10 years, more
  689. than 20&nbsp;000 pupils from all over the world have taken part in the
  690. competition, and 25 teams have been selected as winners. The
  691. participation rate has been rising consistently over the years, with a
  692. record 461 teams from 78 countries submitting an experiment proposal in
  693. 2024.&nbsp;</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>“Preparing a
  694. proposal for a particle physics experiment is a very challenging task.
  695. The success of Beamline for Schools shows that, when provided with the
  696. right support, high-school students can design feasible, interesting and
  697. imaginative experiments,” says Charlotte Warakaulle, CERN Director for
  698. International Relations. “We are continuously impressed by the quality
  699. of the proposals, and this year is no exception. The candidates
  700. demonstrated impressive creativity and great rigour, two essential
  701. qualities for students who might decide to take up scientific careers.”</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>The fruitful collaboration between CERN and </span></span><span lang="EN-GB"><span>DESY&nbsp;</span></span><span lang="EN-GB"><span>started
  702. in 2019 during a long shutdown period of the CERN accelerators. This is
  703. the sixth year that the German laboratory has hosted competition
  704. winners.&nbsp;</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>“Every year I am
  705. very impressed by the creativity and determination of the team
  706. members,”&nbsp;says Beate Heinemann, Director in charge of Particle Physics
  707. at DESY.&nbsp;“I am already looking forward to hosting the team from the USA
  708. this year. This programme is so important to me as it advances not only
  709. science but also the cultural exchange between young people from
  710. different nations.”</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>“Our experiment will
  711. focus on detector development for high-altitude ballooning
  712. applications,” says Saskia Põldmaa, one of the “Mavericks” members, from
  713. Estonia. “This is by far the biggest opportunity we have had so far in
  714. our lifetime so we will hold onto it dearly. We can’t wait to calibrate
  715. our homemade muon detector!” </span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>“Our team focuses on
  716. detector development for muon tomography applications. We will test and
  717. optimise our homemade two-dimensional position-sensitive detector,”
  718. says Chiori Matsushita from the Japanese “Sakura Particles” team. “CERN
  719. has always been a dream for us. Finally getting to go there, not as a
  720. tourist but to do experiments, is amazing!”</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>“We focus on beam
  721. diagnostics: our aim is to measure and analyse the Smith-Purcell (SP)
  722. radiation emitted by different diffraction gratings when DESY’s electron
  723. or positron beams pass by,” says Niranjan Nair from the US “SPEEDers”
  724. team. “We are thrilled to have the opportunity to not just watch
  725. scientific advancement passively, but actively contribute to it at DESY:
  726. the ultimate goal of our experiment is to research SP radiation as a
  727. tool for beam diagnostics.” </span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>The winning
  728. proposals were selected by a committee of CERN and DESY scientists from a
  729. shortlist of 49 particularly promising experiments. In addition, three
  730. teams will be recognised for the most creative video proposals and
  731. another 13 teams for the quality of physics outreach activities they are
  732. organising in their local communities, taking advantage of the
  733. knowledge gained by participating in BL4S.</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>Beamline for Schools is an education and outreach project funded by the&nbsp;</span></span><span lang="EN-GB"><a href="https://cernandsocietyfoundation.cern/" target="_blank"><span>CERN &amp; Society Foundation</span></a></span><span lang="EN-GB"><span>’s&nbsp;donors.<i></i>This
  734. 11th edition is supported notably by ROLEX through its Perpetual Planet
  735. Initiative and by the Wilhelm and Else Heraeus Foundation.</span></span></span></span></span></span></p><p><span><span><span><span><span lang="EN-GB"><span>Further information:</span></span></span></span></span></span></p><div class="news-node-full-content-body clearfix full-html-markup full-text-animation">
  736.  
  737. <ul><li><span><span><span><span><span><span lang="EN-GB"><span>BL4S website:&nbsp;</span></span><span lang="EN-GB"><a href="https://beamlineforschools.cern/"><span><span>https://beamlineforschools.cern/</span></span></a></span><u> </u></span></span></span></span></span></li><li><span><span><span><span><span><span lang="EN-GB"><span>2024 edition:&nbsp;</span></span><span lang="EN-GB"><a href="https://beamline-for-schools.web.cern.ch/2024-edition"><span>https://beamline-for-schools.web.cern.ch/2024-edition</span></a></span> </span></span></span></span></span></li><li><span><span><span><span><span><span lang="EN-GB"><span>Shortlisted teams and special prizes in 2024:&nbsp;</span></span><span lang="EN-GB"><a href="https://beamline-for-schools.web.cern.ch/sites/default/files/BL4S_all-winners_2024_final.pdf"><span>https://beamline-for-schools.web.cern.ch/sites/default/files/BL4S_all-winners_2024_final.pdf</span></a></span> &nbsp;</span></span></span></span></span></li><li><span><span><span><span><span><span lang="EN-GB"><span>Previous winners:&nbsp;</span></span><span lang="EN-GB"><a href="https://beamlineforschools.cern/resources/winners"><span><span>https://beamlineforschools.cern/resources/winners</span></span></a></span></span></span></span></span></span></li><li><span><span><span><span><span><span lang="EN-GB"><span>Countries
  738. represented among the shortlisted teams:&nbsp;Bahrain, Bangladesh, Belgium,
  739. Brazil, Canada, Chile, Czechia, Denmark, Estonia, France, Germany,
  740. Greece, Hong Kong SAR China, India, Indonesia, Italy, Japan, Kazakhstan,
  741. Pakistan, Poland, Romania, Singapore, Spain, Thailand, Türkiye, United
  742. Arab Emirates, United Kingdom, United States.&nbsp;</span></span></span></span></span></span></span></li><li><span><span><span><span><span><span lang="EN-GB"><span>The prizes awarded for the best outreach project have been kindly provided by the Belgian project&nbsp;</span></span><span lang="EN-GB"><a href="http://www.ssvi.be/"><span><span>“Stars Shine for Everyone”</span></span></a></span><span lang="EN-GB"><span>.</span></span></span></span></span></span></span></li></ul>
  743.  
  744.      </div>]]></description>
  745. <category>News From Europe</category>
  746. <pubDate>Fri, 28 Jun 2024 09:05:00 GMT</pubDate>
  747. </item>
  748. <item>
  749. <title>ESO: Astronomers see a massive black hole awaken in real time</title>
  750. <link>https://members.eps.org/news/675458/</link>
  751. <guid>https://members.eps.org/news/675458/</guid>
  752. <description><![CDATA[<p class="text_intro pr_first" style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/eso2409a.jpg" style="width: 750px;" /></p><div class="mfp-title" style="text-align: center;"><em>Artist’s impression: the galaxy SDSS1335+0728 lighting up - image credit: ESO<br /></em></div><p class="text_intro pr_first">&nbsp;</p><p class="text_intro pr_first"><strong>18th June 2024, press release ESO<br />In late 2019 the previously unremarkable
  753. galaxy SDSS1335+0728 suddenly started shining brighter than ever before.
  754. To understand why, astronomers have used data from several space and
  755. ground-based observatories, including the European Southern
  756. Observatory’s Very Large Telescope (ESO’s VLT), to track how the
  757. galaxy’s brightness has varied. In a study out today, they conclude that
  758. they are witnessing changes never seen before in a galaxy — likely the
  759. result of the sudden awakening of the massive black hole at its core.</strong></p><p dir="ltr">“<em>Imagine you’ve been observing a distant galaxy for years, and it always seemed calm and inactive,</em>”
  760. says Paula Sánchez Sáez, an astronomer at ESO in Germany and lead
  761. author of the study accepted for publication in Astronomy &amp;
  762. Astrophysics. “Suddenly, its [core] starts showing dramatic changes in
  763. brightness, unlike any typical events we've seen before.” This is what
  764. happened to SDSS1335+0728, which is now classified as having an ‘active
  765. galactic nucleus’ (AGN) — a bright compact region powered by a massive
  766. black hole — after it brightened dramatically in December 2019 <a href="https://www.eso.org/public/news/eso2409/?lang#1" data-mce-href="https://www.eso.org/public/news/eso2409/?lang#1">[1]</a>.</p><p dir="ltr">Some
  767. phenomena, like supernova explosions or tidal disruption events — when a
  768. star gets too close to a black hole and is torn apart — can make
  769. galaxies suddenly light up. But these brightness variations typically
  770. last only a few dozen or, at most, a few hundreds of days. SDSS1335+0728
  771. is still growing brighter today, more than four years after it was
  772. first seen to ‘switch on’. Moreover, the variations detected in the
  773. galaxy, which is located 300 million light-years away in the
  774. constellation Virgo, are unlike any seen before, pointing astronomers
  775. towards a different explanation.</p><p dir="ltr">The team tried to
  776. understand these brightness variations using a combination of archival
  777. data and new observations from several facilities, including the<a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/x-shooter/" data-mce-href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/x-shooter/"> X-shooter</a> instrument on ESO’s<a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/" data-mce-href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/"> VLT</a> in Chile’s Atacama Desert <a href="https://www.eso.org/public/news/eso2409/?lang#2" data-mce-href="https://www.eso.org/public/news/eso2409/?lang#2">[2]</a>.
  778. Comparing the data taken before and after December 2019, they found
  779. that SDSS1335+0728 is now radiating much more light at ultraviolet,
  780. optical, and infrared wavelengths. The galaxy also started emitting
  781. X-rays in February 2024. “This behaviour is unprecedented,” says Sánchez
  782. Sáez, who is also affiliated with the Millennium Institute of
  783. Astrophysics (MAS) in Chile.</p><p dir="ltr">“<em>The most tangible
  784. option to explain this phenomenon is that we are seeing how the [core]
  785. of the galaxy is beginning to show (...) activity</em>,” says co-author Lorena Hernández García, from MAS and the University of Valparaíso in Chile. “<em>If so, this would be the first time that we see the activation of a massive black hole in real time.</em>”</p><p dir="ltr">Massive
  786. black holes — with masses over one hundred thousand times that of our
  787. Sun — exist at the centre of most galaxies, including the Milky Way. “<em>These giant monsters usually are sleeping and not directly visible</em>,” explains co-author Claudio Ricci, from the Diego Portales University, also in Chile. “<em>In
  788. the case of SDSS1335+0728, we were able to observe the awakening of the
  789. massive black hole, [which] suddenly started to feast on gas available
  790. in its surroundings, becoming very bright.</em>”</p><p dir="ltr">“<em>[This] process (...) has never been observed before</em>,”
  791. Hernández García says. Previous studies reported inactive galaxies
  792. becoming active after several years, but this is the first time the
  793. process itself — the awakening of the black hole — has been observed in
  794. real time. Ricci, who is also affiliated with the Kavli Institute for
  795. Astronomy and Astrophysics at Peking University, China, adds: “<em>This is something that could happen also to our own Sgr A*, the massive black hole (...) located at the centre of our galaxy</em>," but it is unclear how likely this is to happen.&nbsp;</p><p dir="ltr">Follow-up
  796. observations are still needed to rule out alternative explanations.
  797. Another possibility is that we are seeing an unusually slow tidal
  798. disruption event, or even a new phenomenon. If it is in fact a tidal
  799. disruption event, this would be the longest and faintest such event ever
  800. observed. “<em>Regardless of the nature of the variations, [this galaxy] provides valuable information on how black holes grow and evolve</em>,” Sánchez Sáez says. “<em>We
  801. expect that instruments like [MUSE on the VLT or those on the upcoming
  802. Extremely Large Telescope (ELT)] will be key in understanding [why the
  803. galaxy is brightening</em>].” &nbsp;</p><h3>Notes</h3><p dir="ltr"><a class="anchor mceItemAnchor" name="1"></a>[1]
  804. The SDSS1335+0728 galaxy’s unusual brightness variations were detected
  805. by the Zwicky Transient Facility (ZTF) telescope in the US. Following
  806. that, the Chilean-led Automatic Learning for the Rapid Classification of
  807. Events (ALeRCE) broker classified SDSS1335+0728 as an active galactic
  808. nucleus.</p><p dir="ltr"><a class="anchor mceItemAnchor" name="2"></a>[2]
  809. The team collected archival data from NASA’s Wide-field Infrared Survey
  810. Explorer (WISE) and Galaxy Evolution Explorer (GALEX), the Two Micron
  811. All Sky Survey (2MASS), the Sloan Digital Sky Survey (SDSS), and the
  812. eROSITA instrument on IKI and DLR’s Spektr-RG space observatory. Besides
  813. ESO’s VLT, the follow-up observations were conducted with the Southern
  814. Astrophysical Research Telescope (SOAR), the W. M. Keck Observatory, and
  815. NASA’s Neil Gehrels Swift Observatory and Chandra X-ray Observatory.</p>]]></description>
  816. <category>News From Europe</category>
  817. <pubDate>Thu, 20 Jun 2024 16:04:00 GMT</pubDate>
  818. </item>
  819. <item>
  820. <title>IAEA Marie Sklodowska-Curie Fellowship Programme</title>
  821. <link>https://members.eps.org/news/674703/</link>
  822. <guid>https://members.eps.org/news/674703/</guid>
  823. <description><![CDATA[<p><strong>Spread the word! The IAEA Marie Sklodowska-Curie Fellowship
  824. Programme (MSCFP) next application call is scheduled to open in mid-July
  825. 2024 and will close by end of September 2024. To read more about the
  826. programme and eligibility requirements,&nbsp;please visit the link:</strong>&nbsp;&nbsp;<a href="https://www.iaea.org/about/overview/gender-at-the-iaea/iaea-marie-sklodowska-curie-fellowship-programme" target="_blank" data-mce-href="https://www.iaea.org/about/overview/gender-at-the-iaea/iaea-marie-sklodowska-curie-fellowship-programme">IAEA Marie Sklodowska-Curie Fellowship Programme | IAEA</a>&nbsp;and&nbsp;<a href="https://www.iaea.org/about/overview/gender-at-the-iaea/iaea-marie-sklodowska-curie-fellowship-programme/Information-for-applicants" target="_blank" data-mce-href="https://www.iaea.org/about/overview/gender-at-the-iaea/iaea-marie-sklodowska-curie-fellowship-programme/Information-for-applicants">Information for applicants | IAEA</a>. The dates of the upcoming application period will be noted on the IAEA website soon.&nbsp;</p><p>The
  827. IAEA Marie Sklodowska-Curie Fellowship Programme (MSCFP)&nbsp;was launched
  828. in 2020 by the IAEA Director General to increase&nbsp;the number of women in
  829. the nuclear field, supporting an inclusive workforce of men and women
  830. who contribute to and drive global scientific and technological
  831. innovation.</p><p>The programme aims to inspire and encourage women to
  832. pursue a career in the nuclear related field, by providing highly
  833. motivated female students with scholarships for master’s programmes and
  834. an opportunity to pursue an internship facilitated by the IAEA.
  835. Scholarships are awarded annually.</p><p>In the selection of students,
  836. consideration is given to geographic and field of study diversity, in
  837. addition to eligibility requirements and other criteria. The selected
  838. students are awarded up to €20,000 for tuition costs and up to €20,000
  839. for living costs for their master’s programme (the amount will vary
  840. depending on the duration of the programme, costs associated with
  841. tuition as well as location of the studies). Upon completion of their
  842. studies, students who pursue an internship facilitated by the IAEA, in
  843. line with their specialization in the nuclear field, are also provided
  844. with a stipend for up to 12 months. The internships may take place at
  845. the IAEA or in nuclear organizations in the public or private sector.&nbsp;
  846. Additionally, students are provided with opportunities to attend and
  847. participate in various educational, professional, and networking events.
  848. MSCFP recipients also have a chance to become a part of the programme’ s
  849. LinkedIn Student and Alumni Group where they can connect with their
  850. peers and exchange knowledge and experience, as well as find out about
  851. technical events and career opportunities. Since its launch in 2020,
  852. MSCFP&nbsp;has received 2271 applications, selecting 560 students from 121
  853. nationalities studying in 72 countries worldwide. By end of March 2024,
  854. 201 students have already completed their master’s programme with
  855. support of MSCFP.&nbsp; From these graduates, 110 have been confirmed for an
  856. internship facilitated by the IAEA at the IAEA departments and labs
  857. (Seibersdorf and Monaco), IAEA Collaborating Centres, and other nuclear
  858. organizations in the public or private sector in various countries The
  859. internships are linked to the students’ areas of specialization in
  860. fields ranging from nuclear energy, nuclear science and applications,
  861. nuclear non-proliferation, nuclear safety and security and nuclear
  862. law.&nbsp;&nbsp; The remaining graduates have pursued PhD studies or obtained
  863. employment in their field.&nbsp; The programme is envisaged to grow each year
  864. to ensure more women have an opportunity to pursue advanced education
  865. in the nuclear related field.</p><p><strong>More information about the programme</strong></p><ul><li><a href="https://www.iaea.org/about/overview/gender-at-the-iaea/meet-the-mscfp-students" data-mce-href="https://www.iaea.org/about/overview/gender-at-the-iaea/meet-the-mscfp-students">Meet the Marie Sklodowska-Curie Fellowship Programme students | IAEA</a></li><li><a href="https://www.youtube.com/watch?v=Df5VQtluooA&amp;list=PLCsYX9QVCDTEirWGcjgDrwzN_FRed-O-f&amp;index=10" data-mce-href="https://www.youtube.com/watch?v=Df5VQtluooA&amp;list=PLCsYX9QVCDTEirWGcjgDrwzN_FRed-O-f&amp;index=10">Watch Marie Curie Fellowship Programme</a></li><li><a href="https://www.iaea.org/sites/default/files/24/02/mscfp-brochure_feb_2024.pdf" data-mce-href="https://www.iaea.org/sites/default/files/24/02/mscfp-brochure_feb_2024.pdf">MSCFP brochure</a></li></ul><p><strong>Related Articles</strong></p><ul><li><a href="https://www.iaea.org/newscenter/news/iaea-marks-international-womens-day-by-celebrating-more-women-in-nuclear" data-mce-href="https://www.iaea.org/newscenter/news/iaea-marks-international-womens-day-by-celebrating-more-women-in-nuclear">IAEA Marks International Women’s Day by Celebrating More Women in Nuclear | IAEA</a></li><li><a href="https://www.iaea.org/newscenter/multimedia/videos/international-womens-day-nuclear-needs-more-women" data-mce-href="https://www.iaea.org/newscenter/multimedia/videos/international-womens-day-nuclear-needs-more-women">International Women’s Day – Nuclear Needs More Women | IAEA</a></li><li><a href="https://www.iaea.org/newscenter/news/supporting-the-next-generation-an-iaea-spotlight-on-women-in-nuclear-sciences-and-applications" data-mce-href="https://www.iaea.org/newscenter/news/supporting-the-next-generation-an-iaea-spotlight-on-women-in-nuclear-sciences-and-applications">Supporting the Next Generation: An IAEA Spotlight on Women in Nuclear Sciences and Applications | IAEA</a></li><li><a href="https://www.iaea.org/newscenter/news/iaea-profile-shifting-focus-from-pharmaceutical-chemistry-to-blue-carbon" data-mce-href="https://www.iaea.org/newscenter/news/iaea-profile-shifting-focus-from-pharmaceutical-chemistry-to-blue-carbon">IAEA Profile: Shifting Focus From Pharmaceutical Chemistry to Blue Carbon | IAEA</a></li></ul>]]></description>
  866. <category>News From Europe</category>
  867. <pubDate>Tue, 11 Jun 2024 10:48:00 GMT</pubDate>
  868. </item>
  869. <item>
  870. <title>The United Nations proclaims 2025 as the International Year of Quantum Science and Technology</title>
  871. <link>https://members.eps.org/news/674608/</link>
  872. <guid>https://members.eps.org/news/674608/</guid>
  873. <description><![CDATA[<p><strong>7th June 2024, Amercian Physycal Society, press release</strong></p><hr /><p><span style="font-size: small; background-color: transparent; font-weight: 400; font-style: italic; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;">The declaration recognizes the potential of quantum science to drive innovations in sustainable development and global communications.</span></p><p><span style="font-size: small; font-family: arial, helvetica, sans-serif;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">On 7th June 2024, the United Nations proclaimed 2025 as the </span><a style="text-decoration: none;" href="https://quantum2025.org/" data-mce-href="https://quantum2025.org/" data-mce-style="text-decoration: none;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap; color: #00538b;" data-mce-style="color: #00538b; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap;">International Year of Quantum Science and Technology</span></a><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;"> (IYQ). This year-long, worldwide initiative will celebrate the contributions of quantum science to technological progress over the past century, raise global awareness of its importance to sustainable development in the 21st century, and ensure that all nations have access to quantum education and opportunities.</span></span></p><p><span style="font-size: small; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;">“Through this proclamation, we will bring quantum STEM education and research to young people in Africa and developing countries around the world with the hope of inspiring the next generation of scientists, “ said Riche-Mike Wellington, Chief Programme Specialist at the Ghana Commission for UNESCO and the Ghanaian representative for IYQ.</span></p><p><span style="font-size: small; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;">IYQ coincides with the 100th anniversary of the birth of modern quantum mechanics — the theory that describes the behavior of matter and energy at atomic and subatomic scales and has made possible many of the world’s most important technologies. Over the past century, quantum theory has become foundational to physics, chemistry, engineering, and biology and has revolutionized modern electronics and global telecommunications. Inventions like the transistor, lasers, rare-earth magnets, and LEDs&nbsp; — technologies that brought the internet, computers, solar cells, MRI, and global navigation into fruition — all exist because of quantum mechanics.</span></p><p><span style="font-size: small; font-family: arial, helvetica, sans-serif;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">Looking forward, advances in quantum applications could enable new computing and communication models with the potential to accelerate innovations in materials science, medicine, and cybersecurity, among other fields. In this way, quantum science and technology is poised to help address the world’s most pressing challenges — including the need to rapidly</span><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;"><br /></span></span></p><p><span style="font-size: small; background-color: transparent; font-weight: bold; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;"></span></p><p><span style="font-size: small; font-family: arial, helvetica, sans-serif;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">develop renewable energy, improve human health, and create global solutions in support of the U.N.’s </span><a style="text-decoration: none;" href="https://www.undp.org/sustainable-development-goals" data-mce-href="https://www.undp.org/sustainable-development-goals" data-mce-style="text-decoration: none;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap; color: #00538b;" data-mce-style="color: #00538b; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap;">Sustainable Development Goals</span></a><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">.</span></span></p><p><span style="font-size: small; font-family: arial, helvetica, sans-serif;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">“This second quantum revolution is leading to breakthroughs in using quantum effects like superposition and entanglement for new applications,” said </span><a style="text-decoration: none;" href="https://www.aps.org/people/john-doyle" data-mce-href="https://www.aps.org/people/john-doyle" data-mce-style="text-decoration: none;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap; color: #00538b;" data-mce-style="color: #00538b; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap;">John Doyle</span></a><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">, Henry B. Silsbee Professor of Physics at Harvard University, co-director of the Harvard Quantum Initiative, and president-elect of the American Physical Society. “When these phenomena can be applied broadly to control and engineer matter at the level of single quanta, and even single atoms, they will spark transformations in a multitude of technologies.”</span></span></p><p><span style="font-size: small; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;">The U.N. proclamation is the culmination of a multiyear effort spearheaded by an international coalition of scientific organizations. After Mexico shepherded the coalition’s initial proposal through UNESCO’s 42nd General Conference in November 2023, Ghana formally submitted a draft resolution to the U.N. General Assembly in May 2024 that garnered co-sponsorship from more than 70 countries before its approval today.&nbsp;</span></p><p><span style="font-size: small; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;">UNESCO will oversee the campaign as the U.N.’s lead agency, while the American Physical Society will administer the campaign through an international consortium and invite scientific societies, academic institutions, philanthropic organizations, and industry to contribute to the initiative. The consortium’s current founding partners include the American Physical Society; the German Physical Society (DPG); the Chinese Optical Society; SPIE, the international society for optics and photonics; and Optica (formerly OSA).</span></p><p><span style="font-size: small; font-family: arial, helvetica, sans-serif;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">“The American Physical Society welcomes the opportunity to collaborate with scientific organizations from around the world to spread awareness about quantum science and technology,” said </span><a style="text-decoration: none;" href="https://www.aps.org/people/jonathan-bagger" data-mce-href="https://www.aps.org/people/jonathan-bagger" data-mce-style="text-decoration: none;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap; color: #00538b;" data-mce-style="color: #00538b; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap;">Jonathan Bagger</span></a><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">, chief executive officer of the American Physical Society. “With worldwide events and programming, we hope to build a vibrant and inclusive global quantum science community.”</span></span></p><p><span style="font-size: small; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;">Broad, multinational support for IYQ signals the need to strengthen the education, research, and development capacities of governments — especially those of low- and middle-income countries — to advance quantum science and technologies for the benefit of humanity. The U.N. proclamation stands as an open invitation for anyone to learn more — especially those at universities, in K-12 classrooms, and other venues for science communication. Throughout 2025, the IYQ consortium will organize regional, national, and international outreach events, activities, and programming to celebrate and develop learning resources for quantum science, build scientific partnerships that will expand educational and research opportunities in developing countries, and inspire the next generation of diverse quantum pioneers. More information about these activities will be announced in the coming months.</span></p><hr /><p><span style="font-size: small; font-family: arial, helvetica, sans-serif;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">The </span><a style="text-decoration: none;" href="https://quantum2025.org/" data-mce-href="https://quantum2025.org/" data-mce-style="text-decoration: none;"><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap; color: #00538b;" data-mce-style="color: #00538b; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap;">International Year of Quantum of Quantum Science and Technology</span></a><span style="background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: transparent; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">&nbsp; is a year-long, global initiative to recognize the importance of quantum science and technology and strengthen national capacities for science education and research.</span></span></p><p><span style="font-size: small; background-color: transparent; font-weight: bold; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; font-family: arial, helvetica, sans-serif; color: #000000;"><span style="background-color: #ffffff; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: #ffffff; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;">The </span><a style="text-decoration: none;" href="https://www.aps.org/" data-mce-href="https://www.aps.org/" data-mce-style="text-decoration: none;"><span style="background-color: #ffffff; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap; color: #00538b;" data-mce-style="color: #00538b; background-color: #ffffff; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: underline; text-decoration-skip-ink: none; vertical-align: baseline; white-space: pre-wrap;">American Physical Society</span></a><span style="background-color: #ffffff; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap; color: #000000;" data-mce-style="color: #000000; background-color: #ffffff; font-weight: 400; font-style: normal; font-variant: normal; text-decoration: none; vertical-align: baseline; white-space: pre-wrap;"> is a nonprofit membership organization working to advance physics by fostering a vibrant, inclusive, and global community dedicated to science and society. APS represents more than 50,000 members, including physicists in academia, national laboratories, and industry in the United States and around the world.</span><br /></span></p>]]></description>
  874. <category>News International </category>
  875. <pubDate>Mon, 10 Jun 2024 14:01:00 GMT</pubDate>
  876. </item>
  877. <item>
  878. <title>Nuclear fusion: Top marks for facilities at the MPI for Plasma Physics</title>
  879. <link>https://members.eps.org/news/673015/</link>
  880. <guid>https://members.eps.org/news/673015/</guid>
  881. <description><![CDATA[<div><i><b>Max Planck Institute for Plasma Physics - IPP, 21st May 2024 <br /><br />The European research consortium EUROfusion has had more than 100 fusion facilities in its member states independently assessed. The facilities of the Max Planck Institute for Plasma Physics (IPP) were consistently categorised in the best ‘Indispensable’ category.</b></i></div><div>&nbsp;</div><div>How important are the European nuclear fusion research facilities on the way to a fusion power plant? An independent panel of experts investigated this question on behalf of the European consortium EUROfusion. Between autumn 2023 and spring 2024, the panel evaluated more than 100 facilities. It consisted of five EU experts who are not involved in fusion research and six fusion experts who work for organisations outside the EU. In their final report ‘EUROfusion Facilities Review 2023’, the experts recognised the leading role of European fusion research in several areas. The experts categorised the existing research facilities according to their importance as ‘Indispensable’, ‘Very Important’ and ‘Important’. The panel categorised the four IPP facilities examined in the best category.</div><div>&nbsp;</div><div>‘Indispensable’ are therefore&nbsp;</div><div><ul class="MailOutline" style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none;"><li><span style="font-family: Arial;">ASDEX Upgrade – The experts describe the IPP facility as the current ‘flagship facility’ of the EUROfusion Tokamak programme.</span></li><li><span style="font-family: Arial;">Wendelstein 7-X – the largest and most powerful stellarator in the world.</span></li><li><span style="font-family: Arial;">GLADIS – according to the panel an indispensable high heat flux test facility for ITER and DEMO divertor and first wall components.&nbsp;</span></li><li><span style="font-family: Arial;">BATMAN Upgrade and ELISE – “unique test facilites for negative-Ion Neutral Beam Injection (NNBI) sources, embedded in the size scaling route for ITER NNBI.” <br /></span></li></ul></div><span style="font-family: Arial;"></span><br />]]></description>
  882. <category>News From Europe</category>
  883. <pubDate>Tue, 21 May 2024 13:51:00 GMT</pubDate>
  884. </item>
  885. <item>
  886. <title> ProtoDUNE’s argon filling underway</title>
  887. <link>https://members.eps.org/news/670039/</link>
  888. <guid>https://members.eps.org/news/670039/</guid>
  889. <description><![CDATA[<p>12 April, 2024, By Chetna Krishna, CERN</p><hr /><p class="news-node-full-content-caption cern-caption" style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/CERN-protodune-20240412.jpg" style="width: 750px;" /><br /><em>ProtoDUNE begins liquid argon filling (Image: CERN)</em></p><p class="news-node-full-content-caption cern-caption" style="text-align: left;"><strong>
  890.        This will be a significant step towards testing ProtoDUNE for the next era of neutrino research</strong></p><p style="margin-bottom: 15px;" data-mce-style="margin-bottom: 15px;">CERN’s Neutrino Platform houses a prototype of the <a href="https://www.dunescience.org/" data-mce-href="https://www.dunescience.org/">Deep Underground Neutrino Experiment (DUNE</a>)
  891. known as ProtoDUNE, which is designed to test and validate the
  892. technologies that will be applied to the construction of the DUNE
  893. experiment in the United States.</p><p>Recently, ProtoDUNE has entered a
  894. pivotal stage: the filling of one of its two particle detectors with
  895. liquid argon. Filling such a detector takes almost two months, as the
  896. chamber is gigantic – almost the size of a three-storey building.
  897. ProtoDUNE’s second detector will be filled in the autumn.</p><p>ProtoDUNE
  898. will use the proton beam from the Super Proton Synchrotron to test the
  899. detecting of charged particles. This argon-filled detector will be
  900. crucial to test the detector response for the next era of neutrino
  901. research. Liquid argon is used in DUNE due to its inert nature, which
  902. provides a clean environment for precise measurements. When a neutrino
  903. interacts with argon, it produces charged particles that ionise the
  904. atoms, allowing scientists to detect and study neutrino interactions.
  905. Additionally, liquid argon's density and high scintillation light yield
  906. enhance the detection of these interactions, making it an ideal medium
  907. for neutrino experiments.</p><p>Interestingly, the interior of the
  908. partially filled detector now appears green instead of its usual golden
  909. colour. This is because when the regular LED light is reflected inside
  910. the metal cryostat, the light travels through the liquid argon and the
  911. wavelength of the photons is shifted, producing a visible green effect.</p><p>The&nbsp;DUNE
  912. far detector, which will be roughly 20 times bigger than protoDUNE, is
  913. being built in the United States. DUNE will send a beam of neutrinos
  914. from&nbsp;<a href="https://fnal.gov/" data-mce-href="https://fnal.gov/">Fermi National Accelerator Laboratory</a>&nbsp;(Fermilab)
  915. near Chicago, Illinois, over a distance of more than 1300 kilometres
  916. through the Earth to neutrino detectors located 1.5 km underground at
  917. the&nbsp;<a href="https://sanfordlab.org/" data-mce-href="https://sanfordlab.org/">Sanford Underground Research Facility</a>&nbsp;(SURF) in Lead, South Dakota.</p><p>Watch a short time-lapse video of protoDUNE being filled with liquid argon: <strong><a href="https://youtu.be/FweOvhKsqaM">https://youtu.be/FweOvhKsqaM</a></strong><br /></p>]]></description>
  918. <category>News From Europe</category>
  919. <pubDate>Mon, 15 Apr 2024 16:15:00 GMT</pubDate>
  920. </item>
  921. <item>
  922. <title>The CMS experiment at CERN measures a key parameter of the Standard Model</title>
  923. <link>https://members.eps.org/news/669597/</link>
  924. <guid>https://members.eps.org/news/669597/</guid>
  925. <description><![CDATA[<div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/CERN-pr-2024-08.jpg" style="width: 750px;" /></span></span></em></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 12px;"><span style="font-family: Arial, Helvetica, sans-serif;">The CMS experiment (image: CERN)&nbsp;</span></span></em></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;">&nbsp;</div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: center;"><em><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span style="color: black;">With this measurement the LHC is again demonstrating its ability to provide very high-precision measurements and bringing new insights into an old mystery</span></span></span></span></em></div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;">&nbsp;</div><div style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; text-align: justify;"><p class="Body" style="border: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span><span>Geneva, April 3 2024. Last week, at the annual<span class="Apple-converted-space"></span></span></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.OhNCY5GQPYraX1C7copMHytp6DYxyznM7assJDK3Fq7VlSfxPlmwcuGs-2BK1NE-2F9QIO9D_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREw1Bck7jBKcpoDNGFsbeMSVKcfauOQ6-2FgacBpklRvS2NnNn6JAcXyXUPLy-2BKUrNCFY8-2B-2BpazkBKDvRUaQySRwAan-2FyQNuo6bZxggvK-2B86-2F0n2ntTfIsm-2B-2BAu0Y-2BujWaAgOOr-2BU5Yz3pmXi0mRk9kQdShnnweb4u3jAuXb6VwX-2BUSYM-2BEGk9eTQpEINpEdsvND8PyJgOIIb-2FFDClU8AWDfiyHtbGKyotdRdO4ztye-2BsLNgKGLZxoK9tLVPXwblbVfcu3iQjS1TnNVCs4bJGrqMCBrmZtCGKUQam5Qj9qQ-2FRZeU-3D" style="text-decoration: underline;"><span><span class="Hyperlink0"><em style="font-style: italic;"><u style="text-decoration: underline;"><span style="line-height: 16.100000381469727px;"><span>Rencontres de Moriond</span></span></u></em></span></span></a><span><span><span class="Apple-converted-space"></span>conference, the CMS collaboration presented a measurement of the effective leptonic electroweak mixing angle. The result is the most precise measurement performed at a hadron collider to date and is in good agreement with the prediction from the Standard Model.</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The Standard Model of Particle Physics is the most precise description to date of particles and their interactions. Precise measurements of its parameters, combined with precise theoretical calculations, yield spectacular predictive power that allows phenomena to be determined even before they are directly observed. In this way, the Model successfully constrained the masses of the W and Z bosons (discovered at CERN in 1983), of the top quark (discovered at Fermilab in 1995) and, most recently, of the Higgs boson (discovered at CERN in 2012). Once these particles had been discovered, these predictions became consistency checks for the Model, allowing physicists to explore the limits of the theory</span><span dir="RTL" lang="AR-SA"><span>’</span></span><span>s validity. At the same time, precision measurements of the properties of these particles are a powerful tool for searching for new phenomena beyond the Standard Model – so-called “new physics” - since new phenomena would manifest themselves as discrepancies between various measured and calculated quantities.</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The electroweak mixing angle is a key element of these consistency checks. It is a fundamental parameter of the Standard Model, determining how the unified electroweak interaction gave rise to the electromagnetic and weak interactions through a process known as electroweak symmetry breaking. At the same time, it mathematically ties together the masses of the W and Z bosons that transmit the weak interaction. So, measurements of the W, the Z or the mixing angle provide a good experimental cross-check of the Model.<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The two most precise measurements of the weak mixing angle were performed by experiments at the CERN LEP collider and by the SLD experiment at the Stanford Linear Accelerator Center (SLAC). The values disagree with each other, which had puzzled physicists for over a decade. The new result is in good agreement with the Standard Model prediction and is a step towards resolving the discrepancy between the latter and the LEP and SLD measurements.<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span dir="RTL" lang="AR-SA"><span>“</span></span><span>This result shows that precision physics can be carried out at hadron colliders,” says Patricia McBride, CMS spokesperson.<span class="Apple-converted-space"></span></span><span dir="RTL" lang="AR-SA"><span>“</span></span><span>The analysis had to handle the challenging environment of LHC Run 2, with an average of 35 simultaneous proton-proton collisions. This paves the way for more precision physics at the High-Luminosity LHC, where five times more proton pairs will be colliding simultaneously.”</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>Precision tests of the Standard Model parameters are the legacy of electron-positron colliders, such as CERN</span><span dir="RTL" lang="AR-SA"><span>’</span></span><span>s LEP, which operated until the year 2000 in the tunnel that now houses the LHC. Electron-positron collisions provide a perfect clean environment for such high-precision measurements. Proton-proton collisions in the LHC are more challenging for this kind of studies, even though the ATLAS, CMS and LHCb experiments have already provided a plethora of new ultra-precise measurements. The challenge is mainly due to huge backgrounds from other physics processes than the one being studied and to the fact that protons, unlike electrons, are not elementary particles. For this new result, reaching a precision similar to that of an electron-positron collider seemed like an impossible task, but it has now been achieved.<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The measurement presented by CMS uses a sample of proton-proton collisions collected from 2016 to 2018 at a centre-of-mass energy of 13 TeV and corresponding to a total integrated luminosity of 137 fb</span><sup><span lang="EN-US"><span>−1</span></span></sup><span>, meaning about 11.000 million million collisions!&nbsp;<span class="Apple-converted-space"></span></span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>The mixing angle is obtained through an analysis of angular distributions in collisions where pairs of electrons or muons are produced. This is the most precise measurement performed at a hadron collider to date, improving on previous measurements from ATLAS, CMS and LHCb.</span></span></span></span></span></p><p class="Body" style="border: none; margin: 0cm;">&nbsp;</p><p class="Body" style="border: none; margin: 0cm;"><span><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><span>Read more:</span></span></span></span></span></p><ul><li class="Body" style="border: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rCyD3W7V5JK-2FD6LZBvV1dOg2Q9uDpneUh-2BvEs-2Fq9bfFfbfIC11iqbPK72kuSW70uKyA-3D-3DR40-_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREw1Bck7jBKcpoDNGFsbeMSVKcfauOQ6-2FgacBpklRvS2NnNn6JAcXyXUPLy-2BKUrNCFY8-2B-2BpazkBKDvRUaQySRwAan-2FyQNuo6bZxggvK-2B86-2F0n2ntTfIsm-2B-2BAu0Y-2BujWaAgOOr-2BU5Yz3pmXi0mRk9kQdSkbuyNwBD6t092WgUQP-2FRbi3kwNCr3NX3VpSoJor6m5aHIBorqZoSTjb2pm9qUT58maXQgz-2BPsd7d9Ais8P-2BD2fMbasaMKaYnQJVZ0Z0GTd8LAbP5GOBau6m1s1Qqkrt2nJVQSeq5zx2nBz8BNdHBZw-3D" style="text-decoration: underline;"><span><span>CMS Physics Analysis Summary</span></span></a></span></span></span></li><li class="Body" style="border: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><span style="line-height: 16.100000381469727px;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=u001.gqh-2BaxUzlo7XKIuSly0rC-2FUmLjoBQ-2BSajoECp7oCxfFBK6fqK7ac-2BGInwGs4ZekOio7MmMzBIaMx-2Be3SKSUWNUDTAUlHKl-2FAPDw3lmJdk82jsAgffOTOGywyUzg4QhJONCJ2_WY9o56kxk3VBPfkhx3fNQYTc4G2A-2FvJCB3yvq-2Bu8eb3G39xBe76yhYBH8tGntREw1Bck7jBKcpoDNGFsbeMSVKcfauOQ6-2FgacBpklRvS2NnNn6JAcXyXUPLy-2BKUrNCFY8-2B-2BpazkBKDvRUaQySRwAan-2FyQNuo6bZxggvK-2B86-2F0n2ntTfIsm-2B-2BAu0Y-2BujWaAgOOr-2BU5Yz3pmXi0mRk9kQdSoV5S4NCMA-2Bq7AvcgaQmo0ldfNX6YLRlEMtXoDK6EQJuqBa2KtzFVIA1RBov-2F0WnwaEliHI5uul3ttAK33aL-2F7-2BLV-2F0l207t1ZAx3k6FaJZBZJQvqhBrhImGwzFcVU7LvYKze2twh4UZCKztZxWm18o-3D" style="text-decoration: underline;"><span><span class="Hyperlink2"><u style="text-decoration: underline;"><span>CMS Physics Briefing</span></u></span></span></a></span></span></span></li></ul></div>]]></description>
  926. <category>News From Europe</category>
  927. <pubDate>Tue, 9 Apr 2024 15:55:00 GMT</pubDate>
  928. </item>
  929. <item>
  930. <title> Groundbreaking survey reveals secrets of planet birth around dozens of stars</title>
  931. <link>https://members.eps.org/news/667048/</link>
  932. <guid>https://members.eps.org/news/667048/</guid>
  933. <description><![CDATA[<p style="text-align: center;"><strong><img alt="" src="https://www.eps.org/resource/resmgr/news/eso2405a.jpg" style="width: 750px;" /></strong></p><p style="text-align: center;"><em><span style="font-size: 11px;">Planet-forming discs in three clouds of the Milky Way - image credit: ESO</span><br /></em></p><p><strong>ESO, 5th March 2024. In a series of studies, a team of
  934. astronomers has shed new light on the fascinating and complex process of
  935. planet formation. The stunning images, captured using the European
  936. Southern Observatory's Very Large Telescope (ESO’s VLT) in Chile,
  937. represent one of the largest ever surveys of planet-forming discs. The
  938. research brings together observations of more than 80 young stars that
  939. might have planets forming around them, providing astronomers with a
  940. wealth of data and unique insights into how planets arise in different
  941. regions of our galaxy.
  942. </strong></p><p dir="ltr">“<em>This is really a shift in our field of study</em>,”
  943. says Christian Ginski, a lecturer at the University of Galway, Ireland,
  944. and lead author of one of three new papers published today in <em>Astronomy &amp; Astrophysics</em>. “<em>We’ve gone from the intense study of individual star systems to this huge overview of entire star-forming regions.</em>”</p>
  945. <p dir="ltr">To date more than 5000 planets have been discovered
  946. orbiting stars other than the Sun, often within systems markedly
  947. different from our own Solar System. To understand where and how this
  948. diversity arises, astronomers must observe the dust- and gas-rich discs
  949. that envelop young stars — the very cradles of planet formation. These
  950. are best found in huge gas clouds where the stars themselves are
  951. forming.</p>
  952. <p dir="ltr">Much like mature planetary systems, the new images showcase the extraordinary diversity of planet-forming discs. “<em>Some of these discs show huge spiral arms, presumably driven by the intricate ballet of orbiting planets,</em>” says Ginski. “<em>Others
  953. show rings and large cavities carved out by forming planets, while yet
  954. others seem smooth and almost dormant among all this bustle of activity</em>,”
  955. adds Antonio Garufi, an astronomer at the Arcetri Astrophysical
  956. Observatory, Italian National Institute for Astrophysics (INAF), and
  957. lead author of one of the papers.</p>
  958. <p dir="ltr">The team studied a total of 86 stars across three different
  959. star-forming regions of our galaxy: Taurus and Chamaeleon I, both
  960. around 600 light-years from Earth, and Orion, a gas-rich cloud about
  961. 1600 light-years from us that is known to be the birthplace of several
  962. stars more massive than the Sun. The observations were gathered by a
  963. large international team, comprising scientists from more than 10
  964. countries.</p>
  965. <p dir="ltr">The team was able to glean several key insights from the
  966. dataset. For example, in Orion they found that stars in groups of two or
  967. more were less likely to have large planet-forming discs. This is a
  968. significant result given that, unlike our Sun, most stars in our galaxy
  969. have companions. As well as this, the uneven appearance of the discs in
  970. this region suggests the possibility of massive planets embedded within
  971. them, which could be causing the discs to warp and become misaligned.</p>
  972. <p dir="ltr">While planet-forming discs can extend for distances
  973. hundreds of times greater than the distance between Earth and the Sun,
  974. their location several hundreds of light-years from us makes them appear
  975. as tiny pinpricks in the night sky. To observe the discs, the team
  976. employed the sophisticated Spectro-Polarimetric High-contrast Exoplanet
  977. REsearch instrument (<a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/sphere/">SPHERE</a>) mounted on ESO’s <a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/">VLT</a>. SPHERE’s state-of-the-art extreme <a href="https://www.eso.org/public/teles-instr/technology/adaptive_optics/">adaptive optics</a>
  978. system corrects for the turbulent effects of Earth’s atmosphere,
  979. yielding crisp images of the discs. This meant the team were able to
  980. image discs around stars with masses as low as half the mass of the Sun,
  981. which are typically too faint for most other instruments available
  982. today. Additional data for the survey were obtained using the VLT’s <a href="https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/x-shooter/">X-shooter</a>
  983. instrument, which allowed astronomers to determine how young and how
  984. massive the stars are. The Atacama Large Millimeter/submillimeter Array (<a href="https://www.eso.org/public/teles-instr/alma/">ALMA</a>),
  985. in which ESO is a partner, on the other hand, helped the team
  986. understand more about the amount of dust surrounding some of the stars.</p>
  987. <p dir="ltr">As technology advances, the team hopes to delve even deeper
  988. into the heart of planet-forming systems. The large 39-metre mirror of
  989. ESO’s forthcoming Extremely Large Telescope (<a href="https://elt.eso.org/">ELT</a>),
  990. for example, will enable the team to study the innermost regions around
  991. young stars, where rocky planets like our own might be forming.&nbsp;</p>
  992. <p dir="ltr">For now, these spectacular images provide researchers with a
  993. treasure trove of data to help unpick the mysteries of planet
  994. formation. “<em>It is almost poetic that the processes that mark the
  995. start of the journey towards forming planets and ultimately life in our
  996. own Solar System should be so beautiful</em>,” concludes Per-Gunnar
  997. Valegård, a doctoral student at the University of Amsterdam, the
  998. Netherlands, who led the Orion study. Valegård, who is also a part-time
  999. teacher at the International School Hilversum in the Netherlands, hopes
  1000. the images will inspire his pupils to become scientists in the future.</p>
  1001.  
  1002. <h3>More information</h3><p dir="ltr">This research was presented in three papers to appear in <em>Astronomy &amp; Astrophysics</em>. The data presented were gathered as part of the SPHERE consortium guaranteed time programme, as well as the <a href="https://www.christian-ginski.com/home/destinys">DESTINYS</a> (Disk Evolution Study Through Imaging of Nearby Young Stars) ESO Large Programme.</p>
  1003. <ol><li dir="ltr">
  1004. <p dir="ltr">“The SPHERE view of the Chamaeleon I star-forming region:
  1005. The full census of planet-forming disks with GTO and DESTINYS programs” (<a href="https://www.aanda.org/10.1051/0004-6361/202244005">https://www.aanda.org/10.1051/0004-6361/202244005</a>)</p>
  1006. </li></ol>
  1007. <p dir="ltr">The team is composed of C. Ginski (University of Galway,
  1008. Ireland;&nbsp;Leiden Observatory, Leiden University, the Netherlands
  1009. [Leiden]; Anton Pannekoek Institute for Astronomy, University of
  1010. Amsterdam, the Netherlands [API]), R. Tazaki (API), M. Benisty (Univ.
  1011. Grenoble Alpes, CNRS, IPAG, France [Grenoble]), A. Garufi (INAF,
  1012. Osservatorio Astrofisico di Arcetri, Italy), C. Dominik (API), Á. Ribas
  1013. (European Southern Observatory, Chile [ESO Chile]), N. Engler (ETH
  1014. Zurich, Institute for Particle Physics and Astrophysics, Switzerland),
  1015. J. Hagelberg (Geneva Observatory, University of Geneva, Switzerland), R.
  1016. G. van Holstein (ESO Chile), T. Muto (Division of Liberal Arts,
  1017. Kogakuin University, Japan), P. Pinilla (Max-Planck-Institut für
  1018. Astronomie, Germany [MPIA]; Mullard Space Science Laboratory, University
  1019. College London, UK), K. Kanagawa (Department of Earth and Planetary
  1020. Sciences, Tokyo Institute of Technology, Japan), S. Kim (Department of
  1021. Astronomy, Tsinghua University, China), N. Kurtovic (MPIA), M. Langlois
  1022. (Centre de Recherche Astrophysique de Lyon, CNRS, UCBL, France), J.
  1023. Milli (Grenoble), M. Momose (College of Science, Ibaraki University,
  1024. Japan [Ibaraki]), R. Orihara (Ibaraki), N. Pawellek (Department of
  1025. Astrophysics, University of Vienna, Austria), T. O. B. Schmidt
  1026. (Hamburger Sternwarte, Germany), F. Snik (Leiden), and Z. Wahhaj (ESO
  1027. Chile).</p>
  1028. <ol start="2"><li dir="ltr">
  1029. <p dir="ltr">“The SPHERE view of the Taurus star-forming region: The full census of planet-forming disks with GTO and DESTINYS programs” (<a href="https://www.aanda.org/10.1051/0004-6361/202347586">https://www.aanda.org/10.1051/0004-6361/202347586</a>)</p>
  1030. </li></ol>
  1031. <p dir="ltr">The team is composed of A. Garufi (INAF, Osservatorio
  1032. Astrofisico di Arcetri, Italy [INAF Arcetri]), C. Ginski (University of
  1033. Galway, Ireland), R. G. van Holstein (European Southern Observatory,
  1034. Chile [ESO Chile]), M. Benisty (Laboratoire Lagrange, Université Côte
  1035. d’Azur, Observatoire de la Côte d’Azur, CNRS, France; Univ. Grenoble
  1036. Alpes, CNRS, IPAG, France [Grenoble]), C. F. Manara (European Southern
  1037. Observatory, Germany), S. Pérez (Millennium Nucleus on Young Exoplanets
  1038. and their Moons [YEMS]; Departamento de Física, Universidad de Santiago
  1039. de Chile, Chile [Santiago]), P. Pinilla (Mullard Space Science
  1040. Laboratory, University College London, UK), A. Ribas (Institute of
  1041. Astronomy, University of Cambridge, UK), P. Weber (YEMS, Santiago), J.
  1042. Williams (Institute for Astronomy, University of Hawai‘i, USA), L. Cieza
  1043. (Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias,
  1044. Universidad Diego Portales, Chile [Diego Portales]; YEMS), C. Dominik
  1045. (Anton Pannekoek Institute for Astronomy, University of Amsterdam, the
  1046. Netherlands [API]), S. Facchini (Dipartimento di Fisica, Università
  1047. degli Studi di Milano, Italy), J. Huang (Department of Astronomy,
  1048. Columbia University, USA), A. Zurlo (Diego Portales; YEMS), J. Bae
  1049. (Department of Astronomy, University of Florida, USA), J. Hagelberg
  1050. (Observatoire de Genève, Université de Genève, Switzerland), Th. Henning
  1051. (Max Planck Institute for Astronomy, Germany [MPIA]), M. R. Hogerheijde
  1052. (Leiden Observatory, Leiden University, the Netherlands; API), M.
  1053. Janson (Department of Astronomy, Stockholm University, Sweden), F.
  1054. Ménard (Grenoble), S. Messina (INAF - Osservatorio Astrofisico di
  1055. Catania, Italy), M. R. Meyer (Department of Astronomy, The University of
  1056. Michigan, USA), C. Pinte (School of Physics and Astronomy, Monash
  1057. University, Australia; Grenoble), S. Quanz (ETH Zürich, Department of
  1058. Physics, Switzerland [Zürich]), E. Rigliaco (Osservatorio Astronomico di
  1059. Padova, Italy [Padova]), V. Roccatagliata (INAF Arcetri), H. M. Schmid
  1060. (Zürich), J. Szulágyi (Zürich), R. van Boekel (MPIA), Z. Wahhaj (ESO
  1061. Chile), J. Antichi (INAF Arcetri), A. Baruffolo (Padova), and T. Moulin
  1062. (Grenoble).</p>
  1063. <ol start="3"><li dir="ltr">
  1064. <p dir="ltr">“Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): The SPHERE view of the Orion star-forming region” (<a href="https://www.aanda.org/10.1051/0004-6361/202347452">https://www.aanda.org/10.1051/0004-6361/202347452</a>)</p>
  1065. </li></ol>
  1066. <p dir="ltr">The team is composed of P.-G. Valegård (Anton Pannekoek
  1067. Institute for Astronomy, University of Amsterdam, the Netherlands
  1068. [API]), C. Ginski (University of Galway, Ireland), A. Derkink (API), A.
  1069. Garufi (INAF, Osservatorio Astrofisico di Arcetri, Italy), C. Dominik
  1070. (API), Á. Ribas (Institute of Astronomy, University of Cambridge, UK),
  1071. J. P. Williams (Institute for Astronomy, University of Hawai‘i, USA), M.
  1072. Benisty (University of Grenoble Alps, CNRS, IPAG, France), T. Birnstiel
  1073. (University Observatory, Faculty of Physics,
  1074. Ludwig-Maximilians-Universität München, Germany [LMU]; Exzellenzcluster
  1075. ORIGINS, Germany), S. Facchini (Dipartimento di Fisica, Università degli
  1076. Studi di Milano, Italy), G. Columba (Department of Physics and
  1077. Astronomy "Galileo Galilei" - University of Padova, Italy; INAF –
  1078. Osservatorio Astronomico di Padova, Italy), M. Hogerheijde (API; Leiden
  1079. Observatory, Leiden University, the Netherlands [Leiden]), R. G. van
  1080. Holstein (European Southern Observatory, Chile), J. Huang (Department of
  1081. Astronomy, Columbia University, USA), M. Kenworthy (Leiden), C. F.
  1082. Manara (European Southern Observatory, Germany), P. Pinilla (Mullard
  1083. Space Science Laboratory, University College London, UK), Ch. Rab (LMU;
  1084. Max-Planck-Institut für extraterrestrische Physik, Germany), R. Sulaiman
  1085. (Department of Physics, American University of Beirut, Lebanon), A.
  1086. Zurlo (Instituto de Estudios Astrofísicos, Facultad de Ingeniería y
  1087. Ciencias, Universidad Diego Portales, Chile; Escuela de Ingeniería
  1088. Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego
  1089. Portales, Chile; Millennium Nucleus on Young Exoplanets and their
  1090. Moons).</p>
  1091. <p dir="ltr">The European Southern Observatory (ESO) enables scientists
  1092. worldwide to discover the secrets of the Universe for the benefit of
  1093. all. We design, build and operate world-class observatories on the
  1094. ground — which astronomers use to tackle exciting questions and spread
  1095. the fascination of astronomy — and promote international collaboration
  1096. for astronomy. Established as an intergovernmental organisation in 1962,
  1097. today ESO is supported by 16 Member States (Austria, Belgium, Czechia,
  1098. Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands,
  1099. Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom),
  1100. along with the host state of Chile and with Australia as a Strategic
  1101. Partner. ESO’s headquarters and its visitor centre and planetarium, the
  1102. ESO Supernova, are located close to Munich in Germany, while the Chilean
  1103. Atacama Desert, a marvellous place with unique conditions to observe
  1104. the sky, hosts our telescopes. ESO operates three observing sites: La
  1105. Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large
  1106. Telescope and its Very Large Telescope Interferometer, as well as survey
  1107. telescopes such as VISTA. Also at Paranal ESO will host and operate the
  1108. Cherenkov Telescope Array South, the world’s largest and most sensitive
  1109. gamma-ray observatory. Together with international partners, ESO
  1110. operates ALMA on Chajnantor, a facility that observes the skies in the
  1111. millimetre and submillimetre range. At Cerro Armazones, near Paranal, we
  1112. are building “the world’s biggest eye on the sky” — ESO’s Extremely
  1113. Large Telescope. From our offices in Santiago, Chile we support our
  1114. operations in the country and engage with Chilean partners and society.&nbsp;</p>
  1115. <p dir="ltr">The Atacama Large Millimeter/submillimeter Array (ALMA), an
  1116. international astronomy facility, is a partnership of ESO, the U.S.
  1117. National Science Foundation (NSF) and the National Institutes of Natural
  1118. Sciences (NINS) of Japan in cooperation with the Republic of Chile.
  1119. ALMA is funded by ESO on behalf of its Member States, by NSF in
  1120. cooperation with the National Research Council of Canada (NRC) and the
  1121. National Science and Technology Council (NSTC) in Taiwan and by NINS in
  1122. cooperation with the Academia Sinica (AS) in Taiwan and the Korea
  1123. Astronomy and Space Science Institute (KASI). ALMA construction and
  1124. operations are led by ESO on behalf of its Member States; by the
  1125. National Radio Astronomy Observatory (NRAO), managed by Associated
  1126. Universities, Inc. (AUI), on behalf of North America; and by the
  1127. National Astronomical Observatory of Japan (NAOJ) on behalf of East
  1128. Asia. The Joint ALMA Observatory (JAO) provides the unified leadership
  1129. and management of the construction, commissioning and operation of
  1130. ALMA.&nbsp;</p>
  1131. <h3>Links</h3><ul><li dir="ltr">Research papers: <a href="https://www.aanda.org/articles/aa/pdf/forth/aa44005-22.pdf">Chamaeleon</a>, <a href="https://www.aanda.org/articles/aa/pdf/forth/aa47586-23.pdf">Taurus</a>, <a href="https://www.aanda.org/articles/aa/pdf/forth/aa47452-23.pdf">Orion</a></li><li dir="ltr"><a href="http://www.eso.org/public/images/archive/category/paranal/">Photos of the VLT</a></li><li dir="ltr">Find out more about ESO's Extremely Large Telescope on our <a href="https://elt.eso.org">dedicated website</a>&nbsp;and <a href="https://www.eso.org/public/archives/brochures/pdfsm/brochure_0079.pdf">press kit</a></li><li dir="ltr">For journalists: <a href="https://www.eso.org/public/outreach/pressmedia/#epodpress_form">subscribe to receive our releases under embargo in your language</a></li><li>For scientists: got a story? <a href="https://www.eso.org/public/news/pitch-your-research/">Pitch your research</a></li></ul>]]></description>
  1132. <category>News From Europe</category>
  1133. <pubDate>Mon, 11 Mar 2024 09:35:00 GMT</pubDate>
  1134. </item>
  1135. <item>
  1136. <title>Nuclear fusion: European joint experiment achieves energy record</title>
  1137. <link>https://members.eps.org/news/665348/</link>
  1138. <guid>https://members.eps.org/news/665348/</guid>
  1139. <description><![CDATA[<p><strong>8th February 2024, Press release from&nbsp;Max-Planck-Institut für Plasmaphysik </strong></p>
  1140. <hr />
  1141. <p><strong>At the Joint European Torus (JET) in the UK, a European research team
  1142. has succeeded in generating 69 megajoules of energy from 0.2 milligrams
  1143. of fuel. This is the largest amount of energy ever achieved in a fusion
  1144. experiment.</strong></p>
  1145. <p>Fusion power plants are designed to fuse light atomic nuclei, following the example of the sun, in order to harness huge amounts of energy for humanity from very small amounts of fuel. The European research consortium EUROfusion is pursuing the concept
  1146.    of magnetic fusion, which is considered by experts to be the most advanced. With the large-scale experiments ASDEX Upgrade and Wendelstein 7-X, the Max Planck Institute for Plasma Physics (IPP) is driving forward research into this in Germany.</p>
  1147. <p>For experiments with the fuel of future power plants (deuterium and tritium), Europe's scientists operated the JET research facility near Oxford together with the UK Atomic Energy Authority (UKAEA). A new world record was set there on 3 October 2023:
  1148.    69 megajoules of fusion energy were released in the form of fast neutrons during a 5.2 second plasma discharge. 0.2 milligrams of fuel were required for this. The same amount of energy would have required about 2 kilograms of lignite – ten million
  1149.    times as much. JET thus beat its own record from 2021 (59 megajoules in 5 seconds).</p>
  1150. <p>
  1151.    "This
  1152. world record is actually a by-product. It was not actively planned, but
  1153. we were hoping for it," explains IPP scientist Dr Athina Kappatou, who worked for JET as one of nine Task Force Leaders. "This experimental
  1154. campaign was mainly about achieving the different conditions necessary
  1155. for a future power plant and thus testing realistic scenarios. One
  1156. positive aspect, however, was that the experiments from two years ago
  1157. could also be successfully reproduced and even surpassed." The latter was the case with the record-breaking experiment. The entire campaign is essential for the future operation of the international fusion plant ITER, which is currently being built
  1158.        in southern France, as well as for the planned European demonstration power plant DEMO. Over 300 scientists and engineers from EUROfusion contributed to these landmark experiments.</p>
  1159.        <p>The JET record did not achieve a positive energy balance – in other words, more heating energy had to be invested in the plasma than fusion energy was generated. In fact, an "energy gain" is physically impossible with JET and all other current
  1160.            magnetic fusion experiments worldwide. For a positive energy balance, these fusion plants must exceed a certain size, which will be the case with ITER.</p>
  1161.        <p>The record-breaking experiment (JET pulse #104522) in the autumn was one of the last ever at JET. After four decades the facility ceased operations at the end of 2023.</p>]]></description>
  1162. <category>News From Europe</category>
  1163. <pubDate>Mon, 19 Feb 2024 13:25:00 GMT</pubDate>
  1164. </item>
  1165. <item>
  1166. <title>Greetings from the island of enhanced stability: The quest for the limit of the periodic table</title>
  1167. <link>https://members.eps.org/news/665058/</link>
  1168. <guid>https://members.eps.org/news/665058/</guid>
  1169. <description><![CDATA[<p>Press release, 13th February 2024</p><p><strong>Review in Nature Review Physics discusses major challenges in
  1170. the field of superheavy elements and their nuclei and provides an
  1171. outlook on future developments</strong></p><p><strong>Since the turn of
  1172. the century, six new chemical elements have been discovered and
  1173. subsequently added to the periodic table of elements, the very icon of
  1174. chemistry. These new elements have high atomic numbers up to 118 and are
  1175. significantly heavier than uranium, the element with the highest atomic
  1176. number (92) found in larger quantities on Earth. This raises questions
  1177. such as how many more of these superheavy species are waiting to be
  1178. discovered, where – if at all – is a fundamental limit in the creation
  1179. of these elements, and what are the characteristics of the so-called
  1180. island of enhanced stability. In a recent review, experts in theoretical
  1181. and experimental chemistry and physics of the heaviest elements and
  1182. their nuclei summarize the major challenges and offer a fresh view on
  1183. new superheavy elements and the limit of the periodic table. One of them
  1184. is Professor Christoph Düllmann from the GSI Helmholtzzentrum für
  1185. Schwerionenforschung in Darmstadt, Johannes Gutenberg University Mainz,
  1186. and the Helmholtz Institute Mainz (HIM). In its February issue, the
  1187. world's leading high-impact journal&nbsp;<em>Nature Review Physics</em>&nbsp;presents the topic as its cover story.</strong></p><p><strong>Visualizing an island of stability of superheavy nuclei</strong></p><p>Already
  1188. in the first half of the last century, researchers realized that the
  1189. mass of atomic nuclei is smaller than the total mass of their proton and
  1190. neutron constituents. This difference in mass is responsible for the
  1191. binding energy of the nuclei. Certain numbers of neutrons and protons
  1192. lead to stronger binding and are referred to as “magic”. In fact,
  1193. scientists observed early on that protons and neutrons move in
  1194. individual shells that are similar to electronic shells, with nuclei of
  1195. the metal lead being the heaviest with completely filled shells
  1196. containing 82 protons and 126 neutrons – a doubly-magic nucleus. Early
  1197. theoretical predictions suggested that the extra stability from the next
  1198. “magic” numbers, far from nuclei known at that time, might lead to
  1199. lifetimes comparable to the age of the Earth. This led to the notion of a
  1200. so-called island of stability of superheavy nuclei separated from
  1201. uranium and its neighbors by a sea of instability.</p><p>There are
  1202. numerous graphical representations of the island of stability, depicting
  1203. it as a distant island. Many decades have passed since this image
  1204. emerged, so it is time to take a fresh look at the stability of
  1205. superheavy nuclei and see where the journey to the limits of mass and
  1206. charge might lead us. In their recent paper titled "The quest for
  1207. superheavy elements and the limit of the periodic table", the authors
  1208. describe the current state of knowledge and the most important
  1209. challenges in the field of these superheavies. They also present key
  1210. considerations for future development.</p><p>Elements up to oganesson
  1211. (element 118) have been produced in experiments, named, and included in
  1212. the periodic table of elements in accelerator facilities around the
  1213. world, such as at GSI in Darmstadt and in future at FAIR, the
  1214. international accelerator center being built at GSI. These new elements
  1215. are highly unstable, with the heaviest ones disintegrating within
  1216. seconds at most. A more detailed analysis reveals that their lifetimes
  1217. increase towards the magic neutron number 184. In the case of
  1218. copernicium (element 112), for example, which was discovered at GSI, the
  1219. lifetime increases from less than a thousandth of a second to 30
  1220. seconds. However, the neutron number 184 is still a long way from being
  1221. reached, so the 30 seconds are only one step on the way. Since the
  1222. theoretical description is still prone to large uncertainties, there is
  1223. no consensus on where the longest lifetimes will occur and how long they
  1224. will be. However, there is a general agreement that truly stable
  1225. superheavy nuclei are no longer to be expected.</p><p><strong>Revising the map of superheavy elements</strong></p><p>This
  1226. leads to a revision of the superheavy landscape in two important ways.
  1227. On the one hand, we have indeed arrived at the shores of the region of
  1228. enhanced stability and have thus confirmed experimentally the concept of
  1229. an island of enhanced stability. On the other hand, we do not yet know
  1230. how large this region is – to stay with the picture. How long will the
  1231. maximum lifetimes be, with the height of the mountains on the island
  1232. typically representing the stability, and where will the longest
  1233. lifetimes occur? The&nbsp;<em>Nature Reviews Physics</em>&nbsp;paper discusses
  1234. various aspects of relevant nuclear and electronic structure theory,
  1235. including the synthesis and detection of superheavy nuclei and atoms in
  1236. the laboratory or in astrophysical events, their structure and
  1237. stability, and the location of the current and anticipated superheavy
  1238. elements in the periodic table.</p><p>The detailed investigation of the
  1239. superheavy elements remains an important pillar of the research program
  1240. at GSI Darmstadt, supported by infrastructure and expertise at HIM and
  1241. Johannes Gutenberg University Mainz, forming a unique setting for such
  1242. studies. Over the past decade, several breakthrough results were
  1243. obtained, including detailed studies of their production, which led to
  1244. the confirmation of element 117 and the discovery of the comparatively
  1245. long-lived isotope lawrencium-266, of their nuclear structure by a
  1246. variety of experimental techniques, of the structure of their atomic
  1247. shells as well as their chemical properties, where flerovium (element
  1248. 114) represents the heaviest element for which chemical data exist.
  1249. Calculations on production in the cosmos, especially during the merging
  1250. of two neutron stars, as observed experimentally for the first time in
  1251. 2017, round off the research portfolio. In the future, the investigation
  1252. of superheavy elements could be even more efficient thanks to the new
  1253. linear accelerator HELIAC, for which the first module was recently
  1254. assembled at HIM and then successfully tested in Darmstadt, so that
  1255. further, even more exotic and therefore presumably longer-lived nuclei
  1256. will also be experimentally achievable. An overview of the element
  1257. discoveries and first chemical studies at GSI can be found in the
  1258. article “Five decades of GSI superheavy element discoveries and chemical
  1259. investigation,” published in May 2022.</p>]]></description>
  1260. <category>News From Europe</category>
  1261. <pubDate>Thu, 15 Feb 2024 13:06:00 GMT</pubDate>
  1262. </item>
  1263. <item>
  1264. <title>CERN Celebrates 70 Years of Scientific Discovery and Innovation</title>
  1265. <link>https://members.eps.org/news/663291/</link>
  1266. <guid>https://members.eps.org/news/663291/</guid>
  1267. <description><![CDATA[<p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><img alt="" src="https://www.eps.org/resource/resmgr/news_2024/CERN-70-2024.jpg" style="width: 750px;" /></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">&nbsp;</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Geneva, January 25, 2024. Today CERN, the European Laboratory for Particle Physics, announced a programme to celebrate its 70th anniversary in 2024. This landmark year honours CERN's remarkable contributions to scientific knowledge, technological innovation and international collaboration in the field of particle physics. Throughout the year, a variety of events and activities will showcase the Laboratory’s rich past as well as its bright future.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Leading up to an official high-level ceremony on 1 October, the preliminary anniversary programme, spanning the entire year, offers a rich array of events and activities, aimed at all types of audiences, at CERN and in the Organization’s Member States and Associate Member States and beyond. The<span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUT0fMHswK-2FrLsWwK4iHO74tmccA8lATNho-2FZp8NqON7XljIy_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz44cN8gHzxS-2FJu-2FeVsJ-2F-2Fmch61EbQV-2Br2CIiGCGgYcati9veQBe8D4dy0AEmUozpaFo3KuaUt6oVrE871XvwuBcocTiQiVMxGVV0KcrWKsVx2KxfsyOQPuFo1knTJR2RKRo8ofE-2BUlSCcPLBd3hZYu4-3D"> first public event</a>, scheduled for 30 January, will combine science, art and culture, and will feature a panel of eminent scientists discussing the evolution of particle physics and CERN’s significant contributions in advancing this field. On 7 March and 18 April, special events will showcase the practical applications of high-energy physics research in everyday life. Mid-May will see a focus on the importance of global collaboration in scientific endeavours, while the events in June and July will explore the current unanswered questions in particle physics and the facilities being planned for future breakthroughs. From talks by distinguished scientists and exhibitions showing CERN’s cutting-edge research and the diversity of its science and its people, to public engagement initiatives worldwide, everyone will find something to enjoy in this programme.<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">“CERN’s achievements over the 70 years of its history show what humanity can do when we put aside our differences and focus on the common good”, says Fabiola Gianotti, CERN Director-General. “Through the celebrations of CERN’s 70<sup>th</sup>anniversary, we will demonstrate how, over the past seven decades, CERN has been at the forefront of scientific knowledge and technological innovation, a model for training and education, collaboration and open science, and an inspiration for citizens around the world. This anniversary is also a great opportunity to look forward: CERN’s beautiful journey of exploration into the fundamental laws of nature and the constituents of matter is set to continue into the future with new, more powerful instruments and technologies.”<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;"><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc4S4iO7LvdCGQv5rqUmndsXryCHpjJJX7T24YONkrm0R2KelTQjCEZQVsJ0Wfy4pQ-3D-3DebZy_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuzwcy8dVSlHyv9Lmk-2B5Hvt6LAXnkXCjmHgz-2BhRg1dIum3z1Tnm1pwR6W3m2-2Fw2BtcxxXXWEU5S51Pja-2BzzssfpQtZ8gVJT89h-2BfMbeIifI0wZ7-2FKO2VUth4dQnj2-2FvoqGxJSHqScYA8wVYJ81gbzCo5s-3D">CERN came to life in 1954</a>, in the aftermath of the Second World War, to bring excellence in scientific research back to Europe and to foster peaceful collaboration in fundamental research. This collective effort has pushed back&nbsp;the frontiers of human knowledge and of technology. As more powerful accelerators and experiments were built, foundational discoveries and innovations were made: among others, Georges Charpak revolutionised detection with his multiwire proportional chamber in 1968, the neutral currents were discovered in the 1970s, the<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvevVOa5fgps7x48Gm2YI1QFVD1vq5-2BVYuYMmqU8m5Fp6n3UhiJJQnOPTyn3xnj-2Fhs-3DaBIu_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz4Hw-2BCsbvoRSHnWbt0mQDk-2BVE1Nuv4hQPkHNzQ8-2FSKPr2r0Dj9NUC-2FmODh7wrbP7RIK-2BAyTX46TPHsgYKKEGcGa1Dy2GoRWLWsc98QC9pDqckhjrPQMaesJthVWwEdPMYMr138n36dl4fz9KM-2BMkKdI-3D"> W</a> and<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xvylfo-2BWv-2FivKsGZWsf2AtA7iu33zhEi1cRFpd59oZGLA-3D-3DddqJ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz5CjPmrdh9nZ-2Fl-2FkLwQgK5faCZNrHRqJMYIiBAkXGrd4-2FYMGPIceu3cSY3l1Wm2-2FSud6nOaP6-2FMI1O5NCbFn-2BGverioHUTl4lSx66Ry4GmnFkExW7Q879nBpiCHmtzRSouNXLjGFWWwyj4MLQxJDfoE-3D"> Z</a> bosons were discovered in 1983, the precision measurement of the Z boson and of other parameters of the electroweak theory was made in the 1990s thanks to the<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdtnWthcjgMgsnYGSOR3P4W1e4vlvvAxtog8JAg-2BoPwBU-3D8FKA_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz1O41O6ePbeiLR3dk-2BDvCxQNR7Ij6WoGzrI4nxvAIMCdCzh3d4hiZaUHKcxLpLdcmNalf0B-2B35vTJ8hwf-2FKunJL1YA0ml0vo6R8kMxwzpByEN-2BF0xSwLwbU6eqt9cDOZYNGeZ0z3LiAnHDWqm3ykPNM-3D"> Large Electron Positron</a> (LEP) collider, the<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWowjZkGEXKUmRbJF9mJnkoMt9gkkG73F26mKuXQ1MptjarV2jQJ2lpiOCILMomFquezmIT2WMy-2BaRox5SmbJwY-3DMKdj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz0bZYI9tneASVZKTT8fZd9PbXm4vzW7YwVdH6FN01pxFs3EjEU-2F-2B2DzpB4-2FtlzthlrLHjnrxARKrQfTITglDUOb4Lcp88MmhWQTdUmWq7-2BbVGi9wBepIpXj3JFOfP90PPuUK807uT1oIPXcXdq9ezrc-3D"> Large Hadron Collider</a> started up in 2009, and the <a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XswC-2B7NIy-2F8s9eIUhZuqbYWh1V5HItPW6T0-2BS3ZyJmCTQ-3D-3DBxyj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz6MrAKKLn2kUKJ0CwYZsv1e5vai8JvPa9tSJGuhpPGYzddTCw72k3ooBikcE8eEXOCDl0eWa1DHN-2F5Yy1Zm7Qr0Tdqit6lFiVqUJxcgihgbyGpeAU7dng4I6YEbxAcGWAkepdntP97-2FVs3ueOSXbyW4-3D">Higgs boson </a>was discovered in 2012. CERN is also the birthplace of the&nbsp;<a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUWowjZkGEXKUmRbJF9mJnkqg3uD2tRQNFsgXQo9XaYVjogKrODYZMvUufPuSNmF5LQ-3D-3Dt2DQ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz3K6B-2FSz99hPYRbWWoo63eO-2F6pEaFhCZl9RK6qQLhJVu2YwP-2FbOLqRENoOTBA6EPM9Q2QKxkE4fr9HNjxr7DVT3R-2B6knc8DIqiy1P7t5HGqowbU28q6Ow5qX-2BKdnXKp52MdmReCsPlYBW4OXXr9o6Rk-3D">World Wide Web</a>&nbsp;and has generated technologies that are used in other fields, including medical diagnostics and therapy and environmental protection.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Today, CERN counts <span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUTot7xyzcG-2BAEKrQf139OuSxWAvO1NBCcF4CRVB1oLUE6tA3u185h-2BZtl39YZmuDmSaV8zZU5P0mxrWsjTbytZQ-3DPtPQ_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuz85qxgka-2F-2F6OquoQ9H5vIxtMlUe4mHhY2us-2BtpySPpjUtltf-2BGShrSv-2BBQ-2FWSApwuXPde0eKGLFtAXw-2FsSKRVvhdDdYfcO-2BPcA548F4FI3gImnxzECXtfMCmbqtgw6a2KKA5deVB36w9SExmmdq-2Bn2c-3D">23 Member States</a>, 10 Associate Member States and a vibrant community of 17,000 people from all over the world, with more than 110 nationalities represented. Currently, the Laboratory is home to the Large Hadron Collider, the world’s most powerful particle accelerator. Building on its remarkable legacy of research and technological development, CERN is already looking to the future, in particular by studying the feasibility of a Future Circular Collider.<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">“This anniversary year is for everyone and should engage and inspire scientists, policy makers and the public. We are looking forward to welcoming everyone at CERN for the many events being planned, but also to the celebrations in our Member States, Associate Member States and beyond”, says Luciano Musa, coordinator of the CERN 70<sup>th</sup><span class="Apple-converted-space"></span>anniversary. “These international events are a testament to CERN's impact on scientific knowledge, technological development and worldwide collaboration.”<span class="Apple-converted-space"></span></span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">CERN extends an invitation to everyone to take part in these inspiring events, which aim to kindle scientific curiosity, honour scientific progress and collaborative efforts, and underscore the role of science in society.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-size: 14px;"><span style="font-family: Arial, Helvetica, sans-serif;">Join us in this year of celebration as we honour our glorious past and shape a bright future for CERN and its community.</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;">&nbsp;</p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-family: Helvetica;"><span style="font-size: 14px;">For the complete CERN70 anniversary events and programme of activities, please visit: <span class="Apple-converted-space"></span><a href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUV0NTwN4Jl3X1sLatnbE9H-2Bn5Esz1nN0hbIwfJJokpsRvE8R_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCoz8lu-2B0sfB517Q3OK9ADz6dElOaf1pqjBIYZq85rkCi0a4RKKzYDGz80UTopA2EnDySJOhOsoJaQ-2B2SdlbbMLuzypRa9GDKfiN4dftO-2Bb4b00AhPNwneJAUaOtR-2B4g1mErPC0tFE27YtPHtA7Jfe2BOsyp-2Bp05o9U1rCCkd-2BeTNy1fMbsne85MrYKDhxO9Q6qAslVjidbJg62rHXqYUssuLvrJx0fycehAVc0NHw7hs-2B4-3D">cern.ch/cern70</a>.&nbsp;</span></span></p><p style="caret-color: #000000; color: #000000; font-family: CenturyGothic; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; text-decoration: none; margin: 0cm;"><span style="font-family: Helvetica;">&nbsp;</span></p>]]></description>
  1268. <category>News From Europe</category>
  1269. <pubDate>Thu, 25 Jan 2024 14:59:00 GMT</pubDate>
  1270. </item>
  1271. <item>
  1272. <title>EPS Distinctions and Awards: Call for nominations</title>
  1273. <link>https://members.eps.org/news/660772/</link>
  1274. <guid>https://members.eps.org/news/660772/</guid>
  1275. <description><![CDATA[<p>The calls for nominations for the EPS Distinctions and Awards can be found at: <a href="https://www.eps.org/blogpost/751263/495719/">https://www.eps.org/blogpost/751263/495719/</a></p><p><strong>The deadline for nominations is 31st January 2024. </strong><br /></p>]]></description>
  1276. <category>News From Prizes</category>
  1277. <pubDate>Tue, 19 Dec 2023 07:54:00 GMT</pubDate>
  1278. </item>
  1279. <item>
  1280. <title>Statement by the EPS Executive Committee about the 2024 International Physics Olympiad in Iran</title>
  1281. <link>https://members.eps.org/news/660535/</link>
  1282. <guid>https://members.eps.org/news/660535/</guid>
  1283. <description><![CDATA[<p style="text-align: center;"><img alt="" src="https://cdn.ymaws.com/www.eps.org/resource/resmgr/news/logo_EPS_blue.gif" style="width: 200px; height: 201px;" /></p><h4 style="text-align: center;">Statement by the Executive Committee of the European Physical Society
  1284. about the organisation of the 2024 International Physics Olympiad in
  1285. Tehran, Iran</h4><p style="text-align: center;"><strong>14th December 2023</strong><br /></p><p>"The European Physical Society (EPS) supports the International
  1286. Physics Olympiad, which provides a wonderful opportunity to gather
  1287. promising young physicists from around the world to discuss physics and
  1288. solve physics problems in a safe, peaceful, and collaborative
  1289. atmosphere.</p><p>Nevertheless, the EPS asks the organisers of the
  1290. upcoming International Physics Olympiad in 2024 to reconsider Tehran,
  1291. Iran, as a suitable location. The EPS is deeply concerned about the
  1292. actions of the Iranian regime, particularly its ongoing repression of
  1293. women and girls, as well as the recent violent crackdowns on political
  1294. protests. Such circumstances, the EPS believes, create an environment
  1295. where the safety of future physicists cannot be assured and where the
  1296. diversity found among physicists is not respected. <br /> </p><p>Supporting
  1297. the International Physics Olympiad in Iran is an endorsement of the
  1298. actions of the Iranian government. Consequently, the EPS cannot endorse
  1299. the event if it is held in Iran and recommends relocating it to a
  1300. country where democratic ideals are respected and all participants will
  1301. be welcomed regardless of their nationality, religion, or gender
  1302. identity."</p>]]></description>
  1303. <category>News from the EPS</category>
  1304. <pubDate>Thu, 14 Dec 2023 17:03:00 GMT</pubDate>
  1305. </item>
  1306. <item>
  1307. <title>Job offer - conference manager for the European Physical Society</title>
  1308. <link>https://members.eps.org/news/659387/</link>
  1309. <guid>https://members.eps.org/news/659387/</guid>
  1310. <description><![CDATA[<p>The European Physical Society is seeking a new <strong>conference manager</strong>. <br />Deadline for applications 18th December 2023. </p><p>Details about the position and the application procedure can be found at: <a href="https://fr.indeed.com/job/responsable-de-conf%C3%A9rences-hf-bef63c86a3a8b539">https://fr.indeed.com/job/responsable-de-conf%C3%A9rences-hf-bef63c86a3a8b539</a><br /></p>]]></description>
  1311. <category>Jobs</category>
  1312. <pubDate>Mon, 4 Dec 2023 09:04:00 GMT</pubDate>
  1313. </item>
  1314. <item>
  1315. <title>Exotic atomic nucleus sheds light on the world of quarks</title>
  1316. <link>https://members.eps.org/news/658712/</link>
  1317. <guid>https://members.eps.org/news/658712/</guid>
  1318. <description><![CDATA[<p style="text-align: center;"><img alt="" src="https://www.eps.org/resource/resmgr/newsletter-23/cern-pr-28112023.jpg" style="width: 750px;" /></p><p style="text-align: center;"><span style="caret-color: #000000; color: #000000; font-size: 11px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: center; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -moz-text-size-adjust: auto; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration: none; display: inline !important; float: none; font-family: Arial;"><em>The ISOLDE set-up used to study the exotic nucleus of aluminium. (Image: CERN)</em></span></p><p>Geneva, 28th November 2023</p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-US">E</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">xperiments at CERN and the <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUVTbJN-2FTvz-2FQIKAycXx08JTPla74BSvbyzHRccz-2FTrnd8B8wcmEJvQtrn4qSsqRQ2c6dnrjM7FBN7X5ycH3-2B6xAIrEtbWf8yKsOe4HHQ8Dxr0JwpBwwIrJXNGrFenfqMWHM4YWikbvMAgaTqpMZ0-2FF3nLb-2FujUKiak814aaTzZrmz7Oj-2FKI-2FKW4TQhzOOEegVUiQNssP4-2FkeSCsUXcULNUvlVWwl4M7nN6i0u6a3maVKHNEF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOdaubinRLOTW8pJXHrT3BOV25S4JJoAj2EcBFONXTHSbZlsQ-2FEV5x0UvbY1s6IHPvqtxBznFlRFT-2FuBSjesWowyMf3omgtPNA7ksVNQTT2LcaxTQ3udQ6MWAzfdZY4b8tI03O5Jbp5fhihdy2HD4TfA-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUVTbJN-2FTvz-2FQIKAycXx08JTPla74BSvbyzHRccz-2FTrnd8B8wcmEJvQtrn4qSsqRQ2c6dnrjM7FBN7X5ycH3-2B6xAIrEtbWf8yKsOe4HHQ8Dxr0JwpBwwIrJXNGrFenfqMWHM4YWikbvMAgaTqpMZ0-2FF3nLb-2FujUKiak814aaTzZrmz7Oj-2FKI-2FKW4TQhzOOEegVUiQNssP4-2FkeSCsUXcULNUvlVWwl4M7nN6i0u6a3maVKHNEF_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOdaubinRLOTW8pJXHrT3BOV25S4JJoAj2EcBFONXTHSbZlsQ-2FEV5x0UvbY1s6IHPvqtxBznFlRFT-2FuBSjesWowyMf3omgtPNA7ksVNQTT2LcaxTQ3udQ6MWAzfdZY4b8tI03O5Jbp5fhihdy2HD4TfA-3D" data-mce-style="color: blue; text-decoration: underline;">Accelerator Laboratory</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"> in<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Jyväskylä, Finland,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">have<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">revealed that the radius of an exotic<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">nucleus of<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">aluminium</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">,<span class="Apple-converted-space"></span></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">&nbsp;is much larger than previously thought. Th</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">e result, described in a <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUQIFF3gc2OYF0VY1q1ETRf2rb-2BVpI4XiQvciMEMTbTY0kbQ7kd3B4KsZT-2BM3B-2FXf2lnJcZTuMcvq3ZcTwqJXKec-3DpH1p_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOSfItrCYP4WeFQHtnY6l5b34Vtvep-2BDD-2B5MiYHHVSud6ybMHhbszr7r6i63Ker7Xz7LR-2BP1zRkaeVexOBNY17M-2FyDrDGF2shClb9UcBnJibZfHJTfX6W8dqj3tqWNZPZY5Qnb7kkH7bnlA-2FR0HcsD7c-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUQIFF3gc2OYF0VY1q1ETRf2rb-2BVpI4XiQvciMEMTbTY0kbQ7kd3B4KsZT-2BM3B-2FXf2lnJcZTuMcvq3ZcTwqJXKec-3DpH1p_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOSfItrCYP4WeFQHtnY6l5b34Vtvep-2BDD-2B5MiYHHVSud6ybMHhbszr7r6i63Ker7Xz7LR-2BP1zRkaeVexOBNY17M-2FyDrDGF2shClb9UcBnJibZfHJTfX6W8dqj3tqWNZPZY5Qnb7kkH7bnlA-2FR0HcsD7c-3D" data-mce-style="color: blue; text-decoration: underline;">paper</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"> just published in<span class="Apple-converted-space"></span><em>Physical Review Letters</em>, sheds light on the effects of the weak force on<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">quarks</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>–</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">the elementary particles that make up<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">proton</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">s,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">neutrons</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>and other composite particles.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Among the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">four<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">known fundamental forces</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>of nature</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">–</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">the electromagnetic force, the strong force, the weak force and gravity –<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">the weak<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">force</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">can,<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">with a certain probability, change the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">“</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">flavour</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">”</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>of<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">a</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">. The <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3Dsgam_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOfZPkeEEhpXFRW0d-2FwM9dgyR2F-2B6OH-2BpTEK4Bd5SaNe0YkQlziu1X0ZPAmPfiADaIDo48HuTC85DpV0juisjYfzItYRn7LIiFjOA1oPTI3DVXP32PnPQJdiMoH4SdNBfvWvzRueH-2BFeDvjwkZY-2B76lw-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XuOyny3lMMNWyDeffTeLS3gdOomCIfdo0rwKS02U9VHNg-3D-3Dsgam_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOfZPkeEEhpXFRW0d-2FwM9dgyR2F-2B6OH-2BpTEK4Bd5SaNe0YkQlziu1X0ZPAmPfiADaIDo48HuTC85DpV0juisjYfzItYRn7LIiFjOA1oPTI3DVXP32PnPQJdiMoH4SdNBfvWvzRueH-2BFeDvjwkZY-2B76lw-3D" data-mce-style="color: blue; text-decoration: underline;">Standard Model</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span> of
  1319. particle physics, which describes all particles and their interactions
  1320. with one another, does not predict the value of this probability, but,
  1321. for a given quark flavour, does predict the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">sum of all</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">possible<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">probabilities</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>to be exactly</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>1. The</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">refore, the probability sum offers a way to test the Standard Model and search for new physics: if the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">probability</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>sum is found to be different from 1, it<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">would imply new physics</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>beyond the Standard Model</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Interestingly,
  1322. the probability sum involving the up quark is presently in apparent
  1323. tension with the expected unity, although the strength of the tension
  1324. depends on the underlying theoretical calculations.</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">This
  1325. sum includes the respective probabilities of the down quark, the
  1326. strange quark and the bottom quark transforming into the up quark.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-US">The first of these probabilities manifests itself<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">in</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">beta decay</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>of an atomic nucleus, in which a neutron (</span>made of one up&nbsp;quark&nbsp;and two down quarks)<span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">changes into a proton (</span>composed of two up quarks and one down quark)<span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">or vice versa</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">.</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">However,
  1327. due to the complex structure of the atomic nuclei that undergo beta
  1328. decays, an exact determination of this probability is generally not
  1329. feasible. Researchers thus turn to a subset of beta decays that are less
  1330. sensitive to the effects of nuclear structure to determine the
  1331. probability. Among the several quantities that are needed to
  1332. characterise such “superallowed” beta decays is the (charge) radius of
  1333. the decaying nucleus.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-US">This is where the new result for the radius of the<span class="Apple-converted-space"></span></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">nucleus, which undergoes a superallowed beta decay, comes in. The result was obtained by measuring the response of the<span class="Apple-converted-space"></span></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">nucleus to laser light in experiments conducted at CERN’s<span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XtV2xUPOgjz6PDger-2BKblHU5-2FRV9kT8yfuL4N15IBS6dQ-3D-3Dq7Nj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOTr4yI-2B79t53gjFi5TZ727EILeaOHtt-2B9937AnT1eewWG492gZFA7av2uE-2BL-2FJcVkeFBXLQndG8igmplvOqmBXzxsv14zvyDuqO2vgqMH8v3t2f7TZ4Fx1s4-2Fc8wzESbyIyWoMgadz6vRUSl3tNw-2FEg-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XtV2xUPOgjz6PDger-2BKblHU5-2FRV9kT8yfuL4N15IBS6dQ-3D-3Dq7Nj_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOTr4yI-2B79t53gjFi5TZ727EILeaOHtt-2B9937AnT1eewWG492gZFA7av2uE-2BL-2FJcVkeFBXLQndG8igmplvOqmBXzxsv14zvyDuqO2vgqMH8v3t2f7TZ4Fx1s4-2Fc8wzESbyIyWoMgadz6vRUSl3tNw-2FEg-3D" data-mce-style="color: blue; text-decoration: underline;"> ISOLDE</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span> facility and the A</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">ccelerator<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">L</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">aboratory</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">’s<span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbJ56sgYnERoxHm6-2FT6zQHQRcY5C0LlVNUpfa7ko0n0Sx3hoFtap3Fhk538u5CB-2BOJv2D8-2FFxd1ZgZO6-2Bjnv8CGGmutItcEJN4sv6vKaovy2Bk7xMfLFafcuiMMCQ-2FTcu5rYLp6PfNYaO9U-2B41WDtApugXjiH-2FpU3UbwlWufSV4aPrsikr-2BfOtsZYcQAHBvOVQ-3D-3DDd7U_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOU-2FRkVWxHcjxP-2BU2RjbbmXipvf4Sp4lP41cht2bdody8S6yf-2FnqnQ-2FtqMF1-2BNnGDz8AIDV3k-2BT7RNX3KYl3U8TpaadNVwzbxMi5OG0J05B-2BaIGBB1pLsL5nhEqYEp-2FrhgLJvECzV2XyJN2wJ8TsM2io-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUbJ56sgYnERoxHm6-2FT6zQHQRcY5C0LlVNUpfa7ko0n0Sx3hoFtap3Fhk538u5CB-2BOJv2D8-2FFxd1ZgZO6-2Bjnv8CGGmutItcEJN4sv6vKaovy2Bk7xMfLFafcuiMMCQ-2FTcu5rYLp6PfNYaO9U-2B41WDtApugXjiH-2FpU3UbwlWufSV4aPrsikr-2BfOtsZYcQAHBvOVQ-3D-3DDd7U_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOU-2FRkVWxHcjxP-2BU2RjbbmXipvf4Sp4lP41cht2bdody8S6yf-2FnqnQ-2FtqMF1-2BNnGDz8AIDV3k-2BT7RNX3KYl3U8TpaadNVwzbxMi5OG0J05B-2BaIGBB1pLsL5nhEqYEp-2FrhgLJvECzV2XyJN2wJ8TsM2io-3D" data-mce-style="color: blue; text-decoration: underline;"> IGISOL</a><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span> facility.
  1334. The new radius, a weighted average of the ISOLDE and IGISOL datasets,
  1335. is much larger than predicted, and the upshot is a weakening of the
  1336. current apparent tension in<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">the probability sum involving the up quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">.</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">“Charge
  1337. radii of other nuclei that undergo superallowed beta decays have been
  1338. measured previously at ISOLDE and other facilities, and efforts are
  1339. under way to determine the radius of<span class="Apple-converted-space"></span><sup>54</sup>Co at IGISOL,”</span><span class="Apple-converted-space"></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">explains ISOLDE physicist and lead author of the paper, Peter Plattner. “But</span><span class="Apple-converted-space"></span><sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">26m</span></sup><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Al</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>is
  1340. a rather unique case as, although it is the most precisely studied of
  1341. such nuclei, its radius has remained unknown until now, and, as it turns
  1342. out, it is much larger than assumed in the calculation of the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">probability of the down quark transforming into the up quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">.”</span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="background-color: white;" data-mce-style="background-color: white;"><span style="color: black;" data-mce-style="color: black;">“Searches
  1343. for new physics beyond the Standard Model, including those based on the
  1344. probabilities of quarks changing flavour, are often a high-precision
  1345. game,” says CERN theorist Andreas Juttner. “This result underlines the
  1346. importance of scrutinising all relevant experimental and theoretical
  1347. results in every possible way.”</span></span></span></span></p><p><span style="font-size: small;"><span style="vertical-align: baseline;" data-mce-style="vertical-align: baseline;"><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">Past and present particle physics experiments worldwide, including the <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv2-2BWbRZYIs9xksAqHWzcfF5nUb-2BoC8HPAkaAGYewMR2w-3D-3DUU9y_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOZzZ42CSIWLt-2BOoceamkv84-2FbAjNoa1ktBtHI1yOsAz5aLUTutfIqLrmaqP1Iqsm9tsVvK5ahk0eDzU1HnGEbKk8-2BrMQCQjQyVwLJAQFcfoJWBWXTiHw5-2BEfk81EirurNBTaondTlraGOW-2Bdem0O3HA-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7Xv2-2BWbRZYIs9xksAqHWzcfF5nUb-2BoC8HPAkaAGYewMR2w-3D-3DUU9y_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOZzZ42CSIWLt-2BOoceamkv84-2FbAjNoa1ktBtHI1yOsAz5aLUTutfIqLrmaqP1Iqsm9tsVvK5ahk0eDzU1HnGEbKk8-2BrMQCQjQyVwLJAQFcfoJWBWXTiHw5-2BEfk81EirurNBTaondTlraGOW-2Bdem0O3HA-3D" data-mce-style="color: blue; text-decoration: underline;">LHCb</a><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span> experiment at the <span class="Apple-converted-space"></span></span><a style="color: blue; text-decoration: underline;" href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3Dxdqx_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOe-2FGstQEa-2F0LOD5ymnJ2S6WPsjqGaxUkjFSJnxwWVs2etMecc3qIR4-2FYYgP8uBM-2FBT31SfMdipeeYtHr6-2Ft1YrvNNLkzgP49mdV8jBEBYN417TpMdC-2FEaNyIsbpupDHB7D-2BiukrP7XPqST-2BSpgEAISY-3D" data-mce-href="https://u7061146.ct.sendgrid.net/ls/click?upn=4tNED-2FM8iDZJQyQ53jATUc8vWM9VEzHYccUazZJT7XvS8KZZmPynhUVdb07SDKsdVxYxzSyIVWZb3PRLoJb72-2B-2FG4LjtqB66UcSweNZs-2Foo-3Dxdqx_Lx56kaPCrju0d9CukUI9a7rxet-2Bg9c2ILiXtMiPLryWZ-2BqCeXYJPgpc8LS-2BySOpbzxAnYHB9uCz8ZQvNmkEvb-2BTTabOFSFSTW-2B5uEEnAaiF-2BDuCVj7AcnRkunROVnCozF9YnaHLEg-2FVHCu4IineofZsseTU8JGISMiBsRfkk4UQZbc-2F-2FIS-2BjoXRDOuiilJD4w4OX-2BdDTkVTNZSxPnyw-2FOe-2FGstQEa-2F0LOD5ymnJ2S6WPsjqGaxUkjFSJnxwWVs2etMecc3qIR4-2FYYgP8uBM-2FBT31SfMdipeeYtHr6-2Ft1YrvNNLkzgP49mdV8jBEBYN417TpMdC-2FEaNyIsbpupDHB7D-2BiukrP7XPqST-2BSpgEAISY-3D" data-mce-style="color: blue; text-decoration: underline;">Large Hadron Collider</a><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">,
  1348. have contributed, and are continuing to contribute, significantly to
  1349. our knowledge of the effects of the weak force on quarks through the
  1350. determination of<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">various probabilities of a quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US"><span class="Apple-converted-space"></span>flavour change. H</span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">owever,</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB"><span class="Apple-converted-space"></span>nuclear physics experiments on<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">superallowed beta decays currently offer the best way to determine the<span class="Apple-converted-space"></span></span><span style="color: black;" data-mce-style="color: black;" lang="EN-US">probability of the down quark transforming into the up quark</span><span style="color: black;" data-mce-style="color: black;" lang="EN-GB">, and this may well remain the case for the foreseeable future.</span></span></span></p>]]></description>
  1351. <category>News From Europe</category>
  1352. <pubDate>Tue, 28 Nov 2023 10:09:00 GMT</pubDate>
  1353. </item>
  1354. </channel>
  1355. </rss>
  1356.  

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//eps.site-ym.com/resource/rss/news.rss

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda