Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://www.skepticalscience.com/feed.xml

  1. <?xml version="1.0" encoding="UTF-8" ?>
  2. <rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
  3.  <channel>
  4.   <title>Skeptical Science</title>
  5.   <description>Examining the science of global warming skepticism, clearing up the misconceptions and misleading arguments that populate the climate change debate.</description>
  6.   <link>https://skepticalscience.com/</link>
  7. <atom:link href="https://skepticalscience.com/feed.xml" rel="self" type="application/rss+xml" />
  8. <item>
  9. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #26</title>
  10. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 28 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 22, 2025 thru Sat, June 28, 2025.&lt;/div&gt;
  11. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  12. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (10 articles)&lt;/strong&gt;&lt;/p&gt;
  13. &lt;ul&gt;
  14. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://science.feedback.org/heatwave-england-bring-temperatures-above-32c-89-6f-study-finds-climate-change-made-this-100-times-more-likely/" target="_blank"&gt;Heatwave in England to bring temperatures above 32&amp;deg;C (89.6&amp;deg;F) &amp;ndash; study finds climate change made this 100 times more likely&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Science Feedback, Editor: Darrik Burns, June 20, 2025.&lt;/li&gt;
  15. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.winnipegfreepress.com/opinion/analysis/2025/06/21/wildfires-climate-change-cause-and-effect" target="_blank"&gt;Wildfires: climate change cause and effect&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Canadians think about a recent object lesson on climate change. &lt;/em&gt; Winnipeg Free Press, David McLaughlin, Jun 21, 2025.&lt;/li&gt;
  16. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://heated.world/p/its-hot-fossil-fuels-made-it-hotter" target="_blank"&gt;It's hot. Fossil fuels made it hotter.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;And it'll still be the coldest summer of your life if Trump's "Big, Beautiful Bill" passes this week.&lt;/em&gt; HEATED, Emily Atkin, Jun 23, 2025.&lt;/li&gt;
  17. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-06-tree-species-climate-threat-modest.html" target="_blank"&gt;Most tree species face serious climate threat even under modest warming, study reveals&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org - latest science and technology news stories, Spanish National Research Council, Jun 24, 2025.&lt;/li&gt;
  18. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://news.climate.columbia.edu/2025/06/25/global-climate-risk-index-ranks-188-countries-by-vulnerability-and-access-to-finance/" target="_blank"&gt;Global Climate Risk Index Ranks 188 Countries by Vulnerability and Access to Finance&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; State of the Planet, Columbia Climate School, Jun 25, 2025.&lt;/li&gt;
  19. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.conservation.org/blog/can-mongolia-s-oldest-traditions-survive-a-changing-climate" target="_blank"&gt;Can Mongolia`s oldest traditions survive a changing climate?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Conservation International is helping herders restore the Mongolian steppe.&lt;/em&gt; Climate Change, Will McCarry, Jun 25, 2025.&lt;/li&gt;
  20. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/06/unprecedented-june-heat-along-the-northeast-urban-corridor-brought-to-you-by-climate-change/" target="_blank"&gt;Unprecedented June heat along the Northeast urban corridor, brought to you by climate change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Cities from Philly to Boston break the 100-degree mark, in some cases way ahead of schedule. &lt;/em&gt; Yale Climate Connections, Bob Henson, Jun 25, 2025.&lt;/li&gt;
  21. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/06/26/climate/climate-heat-intensity.html?unlocked_article_code=1.R08.jgSK.WP2y3kQAD7mb&amp;amp;smid=url-share" target="_blank"&gt;Global Warming Is Speeding Up and the World Is Feeling the Effects&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; New York Times, Sachi Kitajima Mulkey, Claire Brown and Mira Rojanasakul, Jun 26, 2025.&lt;/li&gt;
  22. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/ng-interactive/2025/jun/27/tipping-points-antarctica-arctic-sea-ice-polar-scientist" target="_blank"&gt;`It looks more likely with each day we burn fossil fuels`: polar scientist on Antarctic tipping points&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Despite working on polar science for the British Antarctic Survey for 20 years, Louise Sime finds the magnitude of potential sea-level rise hard to comprehend&lt;/em&gt; The Guardian, Jonathan Watts, Jun 27, 2025.&lt;/li&gt;
  23. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/06/27/climate/a-special-climate-visa-people-in-tuvalu-are-applying-fast.html?unlocked_article_code=1.SU8.j2Cs.jgp_DMNeWkS7&amp;amp;smid=url-share" target="_blank"&gt;A Special `Climate` Visa? People in Tuvalu Are Applying Fast.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Nearly half the citizens of the tiny Pacific Island nation have already applied in a lottery for Australian visas amid an existential threat from global warming and sea-level rise.&lt;/em&gt; NYT &amp;gt; Science, Max Bearak, Jun 28, 2025.&lt;/li&gt;
  24. &lt;/ul&gt;
  25. &lt;!--more--&gt;
  26. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (4 articles)&lt;/strong&gt;&lt;/p&gt;
  27. &lt;ul&gt;
  28. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/ng-interactive/2025/jun/24/tipping-points-climate-crisis-expert-doomerism-wealth" target="_blank"&gt;`This is a fight for life`: climate expert on tipping points, doomerism and using wealth as a shield&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Founding director of End Climate Silence Dr. Genevieve Guenther talks to the Guardian about the need to discuss catastrophic risks when communicating about the climate crisis.&lt;/em&gt; The Guardian, Jonathan Watts, Jun 24, 2025.&lt;/li&gt;
  29. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/uk-news/2025/jun/26/met-office-should-name-storms-after-fossil-fuel-companies-say-campaigners" target="_blank"&gt;Met Office should name storms after fossil fuel companies, say campaigners&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Storm naming competition raises idea to remind public of link between fossil fuels and extreme weather&lt;/em&gt; The Guardian, Helena Horton, Jun 26, 2025.&lt;/li&gt;
  30. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://cleantechnica.com/2025/06/27/as-a-climate-messenger-you-need-to-build-trust/" target="_blank"&gt;As A Climate Messenger, You Need To Build Trust&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; CleanTechnica, Carolyn Fortuna, Jun 27, 2025.&lt;/li&gt;
  31. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/opinion/energy-environment/5371565-humor-science-advocacy-campaign/" target="_blank"&gt;An inconvenient joke? The case for comedy in the climate crisis.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; TheHill.com, Michael Oppenheimer, opinion contributor, Jun 27, 2025.&lt;/li&gt;
  32. &lt;/ul&gt;
  33. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (3 articles)&lt;/strong&gt;&lt;/p&gt;
  34. &lt;ul&gt;
  35. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/OrcaypKuuZg?si=HdU2q6kgzBqAnJy7" target="_blank"&gt;Silencing Science: Trump's War on Our Climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; ClimateAdam on Youtube, Adam Levy, June 20, 2025.&lt;/li&gt;
  36. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thestarphoenix.com/opinion/opinion-on-moral-dissonance-in-times-of-climate-change" target="_blank"&gt;Opinion: On moral dissonance in times of climate change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Ruminations on inspired by recent research on climate anxiety, and how the reasons for that anxiety are ignored by leadership. &lt;/em&gt; Saskatoon StarPhoenix, Steve Bartlett, Jun 21, 2025.&lt;/li&gt;
  37. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/us-news/2025/jun/28/noaa-cuts-hurricane-forecasting-climate" target="_blank"&gt;Sudden loss of key US satellite data could send hurricane forecasting back `decades`&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists left scrambling amid hurricane season after defense department says it will drop irreplaceable program&lt;/em&gt; US news The Guardian, Eric Holthaus, Jun 28, 2025.&lt;/li&gt;
  38. &lt;/ul&gt;
  39. &lt;p&gt;&lt;strong&gt;Climate Science and Research (3 articles)&lt;/strong&gt;&lt;/p&gt;
  40. &lt;ul&gt;
  41. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/ClimateAdam-silencing-science-trump-war-on-our-climate.html" target="_blank"&gt;Climate Adam - Silencing Science: Trump's War on Our Climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Adam Levy speaks with climate scientists directly affected by the US administration's war for climate ignorance. &lt;/em&gt; Skeptical Science, Climate Adam, Jun 25, 2025.&lt;/li&gt;
  42. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-06-ocean-patterns-key-accurate-tropical.html" target="_blank"&gt;Ocean warming patterns key to accurate tropical cyclone climate projections&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Chinese Academy of Sciences, Jun 26, 2025.&lt;/li&gt;
  43. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_26.html" target="_blank"&gt;Skeptical Science New Research for Week #26 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;As evidenced in this week's collection, the pipeline of US federally funded climate research is slowing to a trickle.&lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Jun 26, 2025.&lt;/li&gt;
  44. &lt;/ul&gt;
  45. &lt;p&gt;&lt;strong&gt;Miscellaneous (3 articles)&lt;/strong&gt;&lt;/p&gt;
  46. &lt;ul&gt;
  47. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_25.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #25&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 15, 2025 thru Sat, June 21, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler &amp;amp; Doug Bostrom, Jun 22, 2025.&lt;/li&gt;
  48. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://arstechnica.com/science/2025/06/ars-live-climate-science-in-an-increasingly-hot-world/" target="_blank"&gt;Ars Live: What`s up with the sudden surge in temperatures?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Science - Ars Technica, John Timmer, Jun 25, 2025.&lt;/li&gt;
  49. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.ipie.info/research/sr2025-1" target="_blank"&gt;Information Integrity about Climate Science: A Systematic Review&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; International Panel on the Information Environment, Elbeyi et al., 06/2025.&lt;/li&gt;
  50. &lt;/ul&gt;
  51. &lt;p&gt;&lt;strong&gt;Climate Law and Justice (2 articles)&lt;/strong&gt;&lt;/p&gt;
  52. &lt;ul&gt;
  53. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/06/22/climate/oil-industry-anti-slapp-climate-lawsuits.html?unlocked_article_code=1.Q08.fQEZ.MOLDqHZa58dM&amp;amp;smid=url-share" target="_blank"&gt;Oil Companies Fight Climate Lawsuits by Citing Free Speech&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The firms say their First Amendment rights are being violated when cities and states sue and accuse them of spreading misinformation about climate change.&lt;/em&gt; NYT, Karen Zraick and Sachi Kitajima Mulkey, Jun 22, 2025.&lt;/li&gt;
  54. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/28062025/class-action-lawsuit-against-epa-to-restore-climate-environmental-grants/" target="_blank"&gt;A Class-Action Lawsuit Aims to Restore Climate and Environmental Grants&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The lawsuit claims the Trump administration violated the separation of powers when it ordered the cancellation of $3 billion in grants for community-based projects.&lt;/em&gt; Inside Climate News, Amy Green, Jun 28, 2025.&lt;/li&gt;
  55. &lt;/ul&gt;
  56. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (1 article)&lt;/strong&gt;&lt;/p&gt;
  57. &lt;ul&gt;
  58. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://reportearth.substack.com/p/nearer-and-nearer-to-the-15c-carbon" target="_blank"&gt;Nearer and nearer to the 1.5C carbon limit&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Carbon conundrums, confusions, and complexities.&lt;/em&gt; ReportEarth, Chris Mooney, June 22, 2025.&lt;/li&gt;
  59. &lt;/ul&gt;
  60. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (1 article)&lt;/strong&gt;&lt;/p&gt;
  61. &lt;ul&gt;
  62. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.climatechangenews.com/2025/06/20/how-sophisticated-climate-misinformation-gets-to-the-heart-of-power/" target="_blank"&gt;How `sophisticated` climate misinformation gets to the heart of power&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The fossil fuel industry and right-wing populists are increasingly targeting key policy-makers through backdoor channels, according to a new report&lt;/em&gt; Climate Home News, Matteo Civillini, Jun 20, 2025.&lt;/li&gt;
  63. &lt;/ul&gt;
  64. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Solutions (1 article)&lt;/strong&gt;&lt;/p&gt;
  65. &lt;ul&gt;
  66. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/rebutting-33-false-claims-about-solar-wind-ev-recap.html" target="_blank"&gt;Rebutting 33 False Claims About Solar, Wind, and Electric Vehicles - Recap&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The how and why of Skeptical Science's collaboration with the Sabin Center for Climate Change Law to adapt a collection of rebuttals against 33 harmful myths about climate solutions. &lt;/em&gt; Skeptical Science, Baerbel Winkler, Jun 24, 2025.&lt;/li&gt;
  67. &lt;/ul&gt;
  68. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  69. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_26.html</link>
  70. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_26.html</guid>
  71. <pubDate>Sun, 29 Jun 2025 10:49:44 EST</pubDate>
  72. </item>  <item>
  73. <title>Skeptical Science New Research for Week #26 2025</title>
  74. <description>&lt;h3&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/h3&gt;
  75. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1073/pnas.2411904122" target="_blank"&gt;Increased sea-level contribution from northwestern Greenland for models that reproduce observations&lt;/a&gt;&lt;/strong&gt;, Badgeley et al.,&amp;nbsp;&lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt;&lt;/p&gt;
  76. &lt;blockquote&gt;
  77. &lt;p&gt;&lt;em&gt;The Greenland Ice Sheet has been thinning over the past several decades and is expected to contribute significantly to sea-level rise over the coming century. Ice flow models that make these projections, however, tend to underestimate the amount of mass lost from the ice sheet compared to observations, which complicates adaptation and mitigation planning in coastal regions. Here, we constrain a model of northwestern Greenland with a time series of satellite-derived surface velocity data and time-dependent physics to infer unknown ice properties. The model reproduces observed mass loss over the past 13 y within uncertainty. This model&amp;mdash;constrained by more data&amp;mdash;leads to about 8 to 17% greater sea-level rise contribution from this region by 2100.&lt;/em&gt;&lt;/p&gt;
  78. &lt;/blockquote&gt;
  79. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;&lt;/strong&gt;, Mascaro et al.,&amp;nbsp;&lt;em&gt;Geophysical Research Letters&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  80. &lt;blockquote&gt;
  81. &lt;p&gt;&lt;em&gt;The magnitude and frequency of heavy precipitation are expected to increase under warming temperatures caused by climate change. These trends have emerged in observational records but with much larger evidence on a daily rather than a subdaily scale. Here, we quantify long-term changes in heavy precipitation frequency in the United States using hourly observations in 1949&amp;ndash;2020 from 332 gauges. We demonstrate that, when analyzed collectively, the frequencies of heavy precipitation at multiple durations from hourly to daily exhibit an increase that cannot be explained by natural climate variability. Upward trends are significant at &amp;sim;20%&amp;ndash;40% of the gauges throughout the country except for the coastal western and southeastern regions, with higher percentages for longer durations. We also show that the frequency of hourly heavy precipitation has mainly grown after &amp;sim;2000, thus explaining the limited evidence of trends at the subdaily scale reported in past studies.&lt;/em&gt;&lt;/p&gt;
  82. &lt;p&gt;&lt;sup&gt;&lt;span&gt;&lt;span&gt;&lt;em&gt;Giuseppe Mascaro thanks funding from the U.S. National Science Foundation (NSF) awards #2212702: &amp;ldquo;CAS-Climate: A Novel Process-Driven Method for Flood Frequency Analysis Based on Mixed Distributions&amp;rdquo; and #2221803: &amp;ldquo;Collaborative Research: CAS&amp;mdash;Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms.&amp;rdquo;&lt;/em&gt;&amp;nbsp;&lt;/span&gt;&lt;/span&gt;&lt;/sup&gt;&lt;/p&gt;
  83. &lt;/blockquote&gt;
  84. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02447-2" target="_blank"&gt;Battery electric vehicles show the lowest carbon footprints among passenger cars across 1.5&amp;ndash;3.0&amp;thinsp;&amp;deg;C energy decarbonisation pathways&lt;/a&gt;&lt;/strong&gt;, &amp;Scaron;imaitis et al.,&amp;nbsp;&lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  85. &lt;blockquote&gt;
  86. &lt;p&gt;&lt;em&gt;Passenger car carbon footprints are highly sensitive to future energy systems, a factor often overlooked in life cycle assessment. We use a time-dependent prospective life cycle assessment to enhance carbon footprints under four 1.5&amp;ndash;3.0&amp;thinsp;&amp;deg;C decarbonisation pathways for electricity, fuel, and hydrogen from an energy-based integrated assessment model. Across 5000 comparative cases, battery electric vehicles consistently have the lowest carbon footprints compared to hybrid, plug-in hybrid, and fuel-cell vehicles. For example, battery electric vehicles show an average 32 to 47% lower footprint than hybrid combustion in 3.0&amp;thinsp;&amp;deg;C and 1.5&amp;thinsp;&amp;deg;C climate-compatible futures, respectively. This is driven by greater projected decarbonisation of electricity compared to fossil-dominated fuels and hydrogen. Battery electric vehicles meaningfully retain their advantage for mileages over 100,000&amp;thinsp;km, even in regions with carbon-intensive electricity since these are anticipated to decarbonise the most. Although our study supports battery electric vehicles as the most reliable climate-mitigation option for passenger cars, reducing their high manufacturing footprint remains important.&lt;/em&gt;&lt;/p&gt;
  87. &lt;/blockquote&gt;
  88. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000666" target="_blank"&gt;Can dissent be meaningfully measured in an overwhelming consensus? A citation network case study in climate change research&lt;/a&gt;&lt;/strong&gt;, Grunert,&amp;nbsp;&lt;em&gt;PLOS Clim&amp;nbsp;ate&lt;/em&gt;&lt;/p&gt;
  89. &lt;blockquote&gt;
  90. &lt;p&gt;&lt;span&gt;&lt;em&gt;In scientific discourse, the prevalence of overwhelming consensus obscures the presence of dissenting views as well as their characteristics. This paper explores the potential to meaningfully measure dissent within the context of such a consensus, using climate change research as a case study. Using citation analysis to explore the dynamics of scientific publications and the reception of dissenting opinions, this project questions whether there may be a methodological framework for quantifying dissent. This study employs analysis of citation networks to assess the visibility and impact of minority viewpoints, as well as the viability of such a study. The findings indicate that because dissent in climate change research is miniscule such measurements are limited. Despite that finding, researchers on the fringe of scientific consensus have an outsized impact on social viewpoints. This project has potential to disrupt the ways researchers critically consider the relevance of dissenting research in their own fields, and to think of ways to embrace the impact of research that expands their fields&lt;/em&gt;.&lt;/span&gt;&lt;/p&gt;
  91. &lt;/blockquote&gt;
  92. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/d41586-025-01966-4" target="_blank"&gt;In the face of anti-science politics, silence is not without cost&lt;/a&gt;&lt;/strong&gt;, Editors,&amp;nbsp;&lt;em&gt;Nature&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  93. &lt;blockquote&gt;
  94. &lt;p&gt;&lt;span&gt;&lt;em&gt;&lt;span&gt;We recognize that not all scientific leaders are in a position&amp;nbsp;&lt;/span&gt;&lt;a href="https://www.nature.com/articles/d41586-025-00562-w" data-track="click" data-label="https://www.nature.com/articles/d41586-025-00562-w" data-track-category="body text link"&gt;to be able to speak out&lt;/a&gt;&lt;span&gt;, particularly those in countries where doing so could incur a penalty &amp;mdash; or even punishment. That is why our call is to international scientific organizations. Academies in countries where the freedom to dissent is protected should also make their concerns known. All need to be aware that silence is also not without cost.&lt;/span&gt;&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  95. &lt;/blockquote&gt;
  96. &lt;h3&gt;From this week's government/NGO &lt;a href="#gov-ngo" target="_blank"&gt;section&lt;/a&gt;:&lt;/h3&gt;
  97. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.prod.website-files.com/643ecb10be528d2c1da863cb/68541b1613026bbfd94181b9_SR2025.1%20-%20Information%20Integrity%20about%20Climate%20Science.pdf" target="_blank"&gt;Information Integrity about Climate Science: A Systematic Review&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Elbeyi et al.,&amp;nbsp;&lt;strong&gt;International Panel on the Information Environment&lt;/strong&gt;&lt;/p&gt;
  98. &lt;blockquote&gt;The human response to the climate crisis is being obstructed and delayed by the production and circulation of misleading information about the nature of climate change and the available solutions. The authors found that powerful actors&amp;mdash;including corporations, governments, and political parties&amp;mdash;intentionally spread inaccurate or misleading narratives about anthropogenic climate change. These narratives circulate across digital, broadcast, and interpersonal communication channels. The result is a decline in public trust, diminished policy coordination, and a feedback loop between scientific denialism and political inaction.&lt;/blockquote&gt;
  99. &lt;p&gt;&lt;strong&gt;&lt;a href="https://globalenergymonitor.org/wp-content/uploads/2025/06/GEM-coal-to-solar-June-2025.pdf" target="_blank"&gt;Bright side of the mine. Solar&amp;rsquo;s opportunity to reclaim coal&amp;rsquo;s footprint&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Cheng Cheng Wu and Ryan Driskell-Tate,&amp;nbsp;&lt;strong&gt;Global Energy Monitor&lt;/strong&gt;&lt;/p&gt;
  100. &lt;blockquote&gt;The authors conducted a worldwide survey of surface coal mines closed in the last five years (since 2020) and those forecasted to close over the next five (by the end of 2030). The first-time analysis shows that over 300 surface coal mines recently out of commission could house around 103 GW of photovoltaic (PV) solar capacity, and upcoming closures of large operations could host an additional 185 GW of solar across 127 sites (see Methodology). These abandoned coal mines are predisposed to renewables siting with grid-adjacent and even pre-cleared acreage. If these potential solar projects came to fruition, the world could build almost 300 GW of solar capacity on mined out lands by the end of 2030. Uptake on that scale is equal to 15% of the solar that has already been built globally and would add enough solar capacity to inch the world one step closer to tripling renewables before the end of the decade.&lt;/blockquote&gt;
  101. &lt;h3&gt;138 articles in 56 journals by 793 contributing authors&lt;/h3&gt;
  102. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  103. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60385-1" target="_blank"&gt;Combined emergent constraints on future extreme precipitation changes&lt;/a&gt;, Shiogama et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60385-1&lt;/p&gt;
  104. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  105. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02449-0" target="_blank"&gt;Climate-induced losses of surface water and total water storage in Northeast Asia&lt;/a&gt;, Zhang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02449-0&lt;/p&gt;
  106. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;, Mascaro et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114292&lt;/p&gt;
  107. &lt;!--more--&gt;
  108. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt;Increased frequency of planetary wave resonance events over the past half-century&lt;/a&gt;, Li et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2504482122&lt;/p&gt;
  109. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  110. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  111. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  112. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-283" target="_blank"&gt;A comprehensive 22-year global GNSS climate data record from 5085 stations&lt;/a&gt;, Wang et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-283&lt;/p&gt;
  113. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10661-025-14207-y" target="_blank"&gt;A holistic overview of the applications of GRACE-observed terrestrial water storage in hydrology and climate science&lt;/a&gt;, Khorrami &amp;amp; G&amp;uuml;nd&amp;uuml;z, &lt;em&gt;Environmental Monitoring and Assessment&lt;/em&gt; 10.1007/s10661-025-14207-y&lt;/p&gt;
  114. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/07055900.2025.2516796" target="_blank"&gt;Canada&amp;rsquo;s Fourth Generation of Homogenized Surface Air Temperature and its Trends for 1948&amp;ndash;2023&lt;/a&gt;, Wan et al., &lt;em&gt;Atmosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/07055900.2025.2516796" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/07055900.2025.2516796&lt;/p&gt;
  115. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106587" target="_blank"&gt;From TIROS-1 to the AI Age: 65 Years of Satellite Meteorology and the Legacy of Earth Observation&lt;/a&gt;, Varotsos, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106587&lt;/p&gt;
  116. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jhm-d-24-0145.1" target="_blank"&gt;Improved Global Estimates of Terrestrial Evapotranspiration Using the MODIS and VIIRS Sensors&lt;/a&gt;, Endsley et al., &lt;em&gt;Journal of Hydrometeorology&lt;/em&gt; 10.1175/jhm-d-24-0145.1&lt;/p&gt;
  117. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106586" target="_blank"&gt;Trends and Variability in Global Ocean Heat Content Time Series Data for the period 2005-2035&lt;/a&gt;, Bilgili, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106586&lt;/p&gt;
  118. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  119. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108302" target="_blank"&gt;A comprehensive review on the recent changes in Indian summer monsoon rainfall and its relations with global climate drivers based on the CMIP6 simulations&lt;/a&gt;, Varikoden et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108302&lt;/p&gt;
  120. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043646" target="_blank"&gt;Atmospheric Excitation of Length of Day Inferred From 21st Century Climate Projections&lt;/a&gt;, B&amp;ouml;hm &amp;amp; Salstein Salstein Salstein Salstein, &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jd043646" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd043646&lt;/p&gt;
  121. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106569" target="_blank"&gt;Exploring the Influence of Anthropogenic forcing on Meteorological Drought pattern in East Africa: An Analysis Using CMIP6 Models&lt;/a&gt;, YOHANNES et al., &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106569&lt;/p&gt;
  122. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70005" target="_blank"&gt;Future Climate Changes on the Qinghai&amp;ndash;Tibetan Plateau Under CMIP6 Global Climate Models&lt;/a&gt;, Karim et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.70005&lt;/p&gt;
  123. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-3713" target="_blank"&gt;The future North Atlantic jet stream and storm track: relative contributions from sea ice and sea surface temperature changes&lt;/a&gt;, K&amp;ouml;hler et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-3713&lt;/p&gt;
  124. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  125. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  126. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108301" target="_blank"&gt;Assessing and reducing uncertainties in future mean and extreme precipitation projections over China&lt;/a&gt;, Hou et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108301&lt;/p&gt;
  127. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025av001698" target="_blank"&gt;Assessment of Abrupt Shifts in CMIP6 Models Using Edge Detection&lt;/a&gt;, Terpstra et al., &lt;em&gt;AGU Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025av001698" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025av001698&lt;/p&gt;
  128. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02481-0" target="_blank"&gt;European compound flood-heat-flood events associated with Omega patterns cannot be easily reproduced by a fully coupled model&lt;/a&gt;, Guo et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02481-0&lt;/p&gt;
  129. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043059" target="_blank"&gt;Exposing Process-Level Biases in a Global Cloud Permitting Model With ARM Observations&lt;/a&gt;, Bogenschutz et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd043059" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd043059&lt;/p&gt;
  130. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116307" target="_blank"&gt;Fingerprints of AMOC Decline Are Sensitive to External and Mechanistic Forcing&lt;/a&gt;, McMonigal et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116307" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116307&lt;/p&gt;
  131. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jc022212" target="_blank"&gt;Longshore Sediment Transport and Morphological Changes Under Climate Change&amp;mdash;A Comparison Between CMIP5- and CMIP6-Derived Forcings and the Use of Wave Climate Bias Correction&lt;/a&gt;, Vieira da Silva et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jc022212" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jc022212&lt;/p&gt;
  132. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adt0647" target="_blank"&gt;Observed trend in Earth energy imbalance may provide a constraint for low climate sensitivity models&lt;/a&gt;, Myhre et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adt0647&lt;/p&gt;
  133. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-3442" target="_blank"&gt;Stratification and overturning circulation are intertwined controls on ocean heat uptake efficiency in climate models&lt;/a&gt;, Vogt et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/egusphere" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-3442&lt;/p&gt;
  134. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-18-3681-2025" target="_blank"&gt;Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching&lt;/a&gt;, Bonnet et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-18-3681-2025&lt;/p&gt;
  135. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  136. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-59992-9" target="_blank"&gt;Atlantic water recirculation in the northern Barents Sea affects winter sea ice extent&lt;/a&gt;, Heukamp et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-59992-9&lt;/p&gt;
  137. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108268" target="_blank"&gt;Impact of Autumn Arctic Sea Ice concentration on Siberian High: Insights from causal relationship&lt;/a&gt;, Lin &amp;amp; Wang Wang, &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108268&lt;/p&gt;
  138. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl112585" target="_blank"&gt;Mapping the Composition of Antarctic Ice Shelves as a Metric for Their Susceptibility to Future Climate Change&lt;/a&gt;, Vi&amp;scaron;njevi? et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl112585" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl112585&lt;/p&gt;
  139. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/feart.2025.1601249" target="_blank"&gt;Monitoring recent (2018&amp;ndash;2023) glacier and rock glacier changes in Central Patagonia using high-resolution Pl&amp;eacute;iades and ALOS PRISM satellite data&lt;/a&gt;, Falaschi et al., &lt;em&gt;Frontiers in Earth Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/feart.2025.1601249" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/feart.2025.1601249&lt;/p&gt;
  140. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043124" target="_blank"&gt;The First Firn Core From the Cordillera Darwin Icefield: Implications for Future Ice Core Research&lt;/a&gt;, Tetzner et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd043124" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd043124&lt;/p&gt;
  141. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-18-3635-2025" target="_blank"&gt;The Utrecht Finite Volume Ice-Sheet Model (UFEMISM version 2.0) &amp;ndash; part 1: description and idealised experiments&lt;/a&gt;, Berends et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-18-3635-2025&lt;/p&gt;
  142. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/tc-19-2115-2025" target="_blank"&gt;Toward a marginal Arctic sea ice cover: changes to freezing, melting and dynamics&lt;/a&gt;, Frew et al., &lt;em&gt;The Cryosphere&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/tc" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/tc-19-2115-2025&lt;/p&gt;
  143. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  144. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt;Economic impacts of sea level rise on China&amp;rsquo;s coastal provinces under different adaptation strategies&lt;/a&gt;, Wang et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.005&lt;/p&gt;
  145. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2411904122" target="_blank"&gt;Increased sea-level contribution from northwestern Greenland for models that reproduce observations&lt;/a&gt;, Badgeley et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2411904122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2411904122&lt;/p&gt;
  146. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106580" target="_blank"&gt;Long-Term Sea Level and Climate Variability at Tide Gauge Stations: A Study from T&amp;uuml;rkiye&lt;/a&gt;, Erko&amp;ccedil; &amp;amp; Do?an, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106580&lt;/p&gt;
  147. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-300" target="_blank"&gt;Reconstructing sea level rise at global 945 tide gauges since 1900&lt;/a&gt;, Mu et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-300&lt;/p&gt;
  148. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  149. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2505795122" target="_blank"&gt;European mammal turnover driven by a global rapid warming event preceding the Paleocene&amp;ndash;Eocene Thermal Maximum&lt;/a&gt;, Tabuce et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2505795122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2505795122&lt;/p&gt;
  150. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adv2549" target="_blank"&gt;Global cooling drove diversification and warming caused extinction among Carboniferous-Permian fusuline foraminifera&lt;/a&gt;, Zhang et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.adv2549" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.adv2549&lt;/p&gt;
  151. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/bor.70021" target="_blank"&gt;Processes and palaeo-environmental changes in the Arctic from past to present (PalaeoArc) &amp;ndash; introduction&lt;/a&gt;, Lys&amp;aring; et al., &lt;em&gt;Boreas&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/bor.70021" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/bor.70021&lt;/p&gt;
  152. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043219" target="_blank"&gt;Toarcian Greenhouse Warming Shifted Climate Belts Poleward With Global Change Implications&lt;/a&gt;, Wang et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2024jd043219&lt;/p&gt;
  153. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  154. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70306" target="_blank"&gt;A Global Meta-Analysis of Passive Experimental Warming Effects on Plant Traits and Community Properties&lt;/a&gt;, Dobson &amp;amp; Zarnetske, &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70306" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70306&lt;/p&gt;
  155. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71664" target="_blank"&gt;Assessing Climate Change Impacts on Distribution Dynamics of Lysimachia Christinae in China Through MaxEnt Modeling&lt;/a&gt;, Xiang et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71664" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71664&lt;/p&gt;
  156. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adw4495" target="_blank"&gt;Climate change redefines sea turtle hotspots: Vessel strike risks and gaps in protected areas&lt;/a&gt;, Duquesne &amp;amp; Fournier, &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adw4495&lt;/p&gt;
  157. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-05621-w" target="_blank"&gt;Effects of marine heat waves and cold spells on a polar shallow water ecosystem&lt;/a&gt;, Fischer et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-05621-w&lt;/p&gt;
  158. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adr9715" target="_blank"&gt;Greener green and bluer blue: Ocean poleward greening over the past two decades&lt;/a&gt;, Zhao et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adr9715&lt;/p&gt;
  159. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126326" target="_blank"&gt;Growth rates and responses to climate and aridity of Algerian Atlas pistachio populations&lt;/a&gt;, Ifticene-Habani et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; 10.1016/j.dendro.2025.126326&lt;/p&gt;
  160. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71661" target="_blank"&gt;Impact of Multiple Climate Stressors on Early Life Stages of North Pacific Kelp Species&lt;/a&gt;, Drakard et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71661" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71661&lt;/p&gt;
  161. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005888" target="_blank"&gt;Increasing Cumulative Impacts of Droughts Under Climate Change Does Not Alter the Ecosystem Resilience in India&lt;/a&gt;, Bejagam &amp;amp; Sharma, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005888" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005888&lt;/p&gt;
  162. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71580" target="_blank"&gt;Present and Future of the White-Tailed Laurel Pigeon (Columba junoniae) on Gran Canaria Island&lt;/a&gt;, Albaladejo?Robles et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71580" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71580&lt;/p&gt;
  163. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  164. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70138" target="_blank"&gt;Sex-specific trade-offs influence thermoregulation under climate change&lt;/a&gt;, Levine et al., &lt;em&gt;Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecy.70138" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecy.70138&lt;/p&gt;
  165. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70253" target="_blank"&gt;Sustaining Species of the Future: Climatic Nuclei for Climate Change Adaptation&lt;/a&gt;, McLaughlin et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70253&lt;/p&gt;
  166. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt;Synergies Between Agricultural Production and Shorebird Conservation With Climate Change in the Central Valley, California, With Optimized Water Allocation and Multi-Benefit Land Use&lt;/a&gt;, Li et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70304&lt;/p&gt;
  167. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70290" target="_blank"&gt;Temporary Absence of Warming in the Northern Weddell Sea Validates Expected Responses of Antarctic Seals to Sea Ice Change&lt;/a&gt;, Dunn et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70290" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70290&lt;/p&gt;
  168. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adv8031" target="_blank"&gt;The future of baleen whales: Recoveries, environmental constraints, and climate change&lt;/a&gt;, Stewart et al., &lt;em&gt;Science Advances&lt;/em&gt; 10.1126/sciadv.adv8031&lt;/p&gt;
  169. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02423-w" target="_blank"&gt;Various responses of global heterotrophic respiration to variations in soil moisture and temperature enhance the positive feedback on atmospheric warming&lt;/a&gt;, Zeng et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02423-w&lt;/p&gt;
  170. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/geb.70080" target="_blank"&gt;Warming Enhances the Effects of Acidification on Aquatic Biota: A Global Meta-Analysis&lt;/a&gt;, Jian et al., &lt;em&gt;Global Ecology and Biogeography&lt;/em&gt; 10.1111/geb.70080&lt;/p&gt;
  171. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005003" target="_blank"&gt;Wetland Gain and Loss in the Mississippi River Bird-Foot Delta&lt;/a&gt;, Yang et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005003" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005003&lt;/p&gt;
  172. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70296" target="_blank"&gt;Which Body Size Metrics Should Be Used for Assessing Temperature Impacts on Fish Growth and Size?&lt;/a&gt;, Audzijonyte et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70296&lt;/p&gt;
  173. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  174. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1427376" target="_blank"&gt;Carbon estimation of old-growth bald cypress knees using mobile LiDAR&lt;/a&gt;, Tajudeen et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1427376" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1427376&lt;/p&gt;
  175. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gb008382" target="_blank"&gt;Influence of Wave-Induced Variability on Ocean Carbon Uptake&lt;/a&gt;, Rustogi et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gb008382" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gb008382&lt;/p&gt;
  176. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70301" target="_blank"&gt;Microbiome Adaptation Could Amplify Modeled Projections of Global Soil Carbon Loss With Climate Warming&lt;/a&gt;, Abs et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70301" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70301&lt;/p&gt;
  177. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-2889-2025" target="_blank"&gt;Observations of methane net sinks in the upland Arctic tundra&lt;/a&gt;, Donateo et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-2889-2025&lt;/p&gt;
  178. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef004946" target="_blank"&gt;Response of China's Terrestrial Carbon Uptake to Shift in Nitrogen Deposition&lt;/a&gt;, Zhang et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef004946" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef004946&lt;/p&gt;
  179. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02375-1" target="_blank"&gt;Satellite data indicates recent Arctic peatland expansion with warming&lt;/a&gt;, Crichton et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02375-1&lt;/p&gt;
  180. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02395-x" target="_blank"&gt;Sea ice controls net ocean uptake of carbon dioxide by regulating wintertime stratification&lt;/a&gt;, Droste et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02395-x&lt;/p&gt;
  181. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  182. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jastp.2025.106577" target="_blank"&gt;Tracking the Future of Global N&lt;sub&gt;2&lt;/sub&gt;O Gas Emissions with Data-Driven Forecasts&lt;/a&gt;, &amp;Ouml;NDER, &lt;em&gt;Journal of Atmospheric and Solar&lt;/em&gt; 10.1016/j.jastp.2025.106577&lt;/p&gt;
  183. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70309" target="_blank"&gt;Warming Weakens Soil Nitrogen Stabilization Pathways Driving Proportional Carbon Losses in Subarctic Ecosystems&lt;/a&gt;, Mara&amp;ntilde;&amp;oacute;n?Jim&amp;eacute;nez et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70309" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70309&lt;/p&gt;
  184. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  185. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02394-y" target="_blank"&gt;Carbon offsetting of fossil fuel emissions through afforestation is limited by financial viability and spatial requirements&lt;/a&gt;, Naef et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02394-y&lt;/p&gt;
  186. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef005924" target="_blank"&gt;Characterizing the Effects of Policy Instruments on Cost and Deployment Trajectories of Direct Air Capture in the U.S. Energy System&lt;/a&gt;, Kanyako &amp;amp; Craig, &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef005924" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef005924&lt;/p&gt;
  187. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02355-5" target="_blank"&gt;Protect young secondary forests for optimum carbon removal&lt;/a&gt;, Robinson et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02355-5&lt;/p&gt;
  188. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2358" target="_blank"&gt;Simulations on Carbon Dioxide Sequestration Into Coal Seams Within an Effective Area: A Case Study in the Eastern Section of Songji Uplift, China&lt;/a&gt;, Zou et al., &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; 10.1002/ghg.2358&lt;/p&gt;
  189. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2278" target="_blank"&gt;Synergies of storing hydrogen at the crest of CO2${rm CO}&amp;amp;{2}$ or other gas storage&lt;/a&gt;, Rhouma et al., &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ghg.2278" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ghg.2278" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/ghg.2278&lt;/p&gt;
  190. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  191. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02447-2" target="_blank"&gt;Battery electric vehicles show the lowest carbon footprints among passenger cars across 1.5&amp;ndash;3.0&amp;thinsp;&amp;deg;C energy decarbonisation pathways&lt;/a&gt;, &amp;Scaron;imaitis et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02447-2&lt;/p&gt;
  192. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101771" target="_blank"&gt;Household preferences for rooftop solar photovoltaic systems: Evidence from a survey-based study in five Indonesian cities&lt;/a&gt;, Afifi et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101771&lt;/p&gt;
  193. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101732" target="_blank"&gt;Hydropower-driven electric vehicle infrastructure in the Himalayan region: Integration dynamics and strategic SWOT analysis for sustainable transportation&lt;/a&gt;, Singh et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101732&lt;/p&gt;
  194. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s42757-024-0223-0" target="_blank"&gt;Numerical assessment of emergency ammonia underwater discharge from a platform supply vessel&lt;/a&gt;, Avgerinos et al., &lt;em&gt;Experimental and Computational Multiphase Flow&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s42757" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s42757-024-0223-0&lt;/p&gt;
  195. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02437-4" target="_blank"&gt;Offshore wave and wind energy development in the Southern Hemisphere will remain optimal between 20&amp;deg;E and 180&amp;deg;E by 2100&lt;/a&gt;, Zhao et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02437-4&lt;/p&gt;
  196. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09266-7" target="_blank"&gt;Strategies for climate-resilient global wind and solar power systems&lt;/a&gt;, Zheng et al., &lt;em&gt;Nature&lt;/em&gt; 10.1038/s41586-025-09266-7&lt;/p&gt;
  197. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101775" target="_blank"&gt;Sustainable ethanol production: CO&lt;sub&gt;2&lt;/sub&gt; emission analysis and feedstock strategies through life cycle assessment&lt;/a&gt;, Kumar &amp;amp; Sinha, &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101775&lt;/p&gt;
  198. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  199. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-2749-2025" target="_blank"&gt;Ocean alkalinity enhancement in an open-ocean ecosystem: biogeochemical responses and carbon storage durability&lt;/a&gt;, Paul et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-2749-2025&lt;/p&gt;
  200. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd044163" target="_blank"&gt;Regional and Seasonal Hydrological Changes With and Without Stratospheric Aerosol Intervention Under High Greenhouse Gas Climates&lt;/a&gt;, Rezaei et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.22541/essoar.174708323.34069174/v1" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd044163&lt;/p&gt;
  201. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02466-z" target="_blank"&gt;Stratospheric aerosol injection can weaken the carbon dioxide greenhouse effect&lt;/a&gt;, He et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02466-z&lt;/p&gt;
  202. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Aerosols&lt;/strong&gt;&lt;/p&gt;
  203. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108267" target="_blank"&gt;A review of aerosol-cloud interactions: Mechanisms, climate effects, and observation methods&lt;/a&gt;, Li et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108267&lt;/p&gt;
  204. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  205. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000666" target="_blank"&gt;Can dissent be meaningfully measured in an overwhelming consensus? A citation network case study in climate change research&lt;/a&gt;, Grunert, &lt;em&gt;PLOS Clim ate&amp;nbsp;&lt;/em&gt;&lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000666" target="_blank"&gt;Open Access&lt;/a&gt; 10.1371/journal.pclm.0000666&lt;/p&gt;
  206. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.47205/jdss.2021(2-iv)74" target="_blank"&gt;Climate anxiety - impairment and/or activation? Exploring the roles of mindfulness and emotion regulation&lt;/a&gt;, , &lt;em&gt;Journal of Development and Social Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://jdss.org.pk/issues/v2/4/water" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://jdss.org.pk/issues/v2/4/water-sharing-issues-in-pakistan-impacts-on-inter-provincial-relations.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.47205/jdss.2021(2-iv)74&lt;/p&gt;
  207. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103015" target="_blank"&gt;Climate change anxiety: A meta-analysis&lt;/a&gt;, K&amp;uuml;hner et al., &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103015" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103015&lt;/p&gt;
  208. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rsos.242148" target="_blank"&gt;Countering AI-generated misinformation with pre-emptive source discreditation and debunking&lt;/a&gt;, Spearing et al., &lt;em&gt;Royal Society Open Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rsos.242148" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rsos.242148&lt;/p&gt;
  209. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/09644016.2025.2522516" target="_blank"&gt;Fluid hope in a climate emergency: Lessons from an English citizens&amp;rsquo; jury&lt;/a&gt;, Lewis, &lt;em&gt;Environmental Politics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/09644016.2025.2522516" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/09644016.2025.2522516&lt;/p&gt;
  210. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02369-z" target="_blank"&gt;Social strategies to engage video gamers in climate action&lt;/a&gt;, Carman et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02369-z&lt;/p&gt;
  211. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  212. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000655" target="_blank"&gt;An in-depth approach on ecological and social processes improve quantifying the climatic impact of food production&lt;/a&gt;, del Prado et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000655" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000655&lt;/p&gt;
  213. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.2139/ssrn.4173669" target="_blank"&gt;Climate information services enhance farmers&amp;rsquo; resilience to climate change: Impacts on agricultural productivity&lt;/a&gt;, Tamru et al., &lt;em&gt;SSRN Electronic Journal&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.2139/ssrn.4173669&lt;/p&gt;
  214. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01724-1" target="_blank"&gt;Climate-driven global cropland changes and consequent feedbacks&lt;/a&gt;, You et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01724-1&lt;/p&gt;
  215. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02459-y" target="_blank"&gt;Increased irrigation could mitigate future warming-induced maize yield losses in the Ogallala Aquifer&lt;/a&gt;, Zhang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02459-y&lt;/p&gt;
  216. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01731-2" target="_blank"&gt;Large CO&lt;sub&gt;2&lt;/sub&gt; removal potential of woody debris preservation in managed forests&lt;/a&gt;, Luo et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01731-2&lt;/p&gt;
  217. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  218. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104962" target="_blank"&gt;Projected increase in global compound agricultural drought and hot events under climate change&lt;/a&gt;, Shi et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104962&lt;/p&gt;
  219. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt;Synergies Between Agricultural Production and Shorebird Conservation With Climate Change in the Central Valley, California, With Optimized Water Allocation and Multi-Benefit Land Use&lt;/a&gt;, Li et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70304" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70304&lt;/p&gt;
  220. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1561655" target="_blank"&gt;Synergistic research on planter performance optimization and green low-carbon agricultural transformation under climate risk&lt;/a&gt;, Shi et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1561655" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1561655&lt;/p&gt;
  221. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  222. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.70009" target="_blank"&gt;Changing Rainfall Patterns and Their Climatic Drivers in One of the Rainiest Places on Earth, Debundscha, Gulf of Guinea&lt;/a&gt;, Nkiaka &amp;amp; Tume, &lt;em&gt;International Journal of Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/joc.70009" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/joc.70009&lt;/p&gt;
  223. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8840" target="_blank"&gt;Climatological Context of the Severe Rain-on-Snow Flooding Event of March 2019 in Eastern Nebraska&lt;/a&gt;, Suriano et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8840&lt;/p&gt;
  224. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02449-0" target="_blank"&gt;Climate-induced losses of surface water and total water storage in Northeast Asia&lt;/a&gt;, Zhang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02449-0&lt;/p&gt;
  225. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;, Mascaro et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114292&lt;/p&gt;
  226. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt;Increased frequency of planetary wave resonance events over the past half-century&lt;/a&gt;, Li et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2504482122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2504482122&lt;/p&gt;
  227. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02457-0" target="_blank"&gt;Dynamics-constrained rainfall projection reveals substantial increase in population exposure to unprecedented floods in the North China Plain&lt;/a&gt;, Yang et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02457-0&lt;/p&gt;
  228. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jhm-d-24-0089.1" target="_blank"&gt;How Will Precipitation Characteristics Associated with Tropical Cyclones in Diverse Synoptic Environments in the Southeast United States Respond to Climate Change?&lt;/a&gt;, Hollinger Beatty et al., &lt;em&gt;Journal of Hydrometeorology&lt;/em&gt; 10.1175/jhm-d-24-0089.1&lt;/p&gt;
  229. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8827" target="_blank"&gt;Widespread Multi-Year Droughts in Italy: Identification and Causes of Development&lt;/a&gt;, Pascale &amp;amp; Ragone Ragone, &lt;em&gt;International Journal of Climatology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/joc.8827" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/joc.8827&lt;/p&gt;
  230. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  231. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2507213" target="_blank"&gt;Assessing the costs of fossil dependency: an integrated model for carbon costs across economic sectors in China and Germany&lt;/a&gt;, Vet?n&amp;eacute; M&amp;oacute;zner et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2507213" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2507213&lt;/p&gt;
  232. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adx1950" target="_blank"&gt;Climate adaptation finance: From paper commitments to climate risk reduction&lt;/a&gt;, Verschuur et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adx1950&lt;/p&gt;
  233. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10668-025-06433-8" target="_blank"&gt;Do the United States'fiscal decentralization, money supply, and environmental policies promote the clean energy transition?&lt;/a&gt;, Haseeb et al., &lt;em&gt;Environment, Development and Sustainability&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s10668" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s10668-025-06433-8&lt;/p&gt;
  234. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.2139/ssrn.5291999" target="_blank"&gt;Renewable energy consumption and international trade: Does climate policy stringency matter?&lt;/a&gt;, Nouira et al., &lt;em&gt;SSRN Electronic Journal&lt;/em&gt; 10.2139/ssrn.5291999&lt;/p&gt;
  235. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103008" target="_blank"&gt;The labour and resource use requirements of a good life for all&lt;/a&gt;, McElroy &amp;amp; O&amp;rsquo;Neill, &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103008" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103008&lt;/p&gt;
  236. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  237. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101753" target="_blank"&gt;Barriers to energy transition: Comparing developing with developed countries&lt;/a&gt;, Pereira et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.esd.2025.101753" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.esd.2025.101753&lt;/p&gt;
  238. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.04.018" target="_blank"&gt;Bidirectional allocation method of provincial carbon emission allowances under China's 2030 carbon peak target: From equity and efficiency perspective&lt;/a&gt;, Yang et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.04.018" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.04.018&lt;/p&gt;
  239. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104165" target="_blank"&gt;Determinants of institutional change towards a sustainable energy transition in Ghana: A political economy analysis of solar photovoltaics&lt;/a&gt;, Agbaam et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104165" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104165&lt;/p&gt;
  240. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114725" target="_blank"&gt;Electrification, flexibility or both? Emerging trends in European energy policy&lt;/a&gt;, Mellot et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114725" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114725&lt;/p&gt;
  241. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.47205/jdss.2021(2-iv)74" target="_blank"&gt;Global analysis of constraints to natural climate solution implementation&lt;/a&gt;, , &lt;em&gt;Journal of Development and Social Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://jdss.org.pk/issues/v2/4/water" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://jdss.org.pk/issues/v2/4/water-sharing-issues-in-pakistan-impacts-on-inter-provincial-relations.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.47205/jdss.2021(2-iv)74&lt;/p&gt;
  242. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104190" target="_blank"&gt;Tackling transformational change in climate policy appraisal: experiences and perceptions of United Kingdom policy analysts&lt;/a&gt;, Lynch et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104190" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104190&lt;/p&gt;
  243. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  244. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41893-025-01575-z" target="_blank"&gt;Adaptive capacity for multimodal transport network resilience to extreme floods&lt;/a&gt;, Li et al., &lt;em&gt;Nature Sustainability&lt;/em&gt; 10.1038/s41893-025-01575-z&lt;/p&gt;
  245. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-04844-1" target="_blank"&gt;Climate adaptive energy efficiency modeling using a generalized additive approach to optimize building performance across Chinese climate zones&lt;/a&gt;, Yang et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-04844-1&lt;/p&gt;
  246. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt;Economic impacts of sea level rise on China&amp;rsquo;s coastal provinces under different adaptation strategies&lt;/a&gt;, Wang et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.005" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.005&lt;/p&gt;
  247. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100723" target="_blank"&gt;Enhancing climate adaptation planning with limited resources: A streamlined framework for municipal climate risk assessments&lt;/a&gt;, H&amp;uuml;bner &amp;amp; Finkbeiner, &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100723" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100723&lt;/p&gt;
  248. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1550738" target="_blank"&gt;Tackling rural water scarcity in South Africa: climate change, governance, and sustainability pathways&lt;/a&gt;, Matimolane &amp;amp; Mathivha, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1550738" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1550738&lt;/p&gt;
  249. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1057/s41287-025-00705-9" target="_blank"&gt;Vulnerability to Adverse Climate Change: Evidence from Rural Bangladesh&lt;/a&gt;, Tian, &lt;em&gt;The European Journal of Development Research&lt;/em&gt; 10.1057/s41287-025-00705-9&lt;/p&gt;
  250. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  251. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000601" target="_blank"&gt;Evaluating the role of observational uncertainty in climate impact assessments: Temperature-driven yellow fever risk in South America&lt;/a&gt;, Jahn et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000601" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000601&lt;/p&gt;
  252. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gh001406" target="_blank"&gt;Extreme Weather Events Interact With Local Contexts to Alter the Frequency of Firearm Violence and Child Maltreatment in Wayne County, Michigan&lt;/a&gt;, Sokol et al., &lt;em&gt;GeoHealth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gh001406" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gh001406&lt;/p&gt;
  253. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gh001272" target="_blank"&gt;How Systemic Barriers Can Impact Health Inequities When Facing Climate Change Stressors: A Scoping Review of Global Differences&lt;/a&gt;, Wong et al., &lt;em&gt;GeoHealth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gh001272" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gh001272&lt;/p&gt;
  254. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/23328940.2025.2515340" target="_blank"&gt;Insights into the impact of ambient heat exposure on the first 1000 days of life&lt;/a&gt;, Bonell, &lt;em&gt;Temperature&lt;/em&gt; 10.1080/23328940.2025.2515340&lt;/p&gt;
  255. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gh001356" target="_blank"&gt;Time of Emergence and Future Projections of Extremes of Malaria Infections in Africa&lt;/a&gt;, Franzke &amp;amp; Parihar, &lt;em&gt;GeoHealth&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gh001356" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gh001356&lt;/p&gt;
  256. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000527" target="_blank"&gt;Unseen scars: Understanding the mental health burdens of climate change on indigenous and rural Peruvian women&lt;/a&gt;, Flores et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000527" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000527&lt;/p&gt;
  257. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human culture&lt;/strong&gt;&lt;/p&gt;
  258. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104127" target="_blank"&gt;Integrating cultural resources and heritage in climate action: A review of nine climate plans&lt;/a&gt;, Paloma &amp;amp; Cathy, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104127" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104127&lt;/p&gt;
  259. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  260. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl115973" target="_blank"&gt;Record Warmth and Unprecedented Drop in Equatorial Atlantic Sea Surface Temperatures in 2024&lt;/a&gt;, Tuchen et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl115973" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl115973&lt;/p&gt;
  261. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  262. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-01966-4" target="_blank"&gt;In the face of anti-science politics, silence is not without cost&lt;/a&gt;, , &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-025-01966-4&lt;/p&gt;
  263. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70294" target="_blank"&gt;Is Antarctica Greening?&lt;/a&gt;, Colesie et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70294&lt;/p&gt;
  264. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/bor.70021" target="_blank"&gt;Processes and palaeo-environmental changes in the Arctic from past to present (PalaeoArc) &amp;ndash; introduction&lt;/a&gt;, Lys&amp;aring; et al., &lt;em&gt;Boreas&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/bor.70021" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/bor.70021&lt;/p&gt;
  265. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-01830-5" target="_blank"&gt;The economic effects of federal cuts to US science &amp;mdash; in 24 graphs&lt;/a&gt;, Ro, &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/d41586-025-01830-5&lt;/p&gt;
  266. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.ady1186" target="_blank"&gt;The pursuit of 1.5&amp;deg;C endures as a legal and ethical imperative in a changing world&lt;/a&gt;, Rogelj &amp;amp; Rajamani, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.ady1186&lt;/p&gt;
  267. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025av001808" target="_blank"&gt;What Is Endangered Now? Climate Science at the Crossroads&lt;/a&gt;, Saleska et al., &lt;em&gt;AGU Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025av001808" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025av001808&lt;/p&gt;
  268. &lt;hr /&gt;
  269. &lt;h3&gt;&lt;a id="gov-ngo"&gt;&lt;/a&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  270. &lt;p&gt;&lt;strong&gt;&lt;a href="https://rice.app.box.com/s/p40p9pl2vt7tza6cju9iv8j4m1t93h3f" target="_blank"&gt;The 2025 State of Housing in Harris County and Houston&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Sherman et al, &lt;strong&gt;Kinder Institute for Urban Research, Rice University&lt;/strong&gt;&lt;/p&gt;
  271. &lt;blockquote&gt;In addition to building on key indicators from previous years, the authors take a closer look at the impact of extreme weather and climate change on Harris County and Houston's housing affordability and neighborhood livability. Crucially, the authors find the cost of coping with and adapting to these conditions is borne most heavily by those who can least afford it. In both flood-prone communities and communities with higher land surface temperatures, a significantly larger share of residents live in poverty. Vulnerable households are consigned to risky places. Air quality continues to endanger Houstonians, particularly in predominantly Hispanic/Latino neighborhoods. Poorer communities must rely on FEMA aid, emphasizing the societal inequities that lead to uneven impacts from weather events. Housing stock in some communities is not climate-resilient. Countywide: 106,975 residential structures lack central air conditioning 40,205 lack piped-in natural gas, electrical or solar heat. Flood insurance uptake is still insufficient, given the region&amp;rsquo;s vulnerabilities. Climate-induced home insurance increases may add over $15,000 to home costs, exacerbating an already precarious housing affordability landscape.&lt;/blockquote&gt;
  272. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.oecd.org/content/dam/oecd/en/publications/reports/2025/06/global-drought-outlook_28488e98/d492583a-en.pdf" target="_blank"&gt;Global Drought Outlook&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Organization for Economic Co-operation and Development&lt;/strong&gt;&lt;/p&gt;
  273. &lt;blockquote&gt;Droughts are becoming more frequent, prolonged and severe with climate change, threatening water security and placing growing pressure on people, ecosystems and economies. From reduced crop yields and strained power supply and river trade to degraded landscapes and disrupted livelihoods, the impacts of droughts are on the rise &amp;ndash; and so are their costs. The authors assess how countries can strengthen drought management to adapt to a changing climate. They provide new insights into the rising human, environmental, and economic impacts of droughts and offers practical policy solutions to minimize losses, build long-term resilience, and support adaptation to a drier future.&lt;/blockquote&gt;
  274. &lt;p&gt;&lt;strong&gt;&lt;a href="https://reports.weforum.org/docs/WEF_Fostering_Effective_Energy_Transition_2025.pdf" target="_blank"&gt;Fostering Effective Energy Transition 2025&lt;/a&gt;, &lt;/strong&gt;Arora et al., &lt;strong&gt;World Economic Forum and Accenture&lt;/strong&gt;&lt;/p&gt;
  275. &lt;blockquote&gt;According to the authors, after several years of slow momentum, energy transition progress has accelerated. The Energy Transition Index (ETI), which benchmarks 118 countries on their current energy system performance and on the readiness of their enabling environment, finds improvements in energy equity and sustainability driven by easing energy prices, subsidy reforms, lower energy and emission intensity and increased share of clean energy. However, energy security has made more limited progress, and transition readiness momentum has slowed. Meanwhile, global energy systems are facing increasing pressure from climate change, geopolitical, economic and technological disruptions.&lt;/blockquote&gt;
  276. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.bloomenergy.com/wp-content/uploads/2025-data-center-power-report.pdf" target="_blank"&gt;2025 Data Center Power Report Mid-Year Pulse&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Bloomenergy&lt;/strong&gt;&lt;/p&gt;
  277. &lt;blockquote&gt;The authors provide an updated view of the evolving data center power landscape, following a more comprehensive report released earlier this year. These insights are shaped by ongoing conversations with industry leaders and a targeted survey examining shifts in power procurement strategies. The survey results indicate that interest is rising in onsite power generation as developers seek faster, more reliable and more flexible ways to meet growing data center power demands. In this environment, natural gas is emerging as a critical bridge fuel, valued for its availability, commercial viability and alignment with national and regional energy strategies. Although not identified in the survey, as noted by other commentators, fuel cells that run on natural gas are among the technologies gaining attention in this evolving landscape. The research reflects perspectives from hyperscalers, colocation developers, utilities and GPU service providers, with input from professionals ranging from mid-level managers to C-suite executives. The findings offer a timely lens into what matters most to the people shaping the future of the AI industry.&lt;/blockquote&gt;
  278. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.prod.website-files.com/643ecb10be528d2c1da863cb/68541b1613026bbfd94181b9_SR2025.1%20-%20Information%20Integrity%20about%20Climate%20Science.pdf" target="_blank"&gt;Information Integrity about Climate Science: A Systematic Review&lt;/a&gt;, &lt;/strong&gt;Elbeyi et al., &lt;strong&gt;International Panel on the Information Environment&lt;/strong&gt;&lt;/p&gt;
  279. &lt;blockquote&gt;The human response to the climate crisis is being obstructed and delayed by the production and circulation of misleading information about the nature of climate change and the available solutions. The authors found that powerful actors&amp;mdash;including corporations, governments, and political parties&amp;mdash;intentionally spread inaccurate or misleading narratives about anthropogenic climate change. These narratives circulate across digital, broadcast, and interpersonal communication channels. The result is a decline in public trust, diminished policy coordination, and a feedback loop between scientific denialism and political inaction.&lt;/blockquote&gt;
  280. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.greenpeace.org/international/press-release/75582/global-survey-finds-8-out-of-10-people-support-taxing-oil-and-gas-corporations-to-pay-for-climate-damages/" target="_blank"&gt;8 in 10 people support taxing oil and gas corporations to pay for climate damages, global survey finds&lt;/a&gt;, &lt;/strong&gt;Dynata, &lt;strong&gt;Greenpeace International and Oxfam International&lt;/strong&gt;&lt;/p&gt;
  281. &lt;blockquote&gt;A vast majority of people believe governments must tax oil, gas and coal corporations for climate-related loss and damage, and that their government is not doing enough to counter the political influence of super rich individuals and polluting industries. These are the key findings of a global survey, which reflect a broad consensus across political affiliations, income levels and age groups.&lt;/blockquote&gt;
  282. &lt;p&gt;&lt;strong&gt;&lt;a href="https://globalenergymonitor.org/wp-content/uploads/2025/06/GEM-coal-to-solar-June-2025.pdf" target="_blank"&gt;Bright side of the mine. Solar&amp;rsquo;s opportunity to reclaim coal&amp;rsquo;s footprint&lt;/a&gt;, &lt;/strong&gt;Cheng Cheng Wu and Ryan Driskell-Tate, &lt;strong&gt;Global Energy Monitor&lt;/strong&gt;&lt;/p&gt;
  283. &lt;blockquote&gt;The authors conducted a worldwide survey of surface coal mines closed in the last five years (since 2020) and those forecasted to close over the next five (by the end of 2030). The first-time analysis shows that over 300 surface coal mines recently out of commission could house around 103 GW of photovoltaic (PV) solar capacity, and upcoming closures of large operations could host an additional 185 GW of solar across 127 sites (see Methodology). These abandoned coal mines are predisposed to renewables siting with grid-adjacent and even pre-cleared acreage. If these potential solar projects came to fruition, the world could build almost 300 GW of solar capacity on mined out lands by the end of 2030. Uptake on that scale is equal to 15% of the solar that has already been built globally and would add enough solar capacity to inch the world one step closer to tripling renewables before the end of the decade.&lt;/blockquote&gt;
  284. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.bis.org/bcbs/publ/d597.pdf" target="_blank"&gt;A framework for the voluntary disclosure of climate-related financial risks&lt;/a&gt;, &lt;/strong&gt;Basel Committee on Banking Supervision, &lt;strong&gt;Bank for International Settlements&lt;/strong&gt;&lt;/p&gt;
  285. &lt;blockquote&gt;This voluntary framework for the disclosure of climate-related financial risks includes both qualitative and quantitative information. The Committee has agreed this framework will be voluntary in nature, with jurisdictions to consider whether to implement it domestically. The Committee acknowledges that the accuracy, consistency and quality of climate-related data are evolving, and therefore it is necessary to incorporate a reasonable level of flexibility into the final framework. The Committee also recognizes that multiple quantitative metrics and qualitative information may be needed to form a comprehensive picture of banks' exposure to climate-related financial risks. Users need to consider the disclosures holistically, understanding the strengths and shortcomings of the disclosed information.&lt;/blockquote&gt;
  286. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ember-energy.org/app/uploads/2025/06/Ember-24-Hour-Solar-Electricity-June-2025-6.pdf" target="_blank"&gt;Solar electricity every hour of every day is here and it changes everything&lt;/a&gt;, &lt;/strong&gt;Kostantsa Rangelova and Dave Jones, &lt;strong&gt;Ember&lt;/strong&gt;&lt;/p&gt;
  287. &lt;blockquote&gt;The authors unpack the concept of 24-hour electricity supply with solar generation &amp;mdash; how solar panels, paired with batteries, can deliver clean, reliable electricity around the clock. They compares cities across the world, showing how close they can get to solar electricity 24 hours across 365 days (24/365 solar generation), and at what price. Focused on project-level applications like industrial users and utility developers, the authors show how batteries are now cheap enough to unlock solar power&amp;rsquo;s full potential.&lt;/blockquote&gt;
  288. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.scurveeconomics.org/wp-content/uploads/2025/04/Systems-archetypes-brief.pdf" target="_blank"&gt;System archetypes of the energy transition&lt;/a&gt;, &lt;/strong&gt;Sharpea et al., &lt;strong&gt;S-Curve Economics&lt;/strong&gt;&lt;/p&gt;
  289. &lt;blockquote&gt;The authors identify 10 archetypical feedback effects that are driving system behavior through the energy transition, providing explanations, examples, and policy implications for each. They relate these to questions such as: why have electric vehicles achieved dominance over hydrogen fuel cell vehicles? Why has deployment of solar and wind energy exploded faster than even the most optimistic projections? And could declining demand for coal, oil, and gas send fossil fuel industries into a permanent downwards spiral?&lt;/blockquote&gt;
  290. &lt;p&gt;&lt;strong&gt;&lt;a href="https://canopy.acf.org.au/m/1cae0d14963afa51/original/Financed-deforestation-banks-roles-and-responsibilities.pdf" target="_blank"&gt;Financed deforestation: banks&amp;rsquo; roles and responsibilities&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Australian Conservation Foundation&lt;/strong&gt;&lt;/p&gt;
  291. &lt;blockquote&gt;An investigation by the authors analyzed 100 cases of deforestation detected between July 2023 and July 2024 linked to major banks through mortgages. They show that all of Australia&amp;rsquo;s big banks are continuing to loan to companies actively bulldozing the bush. Banks have a powerful role to play in either helping or exacerbating Australia's extinction crisis. Banks can either facilitate nature destruction through their lending to certain activities and sectors, or they could help prevent it by setting strict conditions in their lending for activities and sectors that have a high risk for nature destruction. Yet most are failing to assess, monitor, or act on deforestation occurring in activities or businesses they are lending to. Banks cannot claim to be managing climate or nature risk while turning a blind eye to bulldozers flattening forests in their loan books. They must contribute to internationally agreed goals to halting nature loss, forest loss and degradation by 2030.&lt;/blockquote&gt;
  292. &lt;p&gt;&lt;strong&gt;&lt;a href="https://corporateaccountability.org/wp-content/uploads/2025/06/BUILT-TO-FAIL.pdf" target="_blank"&gt;Built to fail? World&amp;rsquo;s largest carbon offset projects unlikely to deliver promised emissions reductions despite reforms&lt;/a&gt;, &lt;/strong&gt;Rachel Rose Jackson and Adrien Tofighi-Niaki, &lt;strong&gt;Corporate Accountability&lt;/strong&gt;&lt;/p&gt;
  293. &lt;blockquote&gt;The authors assess the most recent performance of the largest offset projects that comprise the voluntary carbon market (VCM) to help determine if it is setting the world up for galvanized climate action or exacerbating climate action failure. To do this, they analyze 47 of the largest carbon offset projects in 2024 and explores whether recent attempts to fix repeated failures of the VCM are leading to global emissions reductions.&lt;/blockquote&gt;
  294. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.fern.org/fileadmin/uploads/fern/Documents/2025/Greenwashing_Carbon_Removal.pdf" target="_blank"&gt;Greenwashing Carbon Removal&lt;/a&gt;, &lt;/strong&gt;Fern et al.&lt;/p&gt;
  295. &lt;blockquote&gt;Urgent action is needed to ensure the upcoming EU carbon removal rules for biomass-based activities are cost-effective and do not worsen the climate crisis. Today, 41 NGOs including Fern have sent a briefing to the political leadership of the European Commission, members of the European Parliament and EU Member States to alert them that current draft rules are not fit for purpose. They also suggest remedies.&lt;/blockquote&gt;
  296. &lt;hr /&gt;
  297. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  298. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  299. &lt;h3&gt;Suggestions&lt;/h3&gt;
  300. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  301. &lt;h3&gt;Previous edition&lt;/h3&gt;
  302. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_25.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  303. <link>https://skepticalscience.com/new_research_2025_26.html</link>
  304. <guid>https://skepticalscience.com/new_research_2025_26.html</guid>
  305. <pubDate>Thu, 26 Jun 2025 14:39:14 EST</pubDate>
  306. </item>  <item>
  307. <title>Climate Adam - Silencing Science: Trump's War on Our Climate</title>
  308. <description>&lt;p class="greenbox"&gt;This video includes personal musings and conclusions of the creator climate scientist&amp;nbsp;&lt;a href="https://www.climateadam.co.uk/" target="_blank"&gt;Dr. Adam Levy&lt;/a&gt;. It is presented to our readers as an informed perspective. Please see video description for references (if any).&lt;/p&gt;
  309. &lt;p&gt;Since President Trump took office in January 2025, he's declared war on climate change research. In this video, I speak with three expert scientists, who explain the devastation caused by Trump's attacks on climate researchers, institutions and reports. These assaults aren't just a huge deal in the USA, where they limit our ability to forecast extreme weather disasters. But they'll also affect our ability to be safe from climate extremes the world over - now and in the future.&amp;nbsp;&lt;/p&gt;
  310. &lt;p&gt;Support ClimateAdam on patreon: &lt;a href="https://patreon.com/climateadam/" target="_blank"&gt;https://patreon.com/climateadam&lt;/a&gt;&lt;/p&gt;
  311. &lt;p&gt;&lt;a href="https://www.youtube.com/watch?v=OrcaypKuuZg" target="_blank"&gt;&lt;img src="https://i.ytimg.com/vi/OrcaypKuuZg/hqdefault.jpg" data-pre-sourced="yes" data-sourced="yes" id="image1" data-original="https://i.ytimg.com/vi/OrcaypKuuZg/hqdefault.jpg" data-src="https://i.ytimg.com/vi/OrcaypKuuZg/hqdefault.jpg" alt="YouTube Video" "="" class="" style="max-width: 580px;"&gt;&lt;/a&gt;&lt;/p&gt;
  312. &lt;!--more--&gt;</description>
  313. <link>https://skepticalscience.com/ClimateAdam-silencing-science-trump-war-on-our-climate.html</link>
  314. <guid>https://skepticalscience.com/ClimateAdam-silencing-science-trump-war-on-our-climate.html</guid>
  315. <pubDate>Mon, 23 Jun 2025 10:04:24 EST</pubDate>
  316. </item>  <item>
  317. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #25</title>
  318. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 29 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 15, 2025 thru Sat, June 21, 2025.&lt;/div&gt;
  319. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  320. &lt;p&gt;&lt;strong&gt;Climate Science and Research (6 articles)&lt;/strong&gt;&lt;/p&gt;
  321. &lt;ul&gt;
  322. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.newsweek.com/climate-crisis-evil-twin-coming-marine-life-2084740" target="_blank"&gt;Climate Crisis 'Evil Twin' Is Coming for Marine Life&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Scientists have warned that the planet crossed the global boundary for ocean acidification around the year 2020, according to a new study.&lt;/em&gt; Newsweek, Thomas Westerholm, Jun 16, 2025.&lt;/li&gt;
  323. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.pnas.org/doi/10.1073/pnas.2500829122" target="_blank"&gt;Human influence on climate detectable in the late 19th century&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A new paper describes how humans were influencing Earth's climate by cooling the stratosphere in the late 19th century. &lt;/em&gt; Proceedings of the National Academies of Sciences, Ben Santer et al. , June 16, 2025.&lt;/li&gt;
  324. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-06-planetary-linked-wild-summer-weather.html" target="_blank"&gt;Study finds planetary waves linked to wild summer weather have tripled since 1950&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, Seth Borenstein (AP), Jun 17, 2025.&lt;/li&gt;
  325. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/06/why-imperfect-climate-models-are-more-helpful-than-you-think/" target="_blank"&gt;Why imperfect climate models are more helpful than you think&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Even flawed models are helping scientists unlock new truths about our changing planet. &lt;/em&gt; Yale Climate Connections, Ryan O&amp;rsquo;Loughlin, Jun 17, 2025.&lt;/li&gt;
  326. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/guest-post-why-2024s-global-temperatures-were-unprecedented-but-not-surprising/" target="_blank"&gt;Guest post: Why 2024`s global temperatures were unprecedented, but not surprising&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Human-caused greenhouse gas (GHG) emissions in 2024 continued to drive global warming to record levels.&lt;/em&gt; Carbon Brief, Piers Forster and Debbie Rosen, Jun 18, 2025.&lt;/li&gt;
  327. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_25.html" target="_blank"&gt;Skeptical Science New Research for Week #25 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Our latest listing of research on anthropogenic climate change, how it's changing our lives now, and how we'll deal with the problem we've created. &lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Jun 19, 2025.&lt;/li&gt;
  328. &lt;/ul&gt;
  329. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (6 articles)&lt;/strong&gt;&lt;/p&gt;
  330. &lt;ul&gt;
  331. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://councilonstrategicrisks.org/2025/06/11/what-the-nation-stands-to-lose-without-climate-gov/" target="_blank"&gt;What the Nation Stands to Lose Without climate.gov&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Council on Strategic Risks, Center for Climate and Security, June 11, 2025.&lt;/li&gt;
  332. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/how-trumps-assault-on-science-is-blinding-america-to-climate-change/" target="_blank"&gt;How Trump`s assault on science is blinding America to climate change&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; E&amp;amp;E News, Politico, Scott Waldman, Jun 16, 2025.&lt;/li&gt;
  333. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/17062025/banks-continue-to-back-fossil-fuel-industry/" target="_blank"&gt;The World`s Banks are Still Betting on Fossil Fuel Industry Growth&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The biggest funders of fossil fuel expansion are U.S. banks that, like those in other countries, are retreating on their climate commitments.&lt;/em&gt; Inside Climate News, Georgina Gustin, Jun 17, 2025.&lt;/li&gt;
  334. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.dataforprogress.org/blog/2025/6/17/voters-are-concerned-about-rising-costs-and-think-climate-change-will-financially-affect-them" target="_blank"&gt;Voters Are Concerned About Rising Costs and Think Climate Change Will Financially Affect Them&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;This report illustrates a growing split between US voters and leadership of the federal government on how matters of energy and climate are being handled. &lt;/em&gt; Data For Progress, Brynne Robbins and Elias Kemp, June 17, 2025.&lt;/li&gt;
  335. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/policy/equilibrium-sustainability/5357564-trump-cuts-noaa-nasa-farmers-climate-change-food-supply/" target="_blank"&gt;Trump cuts to NOAA, NASA 'blinding' farmers to risks, scientists warn&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; TheHill.com, Saul Elbein, Jun 18, 2025.&lt;/li&gt;
  336. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/noaas-climate-information-portal-to-go-silent/" target="_blank"&gt;NOAA`s climate information portal to go silent&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The Trump adminstration continues to efficiently generate synthetic ignorance. &lt;/em&gt; E&amp;amp;E, Politico, Daniel Cusick, Jun 18, 2025.&lt;/li&gt;
  337. &lt;/ul&gt;
  338. &lt;!--more--&gt;
  339. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (4 articles)&lt;/strong&gt;&lt;/p&gt;
  340. &lt;ul&gt;
  341. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/iP2lH2EEr9I?si=bzRw8TlU5tptRWOX" target="_blank"&gt;The REAL STORY of Climate Skeptics New Favorite Graph&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Youtube, PBS Terra, May 21, 2025.&lt;/li&gt;
  342. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://journals.ametsoc.org/view/journals/bams/106/5/BAMS-D-24-0212.1.xml" target="_blank"&gt;Warming Stripes Spark Climate Conversations: From the Ocean to the Stratosphere&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The inventors of ''Climate Stripes'' describe how this powerful climate communications tool came to be, and how the signal it captures is visible everywhere in Earth's climate system. &lt;/em&gt; Bulletin of the American Meteorological Society, Ed Hawkins et al. , May 28, 2025.&lt;/li&gt;
  343. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thebrilliant.com/the-scientist-who-paints-the-climate/" target="_blank"&gt;The scientist who paints the climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Brilliant, Sam Illingworth, May 29, 2025.&lt;/li&gt;
  344. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/show-your-stripes-day-2025.html" target="_blank"&gt;Show your Stripes Day on June 21 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler and Doug Bostrom, June 20, 2025.&lt;/li&gt;
  345. &lt;/ul&gt;
  346. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (3 articles)&lt;/strong&gt;&lt;/p&gt;
  347. &lt;ul&gt;
  348. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/Nq2QAVA32NM?si=5mmi4c008-ApxrbD" target="_blank"&gt;re:publica 25: Johan Rockstr&amp;ouml;m - Decisive Decade: From Global Promises to Planetary Action&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; re:publica on Youtube, Johan Rockstr&amp;ouml;m, May 29, 2025.&lt;/li&gt;
  349. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/gallery/2025/jun/15/on-irelands-peat-bogs-climate-action-clashes-with-tradition-in-pictures" target="_blank"&gt;On Ireland`s peat bogs: climate action clashes with tradition - in pictures&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; The Guardian, Photographs by Clodagh Kilcoyne/Reuters, Jun 15, 2025.&lt;/li&gt;
  350. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.business-standard.com/world-news/military-emissions-warfare-carbon-footprint-climate-summits-ignored-125061600852_1.html" target="_blank"&gt;As wars intensify, their carbon toll remains off climate summit agendas&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;From Gaza to Ukraine, the environmental cost of conflict rivals top emitters but is missing from global climate policy and accountability frameworks.&lt;/em&gt; Business Standard, Abhijeet Kumar, Jun 16, 2025.&lt;/li&gt;
  351. &lt;/ul&gt;
  352. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (2 articles)&lt;/strong&gt;&lt;/p&gt;
  353. &lt;ul&gt;
  354. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/jun/19/climate-misinformation-turning-crisis-into-catastrophe-ipie-report" target="_blank"&gt;Climate misinformation turning crisis into catastrophe - major report&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;False claims obstructing climate action, say researchers, amid calls for climate lies to be criminalised&lt;/em&gt; The Guardian, Damian Carrington, Jun 19, 2025.&lt;/li&gt;
  355. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-lia.html" target="_blank"&gt;Fact brief - Is modern warming just a rebound from the Little Ice Age?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, Sue Bin Park, Jun 21, 2025.&lt;/li&gt;
  356. &lt;/ul&gt;
  357. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (2 articles)&lt;/strong&gt;&lt;/p&gt;
  358. &lt;ul&gt;
  359. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/guest-post-how-climate-change-is-fuelling-record-breaking-extreme-weather/" target="_blank"&gt;Guest post: How climate change is fuelling record-breaking extreme weather&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Recent years have seen a rapid succession of climate-related records broken , withuy &lt;/em&gt; Carbon Brief, Carbon Brief Staff, Jun 13, 2025.&lt;/li&gt;
  360. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/jun/18/crop-yields-climate-crisis-adaptation" target="_blank"&gt;Climate crisis could hit yields of key crops even if farmers adapt, study finds&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Production of staple crops projected to fall by as much as 120 calories per person per day for every 1C of heating&lt;/em&gt; The Guardian, Ajit Niranjan, Jun 18, 2025.&lt;/li&gt;
  361. &lt;/ul&gt;
  362. &lt;p&gt;&lt;strong&gt;Miscellaneous (2 articles)&lt;/strong&gt;&lt;/p&gt;
  363. &lt;ul&gt;
  364. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/13062025/agriculture-ethanol-biofuel-policy-climate-failure/" target="_blank"&gt;Biofuels Policy, a Mainstay of American Agriculture, Has Been a Failure for the Climate, a New Report Claims&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A longtime critic of U.S. biofuels says an expansion of biofuels policy under President Donald Trump would lead to more greenhouse gas emissions and fewer food crops.&lt;/em&gt; Inside Climate News, Georgina Gustin, Jun 13, 2025.&lt;/li&gt;
  365. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_24.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #24&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 28 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 8, 2025 thru Sat, June 14, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler &amp;amp; Doug Bostrom, Jun 15, 2025.&lt;/li&gt;
  366. &lt;/ul&gt;
  367. &lt;p&gt;&lt;strong&gt;Climate Law and Justice (1 article)&lt;/strong&gt;&lt;/p&gt;
  368. &lt;ul&gt;
  369. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://blogs.law.columbia.edu/climatechange/2025/06/19/what-lliuya-v-rwe-means-for-climate-change-loss-and-damage-claims/" target="_blank"&gt;What Lliuya v. RWE Means for Climate Change Loss and Damage Claims&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Climate Law Blog, Maxim B&amp;ouml;nnemann and Maria Antonia Tigre, Jun 19, 2025.&lt;/li&gt;
  370. &lt;/ul&gt;
  371. &lt;p&gt;&lt;strong&gt;Health Aspects of Climate Change (1 article)&lt;/strong&gt;&lt;/p&gt;
  372. &lt;ul&gt;
  373. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.medpagetoday.com/opinion/climate-checkup/116118" target="_blank"&gt;Trump Takes Aim at the Climate&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A physician inventories how the US public is being harmed by an administration fostering ignorance of climate risks and inability to defend against climate harms.&lt;/em&gt; MedPageToday.com - medical news for physicians, Roger Hicks, MD, Jun 17, 2025.&lt;/li&gt;
  374. &lt;/ul&gt;
  375. &lt;p&gt;&lt;strong&gt;International Climate Conferences and Agreements (1 article)&lt;/strong&gt;&lt;/p&gt;
  376. &lt;ul&gt;
  377. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/17062025/annual-un-climate-talks-start-without-united-states/" target="_blank"&gt;Global Climate Talks Resumed This Week in Germany, For the First Time in 30 Years Without the United States&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;At a Bonn conference on climate, some participants say there&amp;rsquo;s a chance to make progress with the world&amp;rsquo;s biggest economy, America, no longer in the room.&lt;/em&gt; Inside Climate News, Bob Berwyn, Jun 17, 2025.&lt;/li&gt;
  378. &lt;/ul&gt;
  379. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Solutions (1 article)&lt;/strong&gt;&lt;/p&gt;
  380. &lt;ul&gt;
  381. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://sks.to/evweather" target="_blank"&gt;What is the effect of hot or cold water on EVs?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Sabin Rebuttal #33 answering the question "What is the effect of hot or cold weather on EVs?&lt;/em&gt; Septical Science, Sabin Climate Team, June 17, 2025.&lt;/li&gt;
  382. &lt;/ul&gt;
  383. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  384. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_25.html</link>
  385. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_25.html</guid>
  386. <pubDate>Sun, 22 Jun 2025 10:59:39 EST</pubDate>
  387. </item>  <item>
  388. <title>Fact brief - Is modern warming just a rebound from the Little Ice Age?</title>
  389. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  390. &lt;h3&gt;Is modern warming just a rebound from the Little Ice Age?&lt;/h3&gt;
  391. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-No-200px.jpg" alt="No" width="200" height="59" /&gt;Global temperatures are warmer today than immediately before the Little Ice Age.&lt;/p&gt;
  392. &lt;p&gt;The Little Ice Age was a regional cooling phenomenon caused by internal forcings that mostly moved heat around within Earth&amp;rsquo;s climate system.&lt;/p&gt;
  393. &lt;p&gt;This event affected North America and Europe from 1350 to 1850. While external forcings like volcanic eruptions and decreased solar activity occurred, it was a massive export of Arctic sea ice into the North Atlantic by warm currents that disrupted ocean circulation and triggered prolonged regional cooling.&lt;/p&gt;
  394. &lt;p&gt;The end of the Little Ice Age coincided with rising solar output and industrial greenhouse gas emissions. However, since the 1950s, solar activity has declined while global temperatures have increased.&lt;/p&gt;
  395. &lt;p&gt;Today&amp;rsquo;s warming is driven by human emissions, increasing the amount of heat in the system rather than redistributing it.&lt;/p&gt;
  396. &lt;p&gt;The late 20th century is the warmest interval in the last 2,000 years for over 98% of the globe.&lt;/p&gt;
  397. &lt;p&gt;&lt;a href="https://sks.to/lia" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/is-modern-warming-just-a-rebound-from-the-little-ice-age/" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  398. &lt;hr /&gt;
  399. &lt;p&gt;This fact brief is responsive to quotes such as &lt;a href="https://web.archive.org/web/20150318141729/http://climaterealists.com/index.php?id=3910" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  400. &lt;hr /&gt;
  401. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  402. &lt;p&gt;University of Massachusetts&amp;nbsp;&lt;a href="https://www.umass.edu/news/article/winter-coming-researchers-uncover-surprising-cause-little-ice-age" target="_blank"&gt;Winter Is Coming: Researchers Uncover the Surprising Cause of the Little Ice Age&lt;/a&gt;&lt;/p&gt;
  403. &lt;p&gt;Eos&amp;nbsp;&lt;a href="https://eos.org/articles/the-little-ice-age-wasnt-global-but-current-climate-change-is" target="_blank"&gt;The Little Ice Age Wasn&amp;rsquo;t Global, but Current Climate Change Is&lt;/a&gt;&lt;/p&gt;
  404. &lt;p&gt;Journal of Geophysical Research&amp;nbsp;&lt;a href="https://climate.envsci.rutgers.edu/pdf/FreeRobock1999JD900233.pdf" target="_blank"&gt;Global warming in the context of the Little Ice Age&lt;/a&gt;&lt;/p&gt;
  405. &lt;p&gt;Salon&amp;nbsp;&lt;a href="https://www.salon.com/2023/08/07/what-climate-change-deniers-get-totally-about-the-little-ice-age/" target="_blank"&gt;What climate change deniers get totally wrong about the Little Ice Age&lt;/a&gt;&lt;/p&gt;
  406. &lt;p&gt;Science&amp;nbsp;&lt;a href="https://www.meteo.psu.edu/holocene/public_html/shared/articles/MannetalScience09.pdf" target="_blank"&gt;Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly&lt;/a&gt;&lt;/p&gt;
  407. &lt;p&gt;Nature&amp;nbsp;&lt;a href="https://www.nature.com/articles/s41586-019-1401-2" target="_blank"&gt;No evidence for globally coherent warm and cold periods over the preindustrial Common Era&lt;/a&gt;&lt;/p&gt;
  408. &lt;!--more--&gt;
  409. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer "yes/no" answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://gigafact.org/skeptical-science" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  410. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact Quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  411. <link>https://skepticalscience.com/fact-brief-lia.html</link>
  412. <guid>https://skepticalscience.com/fact-brief-lia.html</guid>
  413. <pubDate>Sat, 21 Jun 2025 10:14:28 EST</pubDate>
  414. </item>  <item>
  415. <title>Show your Stripes Day on June 21 2025</title>
  416. <description>&lt;p&gt;Every year on 21st June we encourage everyone to participate in "&lt;a href="https://www.reading.ac.uk/planet/events/show-your-stripes-day" target="_blank"&gt;Show your Stripes Day&lt;/a&gt;" to start conversations about climate risks and solutions. Springboarding from a crocheted blanket created by fellow University of Reading professor Ellie Highwood, the "warming stripes" graphic was created in 2018 by&amp;nbsp;&lt;a href="https://edhawkins.org/" target="_blank"&gt;Prof. Ed Hawkins&lt;/a&gt;,&amp;nbsp;who explains the visualization's purpose in this video:&lt;/p&gt;
  417. &lt;p&gt;&lt;a href="https://www.youtube.com/watch?v=hM6tOrh-0NQ" target="_blank"&gt;&lt;img src="https://i.ytimg.com/vi/hM6tOrh-0NQ/hqdefault.jpg" data-pre-sourced="yes" data-sourced="yes" id="image1" data-original="https://i.ytimg.com/vi/hM6tOrh-0NQ/hqdefault.jpg" data-src="https://i.ytimg.com/vi/hM6tOrh-0NQ/hqdefault.jpg" alt="YouTube Video" "="" class="" style="max-width: 580px;"&gt;&lt;/a&gt;&lt;/p&gt;
  418. &lt;p&gt;The "warming stripes" have been embraced around the world as a clear and vivid representation of how the climate is changing--&amp;nbsp;&lt;em&gt;&lt;strong&gt;a powerful appeal to urgency in addressing our climate crisis.&lt;/strong&gt;&lt;/em&gt;&lt;/p&gt;
  419. &lt;p&gt;From the &lt;a href="https://www.reading.ac.uk/planet/events/show-your-stripes-day" target="_blank"&gt;website of the University of Reading&lt;/a&gt;:&lt;/p&gt;
  420. &lt;blockquote&gt;
  421. &lt;p&gt;&lt;strong&gt;What is Show Your Stripes Day?&lt;/strong&gt;&lt;/p&gt;
  422. &lt;p&gt;Show Your Stripes Day is a global moment to share our concern about how the climate is changing and the need for urgent action.&lt;/p&gt;
  423. &lt;p&gt;We ask everyone to share the famous &amp;ldquo;warming stripes&amp;rdquo;, a powerful visual representation of how temperatures have increased around the world since the industrial revolution.&amp;nbsp; Created by climate scientist Professor Ed Hawkins at the University of Reading, each stripe represents one year. The colours transition from cool blues to warm reds to represent the increases in temperature seen throughout the past 150 years or more.&lt;/p&gt;
  424. &lt;p&gt;On 21 June we call on individuals, businesses, and cities around the world to highlight their local climate stripes and share the powerful message they convey.&lt;/p&gt;
  425. &lt;p&gt;&lt;strong&gt;Why is it important?&lt;/strong&gt;&lt;/p&gt;
  426. &lt;p&gt;Show Your Stripes Day provides a simple, yet impactful way to communicate the reality of climate change. By condensing decades of temperature data into a series of recognisable stripes, it makes understanding global warming accessible to all, from being able to recreate the stripes in schools, to sharing local stripes across social media.&lt;/p&gt;
  427. &lt;p&gt;The stripes have also been important for striking up global conversations. In the past, on this day, they have been displayed in a wide range of prominent public spaces, from Times Square, New York, to the While Cliffs of Dover, UK. By displaying the stripes in locations worldwide, people have been inspired to download and share the stripes online and help spread their message.&lt;/p&gt;
  428. &lt;p&gt;2024 was the warmest year on record globally.&amp;nbsp; Extreme weather events continue to be seen more frequently around the world. Never has the need to address climate change been more urgent.&lt;/p&gt;
  429. &lt;/blockquote&gt;
  430. &lt;!--more--&gt;
  431. &lt;p&gt;&lt;a href="https://showyourstripes.info/" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/WarmingStripes-Globe-1850-2024-MO-570px.png" alt="Warming stripes - Globe - 1850-2024" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;
  432. &lt;p&gt;&lt;em&gt;Fig 1.: Warming stripes global for 1850 to 2024 (&lt;a href="https://showyourstripes.info/" target="_blank"&gt;source&lt;/a&gt;)&lt;/em&gt;&lt;/p&gt;
  433. &lt;p&gt;Learn more about Ed Hawkins and his work in the article&amp;nbsp;&lt;a href="https://thebrilliant.com/the-scientist-who-paints-the-climate/" target="_blank"&gt;The scientist who paints the climate&lt;/a&gt;&amp;nbsp;written by Sam Illingworth and published in TheBrilliant on May 29.&lt;/p&gt;
  434. &lt;p&gt;Prof. Hawkins and couthors (including Highwood!) extend the stripes concept by singling out particular features of Earth's climate system in their recent paper&amp;nbsp;&lt;a href="https://journals.ametsoc.org/view/journals/bams/106/5/BAMS-D-24-0212.1.xml" target="_blank"&gt;Warming Stripes Spark Climate Conversations: From the Ocean to the Stratosphere&lt;/a&gt;, published in the &lt;em&gt;Bulletin of the American Meteorological Society.&lt;/em&gt; In a nutshell, from the depths of the ocean to the heights of the stratosphere we see the same pattern. It's a wonderful example of&amp;nbsp;&lt;a href="https://en.wikipedia.org/wiki/Consilience" target="_blank"&gt;consilience&lt;/a&gt; in action and plain sight. It also shows how the upper atmosphere cools, a clear fingerprint for human-caused global warming.&lt;/p&gt;
  435. &lt;p&gt;&lt;a href="https://skepticalscience.com/pics/WarmingStripes-ocean-land-atmosphere-2024-BAMS-1024px.jpg" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/WarmingStripes-ocean-land-atmosphere-2024-BAMS-570px.jpg" alt="Warming stripes for the surface and ocean depths (1960&amp;ndash;2024) and for different layers of the atmosphere (1979&amp;ndash;2024)." width="570" height="570" /&gt;&lt;/a&gt;&lt;/p&gt;
  436. &lt;p&gt;&lt;em&gt;Fig. 2.&amp;nbsp;Warming stripes for the surface and ocean depths (1960&amp;ndash;2024) and for different layers of the atmosphere (1979&amp;ndash;2024). Anomalies relative to the 1981&amp;ndash;2010 period are shown, with different color scales for the atmosphere, upper ocean, and deeper ocean, with these layers separated by the gray horizontal lines. The global surface temperature data are from HadCRUT5. Global average temperatures for tropospheric layers are from RSS, with stratospheric layer global temperatures updated from Steiner et al. (2020). Ocean data are from Met Office Statistical Ocean Reanalysis (MOSORA) (Smith &amp;amp; Murphy 2007), globally averaged for different depth levels.&amp;nbsp;Bulletin of the American Meteorological Society 106, 5;&amp;nbsp;&lt;a href="https://doi.org/10.1175/BAMS-D-24-0212.1" target="_blank"&gt;10.1175/BAMS-D-24-0212.1&lt;/a&gt;&lt;/em&gt;&lt;/p&gt;
  437. &lt;p class="bluebox"&gt;Download and share the stripes, including versions for countries and cities around the world, at&amp;nbsp;&lt;a href="https://www.showyourstripes.info" target="_blank"&gt;www.showyourstripes.info&lt;/a&gt;. Get ideas of how to make good use of the image(s) as an &lt;a href="https://www.reading.ac.uk/planet/events/show-your-stripes-day/individuals" target="_blank"&gt;individual&lt;/a&gt;, &lt;a href="https://www.reading.ac.uk/planet/events/show-your-stripes-day/schools" target="_blank"&gt;school&lt;/a&gt;l or &lt;a href="https://www.reading.ac.uk/planet/events/show-your-stripes-day/organisations" target="_blank"&gt;organisation&lt;/a&gt;.&lt;/p&gt;
  438. &lt;p&gt;&amp;nbsp;&lt;/p&gt;</description>
  439. <link>https://skepticalscience.com/show-your-stripes-day-2025.html</link>
  440. <guid>https://skepticalscience.com/show-your-stripes-day-2025.html</guid>
  441. <pubDate>Fri, 20 Jun 2025 10:53:05 EST</pubDate>
  442. </item>  <item>
  443. <title>Skeptical Science New Research for Week #25 2025</title>
  444. <description>&lt;h3&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/strong&gt;&lt;/span&gt;&lt;/span&gt;&lt;/h3&gt;
  445. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1073/pnas.2500829122" target="_blank"&gt;Human influence on climate detectable in the late 19th century&lt;/a&gt;&lt;/strong&gt;, Santer et al.,&amp;nbsp;&lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  446. &lt;blockquote&gt;
  447. &lt;p&gt;&lt;em&gt;When could scientists have first known that fossil fuel burning was significantly altering global climate? We attempt to answer this question by performing a thought experiment with model simulations of historical climate change. We assume that the capability to monitor global-scale changes in atmospheric temperature existed as early as 1860 and that the instruments available in this hypothetical world had the same accuracy as today&amp;rsquo;s satellite-borne microwave radiometers. We then apply a pattern-based &amp;ldquo;fingerprint&amp;rdquo; method to disentangle human and natural effects on climate. A human-caused stratospheric cooling signal would have been identifiable by approximately 1885, before the advent of gas-powered cars. Our results suggest that a discernible human influence on atmospheric temperature has likely existed for over 130 y.&lt;/em&gt;&lt;/p&gt;
  448. &lt;/blockquote&gt;
  449. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02326-w" target="_blank"&gt;Facebook algorithm&amp;rsquo;s active role in climate advertisement delivery&lt;/a&gt;&lt;/strong&gt;, Sankaranarayanan et al.,&amp;nbsp;&lt;em&gt;Nature Climate Change&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  450. &lt;blockquote&gt;
  451. &lt;p&gt;&lt;em&gt;Climate advertising on social media can shape attitudes towards climate change. Delivery algorithms, as key actors in the climate communication ecosystem, determine ad audience selection and might introduce demographic bias. Here, we present a two-part study&amp;mdash;an observational analysis (n&amp;thinsp;=&amp;thinsp;253,125) and a field experiment (M&amp;thinsp;=&amp;thinsp;650)&amp;mdash;to investigate algorithmic bias in Facebook&amp;rsquo;s climate ad dissemination. Our findings provide preliminary evidence that the algorithm&amp;rsquo;s selection of ad audiences can be explained by factors such as ad content, audience location (US states), gender and age group. Moreover, the cost-effectiveness of contrarian ads is linked with the conservative political alignment of a state, while the cost-effectiveness of advocacy ads correlates with liberal political alignment, higher population and per-capita gross domestic product; ad targeting strategies further modulate these effects. The skew in the distribution of climate ads across US states, age groups and genders reinforces existing climate attitudes.&lt;/em&gt;&lt;/p&gt;
  452. &lt;/blockquote&gt;
  453. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://www.sciencedirect.com/science/article/pii/S0272494425001239" target="_blank"&gt;Political differences in climate change knowledge and their association with climate attitudes, behavior, and policy support&lt;/a&gt;&lt;/strong&gt;, Stockus and Zell,&amp;nbsp;&lt;em&gt;Journal of Environmental Psychology&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  454. &lt;blockquote&gt;
  455. &lt;p&gt;&lt;em&gt;Liberals are more likely to believe that climate change is a serious matter that requires immediate action than conservatives. Nonetheless, little is known about why this political difference in attitudes occurs. We tested whether liberals have superior knowledge about climate change than conservatives and whether political differences in knowledge are associated with climate attitudes (total&amp;nbsp;N&amp;nbsp;=&amp;nbsp;649, Prolific). In a U.S. sample, Study 1 found that Democrats had better knowledge about climate change than Republicans. Additionally, there was an indirect association of political party with climate attitudes and support for climate policies through knowledge. Study 2 replicated these findings and found a similar indirect association with climate change mitigation behaviors. Study 3 partially replicated the above effects in the UK. Although limited by use of cross-sectional designs, these data suggest that knowledge about climate change is associated with political differences in climate attitudes, behavior, and policy support.&lt;/em&gt;&amp;nbsp;&lt;/p&gt;
  456. &lt;/blockquote&gt;
  457. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1126/sciadv.adu7743" target="_blank"&gt;How media competition fuels the spread of misinformation&lt;/a&gt;&lt;/strong&gt;, Amini et al.,&amp;nbsp;&lt;em&gt;Science Advances&lt;/em&gt;&lt;/p&gt;
  458. &lt;blockquote&gt;
  459. &lt;p&gt;&lt;em&gt;Competition among news sources over public opinion can incentivize them to resort to misinformation. Sharing misinformation may lead to a short-term gain in audience engagement but ultimately damages the credibility of the source, resulting in a loss of audience. To understand the rationale behind news sources sharing misinformation, we model the competition between sources as a zero-sum sequential game, where news sources decide whether to share factual information or misinformation. Each source influences individuals based on their credibility, the veracity of the article, and the individual&amp;rsquo;s characteristics. We analyze this game through the concept of quantal response equilibrium, which accounts for the bounded rationality of human decision-making. The analysis shows that the resulting equilibria reproduce the credibility-opinion distribution of real-world news sources, with hyperpartisan sources spreading the majority of misinformation. Our findings provide insights for policymakers to mitigate the spread of misinformation and promote a more factual information landscape.&lt;/em&gt;&amp;nbsp;&lt;/p&gt;
  460. &lt;/blockquote&gt;
  461. &lt;h3&gt;From this week's government/NGO&amp;nbsp;&lt;a href="#gov-ngo"&gt;section:&lt;/a&gt;&lt;/h3&gt;
  462. &lt;p&gt;[By chance this edition's collection includes a group of reports particularly indicative of general and significant misalignment between priorities of politicians versus the people they serve.]&lt;/p&gt;
  463. &lt;p&gt;&lt;strong&gt;&lt;a href="https://climatecommunication.yale.edu/wp-content/uploads/2025/06/climate-change-american-mind-politics-policy-spring-2025c.pdf" target="_blank"&gt;Climate Change in the American Mind: Politics &amp;amp; Policy, Spring 2025&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Leiserowitz et al.,&amp;nbsp;&lt;strong&gt;Yale University and George Mason University&lt;/strong&gt;&lt;/p&gt;
  464. &lt;blockquote&gt;This report is based on findings from a nationally representative survey. Interview dates: May 1 -12, 2025. Interviews: 1,040 adults (18+), 915 of whom are registered to vote. Average margin of error for registered voters: +/- 3 percentage points at the 95% confidence level. 52% of registered voters think global warming should be a high or very high priority for the president and Congress. 64% of registered voters think developing sources of clean energy should be a high or very high priority for the president and Congress. Majorities of registered voters support a range of policies to reduce carbon pollution and promote clean energy. These include, 88% support federal funding to help farmers improve practices to protect and restore the soil so it absorbs and stores more carbon; 80% support funding more research into renewable energy sources; 75% support regulating carbon dioxide as a pollutant; 71% support tax credits or rebates to encourage people to buy electric appliances, such as heat pumps and induction stoves; 67% support transitioning the U.S. economy from fossil fuels to 100% clean energy by 2050 ; and 63% support requiring fossil fuel companies to pay for the damages caused by global warming.&lt;/blockquote&gt;
  465. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.iag.co.nz/newsroom/news-releases/climate-change-poll-2025" target="_blank"&gt;New Zealand at climate change crossroads&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;AMI, State and NZI,&amp;nbsp;&lt;strong&gt;IAG New Zealand&lt;/strong&gt;&lt;/p&gt;
  466. &lt;blockquote&gt;New Zealanders are expecting more extreme weather events as a result of climate change. They want more to be done to reduce the risks and costs of these events to help keep insurance affordable and available. 90% of New Zealanders anticipate more extreme storms, 89% foresee more frequent and intense flooding, and 88% expect coastal flooding due to rising sea levels. As New Zealanders brace for a future shaped by more frequent and severe climate events, many expect the cost of these events to be reflected in insurance premiums.&lt;/blockquote&gt;
  467. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.dataforprogress.org/blog/2025/6/17/voters-are-concerned-about-rising-costs-and-think-climate-change-will-financially-affect-them" target="_blank"&gt;Voters Are Concerned About Rising Costs and Think Climate Change Will Financially Affect Them&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Brynne Robbins and Elias Kemp,&amp;nbsp;&lt;strong&gt;Data for Progress&lt;/strong&gt;&lt;/p&gt;
  468. &lt;blockquote&gt;Voters nearly universally believe that energy and environmental issues are important to address. This holds across party lines: 95% of Democrats, 94% of Independents, and 88% of Republicans indicate that energy and environmental issues are either important or a top priority to them. However, the degree of importance varies significantly with party affiliation. Nearly half (49%) of Democrats say energy and environmental issues are a top priority, while only a third (33%) of Independents and just under a quarter (23%) of Republicans feel the same. When asked whether they believe climate change will have a direct financial impact on them and their family, a majority (58%) of likely voters say it will impact them either greatly or somewhat. Democrats most commonly believe this, with 73% saying that they will be either greatly or somewhat impacted, while only 41% of Republicans believe the same. Just 52% of white voters predict they&amp;rsquo;ll be impacted, compared with 64% of Black voters and 73% of Latino voters. Women (62%), voters under 45 (66%), and voters with a college degree (60%) also predict greater financial impact.&lt;/blockquote&gt;
  469. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cleanenergycanada.org/poll-two-thirds-of-canadians-favour-developing-clean-energy-over-fossil-fuels-while-85-wish-to-maintain-or-increase-federal-climate-action/" target="_blank"&gt;Two-thirds of Canadians favour developing clean energy over fossil fuels, while 85% wish to maintain or increase federal climate action&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Abacus Data,&amp;nbsp;&lt;strong&gt;Clean Energy Canada&lt;/strong&gt;&lt;/p&gt;
  470. &lt;blockquote&gt;Two-thirds of Canadians say they would prioritize clean over conventional energy. Specifically, 67% of respondents say that, assuming both were priorities, they would generally favor clean energy projects such as critical minerals, renewable power and transmission, and energy storage. The remaining 33% would prefer conventional fossil fuel projects like oil and gas, including LNG development. Asked how crucial the two energy sectors will be to the Canadian economy over the next decade, 87% say clean energy will be very (45%) or pretty (42%) important, while 83% say fossil fuels will be very (36%) or pretty (47%) important. In other words, the four-point advantage for clean energy increases to nine points among those who see at least one of these sectors as &amp;ldquo;very important.&amp;rdquo;&lt;/blockquote&gt;
  471. &lt;h3 style="text-align: left;"&gt;156 articles in 66 journals by 932 contributing authors&lt;/h3&gt;
  472. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  473. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2425445122" target="_blank"&gt;Observation-based estimate of Earth&amp;rsquo;s effective radiative forcing&lt;/a&gt;, Van Loon et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2425445122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2425445122&lt;/p&gt;
  474. &lt;!--more--&gt;
  475. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  476. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd042218" target="_blank"&gt;Assessing Climate Change Impacts on the March 2024 Compound Floods and Saharan Dust Outbreak in Europe&lt;/a&gt;, Pons et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd042218" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd042218&lt;/p&gt;
  477. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl114870" target="_blank"&gt;Detectable Anthropogenic Influence in Mean Precipitation of China&lt;/a&gt;, Wang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl114870" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl114870&lt;/p&gt;
  478. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116445" target="_blank"&gt;Impact of Increasing Greenhouse Gases on the Ionosphere and Thermosphere Response to a May 2024-Like Geomagnetic Superstorm&lt;/a&gt;, Pedatella et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116445" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116445&lt;/p&gt;
  479. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  480. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.rse.2025.114816" target="_blank"&gt;Arctic and Antarctic Surface Temperatures from AVHRR thermal Infrared satellite sensors 1982&amp;ndash;2023&lt;/a&gt;, Kolbe et al., &lt;em&gt;Remote Sensing of Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.rse.2025.114816" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.rse.2025.114816&lt;/p&gt;
  481. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd041295" target="_blank"&gt;Construction of Temperature Climate Data Records in the Upper Troposphere and Lower Stratosphere Using Multiple RO Missions From September 2006 to July 2023 at NESDIS/STAR&lt;/a&gt;, Zhou et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd041295" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd041295&lt;/p&gt;
  482. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-299" target="_blank"&gt;Global Scenario Reference Datasets for Climate Change Integrated Assessment with Machine Learning&lt;/a&gt;, Wei et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-299&lt;/p&gt;
  483. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.004" target="_blank"&gt;Rapid attribution prototype for extreme high temperature events in China&lt;/a&gt;, SUN et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.004" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.004&lt;/p&gt;
  484. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102494" target="_blank"&gt;Temperature magnitude duration frequency curves to unravel temperature extremes incorporating climate change across India&lt;/a&gt;, Rahman &amp;amp; Pekkat, &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102494&lt;/p&gt;
  485. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  486. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0453.1" target="_blank"&gt;A Decomposition of the Key Drivers of Current and Future Northern Hemisphere Cyclone-Associated Precipitation Trends&lt;/a&gt;, Crawford et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0453.1&lt;/p&gt;
  487. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100781" target="_blank"&gt;A pseudo global warming based system to study how climate change affects high impact rainfall events&lt;/a&gt;, Lenderink et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; 10.1016/j.wace.2025.100781&lt;/p&gt;
  488. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl114611" target="_blank"&gt;European Temperature Extremes Under Different AMOC Scenarios in the Community Earth System Model&lt;/a&gt;, van Westen &amp;amp; Baatsen, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl114611" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl114611&lt;/p&gt;
  489. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025ef006486" target="_blank"&gt;Global Heatwaves Dynamics Under Climate Change Scenarios: Multidimensional Drivers and Cascading Impacts&lt;/a&gt;, Adeyeri et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025ef006486" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025ef006486&lt;/p&gt;
  490. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.21203/rs.3.rs-4711323/v1" target="_blank"&gt;More extreme summertime North Atlantic Oscillation under climate change&lt;/a&gt;, Liu et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://www.researchsquare.com/article/rs" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.researchsquare.com/article/rs-4711323/latest.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.21203/rs.3.rs-4711323/v1&lt;/p&gt;
  491. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043676" target="_blank"&gt;Muted Radiative Feedback of Stratospheric Water Vapor Found in a Multimodel Assessment&lt;/a&gt;, He &amp;amp; Huang, &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jd043676" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd043676&lt;/p&gt;
  492. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8929" target="_blank"&gt;Projection of Temperatures and Precipitation Using the LARS-WG Model in Eastern China Under the CMIP6 Scenarios&lt;/a&gt;, Disasa et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8929&lt;/p&gt;
  493. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adw5917" target="_blank"&gt;Resolving electron partial waves in multiphoton ionization of molecules&lt;/a&gt;, Gong et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.adw5917" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.adw5917&lt;/p&gt;
  494. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  495. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100785" target="_blank"&gt;A hybrid statistical-dynamical method to translate past extreme temperature days into the future climate&lt;/a&gt;, Bo&amp;eacute; et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.wace.2025.100785" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.wace.2025.100785&lt;/p&gt;
  496. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-1468" target="_blank"&gt;AdriE: a high-resolution ocean model ensemble for the Adriatic Sea under severe climate change conditions&lt;/a&gt;, Bonaldo et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/os" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-1468&lt;/p&gt;
  497. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  498. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114203" target="_blank"&gt;Decomposing the Bias of Shortwave Cloud Radiative Effect in a Climate Model Using Machine Learning&lt;/a&gt;, Yang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114203" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114203&lt;/p&gt;
  499. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043566" target="_blank"&gt;Evaluating ERA5 Downscaled Simulations Using CCAM: Large-Scale Circulation Processes and Teleconnections&lt;/a&gt;, Ma et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025jd043566" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025jd043566&lt;/p&gt;
  500. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02350-w" target="_blank"&gt;Exploring climate futures with deep learning&lt;/a&gt;, Al Khourdajie, &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02350-w&lt;/p&gt;
  501. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02426-7" target="_blank"&gt;Large biases in the frequency of water limitation across Earth system models&lt;/a&gt;, Giardina et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02426-7&lt;/p&gt;
  502. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd043551" target="_blank"&gt;Overestimation of Interannual Temperature Variability Over China by CMIP6 Simulations: The Role of Snow Cover and Cloud Representation&lt;/a&gt;, Wang et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2025jd043551&lt;/p&gt;
  503. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/asl.1307" target="_blank"&gt;Processes Underlying the Year-To-Year Fluctuations of the Global Mean Surface Temperature&lt;/a&gt;, Jiang et al., &lt;em&gt;Atmospheric Science Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/asl.1307" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/asl.1307&lt;/p&gt;
  504. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd042501" target="_blank"&gt;Response of QBO Bias to Convection Scheme in an AGCM&lt;/a&gt;, Baba &amp;amp; Watanabe, &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd042501" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd042501&lt;/p&gt;
  505. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114507" target="_blank"&gt;Understanding the Biases in Daily Extreme Precipitation Climatology in CMIP6 Models&lt;/a&gt;, Chen et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114507" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114507&lt;/p&gt;
  506. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0506.1" target="_blank"&gt;Understanding the Uncertainty in the West African Monsoon Precipitation Response to Increasing CO2&lt;/a&gt;, Mutton et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0506.1&lt;/p&gt;
  507. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  508. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1017/jog.2025.10060" target="_blank"&gt;In a sea of crumbling icebergs&lt;/a&gt;, WOLF-GLADROW et al., &lt;em&gt;Journal of Glaciology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1017/jog.2025.10060" target="_blank"&gt; Open Access&lt;/a&gt; 10.1017/jog.2025.10060&lt;/p&gt;
  509. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01699-z" target="_blank"&gt;Sustained decrease in inland East Antarctic surface mass balance between 2005 and 2020&lt;/a&gt;, Wang et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01699-z&lt;/p&gt;
  510. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  511. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jc022100" target="_blank"&gt;Diagnosing Regional Sea Level Change Over the Altimeter Era&lt;/a&gt;, Karnauskas et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; 10.1029/2024jc022100&lt;/p&gt;
  512. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1552834" target="_blank"&gt;Forecasting sea level rise using enhanced deep learning models&lt;/a&gt;, Zitouni et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1552834" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1552834&lt;/p&gt;
  513. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  514. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02440-9" target="_blank"&gt;High Arctic Lake sediments show that Heinrich Event 2 was preceded by summer warming&lt;/a&gt;, van der Bilt et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02440-9&lt;/p&gt;
  515. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2500829122" target="_blank"&gt;Human influence on climate detectable in the late 19th century&lt;/a&gt;, Santer et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2500829122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2500829122&lt;/p&gt;
  516. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-24-0410.1" target="_blank"&gt;Mid-Pliocene Climate Forcing, Sea Surface Temperature Patterns, and Implications for Modern-Day Climate Sensitivity&lt;/a&gt;, Dvorak et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-24-0410.1&lt;/p&gt;
  517. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025pa005133" target="_blank"&gt;Pacific Highs: A Treasure Trove of Past Warm Climate Archives&lt;/a&gt;, et al., &lt;em&gt;Paleoceanography and Paleoclimatology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025pa005133" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025pa005133&lt;/p&gt;
  518. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104941" target="_blank"&gt;Tropical circulation shifts and regional climate impacts: Comparing mid-Piacenzian warmth and future warming (SSP2&amp;ndash;4.5)&lt;/a&gt;, Zhang et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104941&lt;/p&gt;
  519. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  520. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110644" target="_blank"&gt;A single-tree approach to determine climate-growth patterns of European beech and their seasonality in the species southern distribution area&lt;/a&gt;, Serrano-Notivoli et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110644" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110644&lt;/p&gt;
  521. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70256" target="_blank"&gt;Biogeographical Regions and Climate Change: Lanternfishes Shed Light on the Role of Climatic Barriers in the Southern Ocean&lt;/a&gt;, Rintz et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70256" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70256&lt;/p&gt;
  522. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110646" target="_blank"&gt;Capacity of a forest to buffer temperature: Does canopy tree species matter?&lt;/a&gt;, Perot et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110646" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110646&lt;/p&gt;
  523. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70285" target="_blank"&gt;Cell-Size-Dependent Responses of Bacterial Communities to Warming in the Alpine Grasslands of the Qinghai-Tibet Plateau&lt;/a&gt;, Liu et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70285&lt;/p&gt;
  524. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ddi.70036" target="_blank"&gt;Contrasting Species Distribution Model Predictability Under Novel Temperature Conditions&lt;/a&gt;, Allyn et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/ddi.70036" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/ddi.70036&lt;/p&gt;
  525. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/1365-2745.70081" target="_blank"&gt;Decoupling of plant nitrogen and phosphorus under global change over the last two decades&lt;/a&gt;, Hong et al., &lt;em&gt;Journal of Ecology&lt;/em&gt; 10.1111/1365-2745.70081&lt;/p&gt;
  526. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/bor.70017" target="_blank"&gt;Drastic peatland regime shift and landscape disturbances connected to warm and cold climate events over the past centuries in subarctic Finland&lt;/a&gt;, Piilo et al., &lt;em&gt;Boreas&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/bor.70017" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/bor.70017&lt;/p&gt;
  527. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02356-4" target="_blank"&gt;Future climate-driven fires may boost ocean productivity in the iron-limited North Atlantic&lt;/a&gt;, Bergas-Masso et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02356-4&lt;/p&gt;
  528. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126329" target="_blank"&gt;Geographic variability of the climate response of Scots pine (&lt;em&gt;Pinus sylvestris&lt;/em&gt; L.) radial growth in the Middle Urals&lt;/a&gt;, Devi et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; 10.1016/j.dendro.2025.126329&lt;/p&gt;
  529. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rspb.2025.0245" target="_blank"&gt;Heterogeneous trait responses of P&amp;aacute;ramo plant species and community to experimental warming&lt;/a&gt;, Tovar et al., &lt;em&gt;Proceedings of the Royal Society B: Biological Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rspb.2025.0245" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rspb.2025.0245&lt;/p&gt;
  530. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10661-025-14233-w" target="_blank"&gt;Long-term vegetation dynamics in Spain&amp;rsquo;s National Park Network: insights from remote sensing data&lt;/a&gt;, Franquesa et al., &lt;em&gt;Environmental Monitoring and Assessment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s10661" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s10661-025-14233-w&lt;/p&gt;
  531. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ele.70143" target="_blank"&gt;Negative Impacts of Global Change Stressors Permeate Into Deep Soils&lt;/a&gt;, Wen et al., &lt;em&gt;Ecology Letters&lt;/em&gt; 10.1111/ele.70143&lt;/p&gt;
  532. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110604" target="_blank"&gt;Opposite effects of temperature and precipitation on vegetation growth onset in Africa&lt;/a&gt;, Shi et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110604" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110604&lt;/p&gt;
  533. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/cobi.70080" target="_blank"&gt;Predictions of southern migration timing in coastal sharks under future ocean warming&lt;/a&gt;, Manz et al., &lt;em&gt;Conservation Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/cobi.70080" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/cobi.70080&lt;/p&gt;
  534. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116509" target="_blank"&gt;Rising Trends in Winter Phytoplankton Blooms in the Northern Arabian Sea Over the Last Two Decades: Drivers and Implications&lt;/a&gt;, Song et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116509" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116509&lt;/p&gt;
  535. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70293" target="_blank"&gt;Robust Conservation Planning for Biodiversity Under Climate Change Uncertainty&lt;/a&gt;, Rutschmann et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70293&lt;/p&gt;
  536. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecog.07801" target="_blank"&gt;Shape-shifting in relative wing length of juvenile shorebirds: no evidence of developmental temperatures driving morphological changes&lt;/a&gt;, Ryding et al., &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecog.07801" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecog.07801&lt;/p&gt;
  537. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110685" target="_blank"&gt;Stability and transferability of broadly trained phenology models in a changing climate&lt;/a&gt;, Spafford et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110685" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110685&lt;/p&gt;
  538. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71539" target="_blank"&gt;The Greater the Tilt, the Taller the Nest? The Effect of Solar Array Type on Bird Nest Architecture and Nest Microclimate&lt;/a&gt;, Enochs et al., &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71539" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71539&lt;/p&gt;
  539. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70289" target="_blank"&gt;Up High, Hot and Dry: Individual Reproductive Output in Subalpine Bees Declines With Increasing Drought Severity&lt;/a&gt;, Wong et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70289" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70289&lt;/p&gt;
  540. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110681" target="_blank"&gt;Warming temperatures and decreasing soil moisture are increasing tree mortality in mature Douglas-fir forests of western Oregon, USA&lt;/a&gt;, Cline et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110681&lt;/p&gt;
  541. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  542. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-17-2553-2025" target="_blank"&gt;ARGO: ARctic greenhouse Gas Observation metadata version 1&lt;/a&gt;, Vogt et al., &lt;em&gt;Earth System Science Data&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-17-2553-2025&lt;/p&gt;
  543. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70286" target="_blank"&gt;Climate Warming and Soil Drying Significantly Enhance the Methane Uptake in China's Grasslands&lt;/a&gt;, Wang et al., &lt;em&gt;Global Change Biology&lt;/em&gt; 10.1111/gcb.70286&lt;/p&gt;
  544. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110558" target="_blank"&gt;Improved uncertainty estimates for eddy covariance-based carbon dioxide balances using deep ensembles for gap-filling&lt;/a&gt;, Vekuri et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110558&lt;/p&gt;
  545. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110627" target="_blank"&gt;Mature biocrust-covered soil carbon fluxes are dependent on their types: Moss-covered soils still serve as sinks while cyanobacteria-covered soils become sources&lt;/a&gt;, Dou &amp;amp; Xiao, &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110627&lt;/p&gt;
  546. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01722-3" target="_blank"&gt;Northern ecosystem productivity reduced by Rossby-wave-driven hot&amp;ndash;dry conditions&lt;/a&gt;, Lian et al., &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01722-3&lt;/p&gt;
  547. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70238" target="_blank"&gt;Ocean Acidification: Another Planetary Boundary Crossed&lt;/a&gt;, Findlay et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70238" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70238&lt;/p&gt;
  548. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jc021903" target="_blank"&gt;Patterns of Ocean Acidification Emergence in the Hawaiian Islands Using Dynamically Downscaled Projections&lt;/a&gt;, Ho&amp;scaron;ekov&amp;aacute; et al., &lt;em&gt;Journal of Geophysical Research: Oceans&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.22541/essoar.173193301.14766842/v1" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jc021903&lt;/p&gt;
  549. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gb008460" target="_blank"&gt;Permafrost, Peatland, and Cropland Regions Are Key to Reconciling North American Carbon Sink Estimates&lt;/a&gt;, Foster et al., &lt;em&gt;Global Biogeochemical Cycles&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gb008460" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gb008460&lt;/p&gt;
  550. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adv9482" target="_blank"&gt;Soil carbon formation is promoted by saturation deficit and existing mineral-associated carbon, not by microbial carbon-use efficiency&lt;/a&gt;, King &amp;amp; Sokol, &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.adv9482" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.adv9482&lt;/p&gt;
  551. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  552. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/ffgc.2025.1602557" target="_blank"&gt;The effect of the frequency of prescribed burning on annual soil carbon balance in a loblolly-shortleaf pine forest in East Texas&lt;/a&gt;, Ono et al., &lt;em&gt;Frontiers in Forests and Global Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/ffgc.2025.1602557" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/ffgc.2025.1602557&lt;/p&gt;
  553. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107248" target="_blank"&gt;The environmentally relevant concentration of triclosan induces carbon dioxide emission in estuarine sediment associated with disrupted microbial metabolism&lt;/a&gt;, Huang et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107248&lt;/p&gt;
  554. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43017-025-00692-9" target="_blank"&gt;Tree methane exchange in a changing world&lt;/a&gt;, Gauci, &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; 10.1038/s43017-025-00692-9&lt;/p&gt;
  555. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  556. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-59799-8" target="_blank"&gt;Addressing critiques refines global estimates of reforestation potential for climate change mitigation&lt;/a&gt;, Fesenmyer et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-59799-8&lt;/p&gt;
  557. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.earscirev.2025.105200" target="_blank"&gt;CO&lt;sub&gt;2&lt;/sub&gt; sequestration in geological formations: Insights into mineral reactions and reservoir dynamics&lt;/a&gt;, Nazari et al., &lt;em&gt;Earth&lt;/em&gt; 10.1016/j.earscirev.2025.105200&lt;/p&gt;
  558. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005794" target="_blank"&gt;Natural Forest Restoration Potential to Mitigate Climate Change in China&lt;/a&gt;, Cheng et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005794" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005794&lt;/p&gt;
  559. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ghg.2278" target="_blank"&gt;Synergies of storing hydrogen at the crest of CO2${rm CO}&amp;amp;{2}$ or other gas storage&lt;/a&gt;, Rhouma et al., &lt;em&gt;Greenhouse Gases: Science and Technology&lt;/em&gt; &lt;a style="color: green;" href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ghg.2278" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ghg.2278" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1002/ghg.2278&lt;/p&gt;
  560. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  561. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101760" target="_blank"&gt;Calliope Africa: Modeling the role of storage and transmission for renewable energy integration&lt;/a&gt;, Stevanato et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.esd.2025.101760" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.esd.2025.101760&lt;/p&gt;
  562. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41560-025-01786-w" target="_blank"&gt;Durability research is pivotal for perovskite photovoltaics&lt;/a&gt;, Silverman et al., &lt;em&gt;Nature Energy&lt;/em&gt; 10.1038/s41560-025-01786-w&lt;/p&gt;
  563. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60652-1" target="_blank"&gt;Green energy and steel imports reduce Europe&amp;rsquo;s net-zero infrastructure needs&lt;/a&gt;, Neumann et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60652-1&lt;/p&gt;
  564. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s10308-025-00731-6" target="_blank"&gt;How would the adoption of French energy technology reduce German and Japanese CO2 emissions?&lt;/a&gt;, Martz-Sigala &amp;amp; ten Raa, &lt;em&gt;Asia Europe Journal&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1007/s10308" target="_blank"&gt; Open Access&lt;/a&gt; 10.1007/s10308-025-00731-6&lt;/p&gt;
  565. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2418414122" target="_blank"&gt;Impact of large-scale solar on property values in the United States: Diverse effects and causal mechanisms&lt;/a&gt;, Hu et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2418414122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2418414122&lt;/p&gt;
  566. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005313" target="_blank"&gt;Intensifying Renewable Energy Droughts in the Western U.S. Amid Evolving Infrastructure and Climate&lt;/a&gt;, Bracken et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005313" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005313&lt;/p&gt;
  567. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114660" target="_blank"&gt;Overcoming barriers to heat pump adoption among able-to-pay households&lt;/a&gt;, Chitchyan, &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114660" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114660&lt;/p&gt;
  568. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101743" target="_blank"&gt;Technical and economic analysis for the implementation of photovoltaic systems in agricultural zones of Mexico City: A case study&lt;/a&gt;, Guevara et al., &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.esd.2025.101743" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.esd.2025.101743&lt;/p&gt;
  569. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101739" target="_blank"&gt;The assessment of onshore wind energy potential in China's overseas industrial parks&lt;/a&gt;, Song &amp;amp; Wen, &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101739&lt;/p&gt;
  570. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41561-025-01716-1" target="_blank"&gt;The extra climate benefits of solar farms&lt;/a&gt;, Lu, &lt;em&gt;Nature Geoscience&lt;/em&gt; 10.1038/s41561-025-01716-1&lt;/p&gt;
  571. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41560-025-01775-z" target="_blank"&gt;The high cost of importing green hydrogen from Africa to Europe&lt;/a&gt;, , &lt;em&gt;Nature Energy&lt;/em&gt; 10.1038/s41560-025-01775-z&lt;/p&gt;
  572. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  573. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43017-025-00685-8" target="_blank"&gt;Effects of ocean alkalinity enhancement on marine diazotrophs&lt;/a&gt;, Whitby &amp;amp; Davis, &lt;em&gt;Nature Reviews Earth &amp;amp; Environment&lt;/em&gt; 10.1038/s43017-025-00685-8&lt;/p&gt;
  574. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/acp-25-6001-2025" target="_blank"&gt;Stratospheric Aerosol Intervention experiment for the Chemistry&amp;ndash;Climate Model Initiative&lt;/a&gt;, Tilmes et al., &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/acp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/acp-25-6001-2025&lt;/p&gt;
  575. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  576. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02326-w" target="_blank"&gt;Facebook algorithm&amp;rsquo;s active role in climate advertisement delivery&lt;/a&gt;, Sankaranarayanan et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="http://arxiv.org/pdf/2308.03191" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="http://arxiv.org/pdf/2308.03191" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1038/s41558-025-02326-w&lt;/p&gt;
  577. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1098/rsos.250654" target="_blank"&gt;Fostering trustworthy information: countering disinformation when there are no bare facts&lt;/a&gt;, Boumans et al., &lt;em&gt;Royal Society Open Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1098/rsos.250654" target="_blank"&gt; Open Access&lt;/a&gt; 10.1098/rsos.250654&lt;/p&gt;
  578. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.adu7743" target="_blank"&gt;How media competition fuels the spread of misinformation&lt;/a&gt;, Amini et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="http://arxiv.org/pdf/2411.15677" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="http://arxiv.org/pdf/2411.15677" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1126/sciadv.adu7743&lt;/p&gt;
  579. &lt;p style="text-align: left;"&gt;&lt;a href="https://www.sciencedirect.com/science/article/pii/S0272494425001239" target="_blank"&gt;Political differences in climate change knowledge and their association with climate attitudes, behavior, and policy support&lt;/a&gt;, Stockus and Zell, &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt;&amp;nbsp;&lt;a style="color: green;" href="https://www.sciencedirect.com/science/article/pii/S0272494425001239" target="_blank"&gt;Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://jdss.org.pk/issues/v2/4/water-sharing-issues-in-pakistan-impacts-on-inter-provincial-relations.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.47205/jdss.2021(2-iv)74&lt;/p&gt;
  580. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  581. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adw3673" target="_blank"&gt;Can wild plant adaptations help crops tolerate heat?&lt;/a&gt;, Yeaman, &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adw3673&lt;/p&gt;
  582. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2519046" target="_blank"&gt;Connecting the Dots: How Communication Strategies Shape Climate Response Behaviors among Smallholder Maize Farmers in Bongo District, Ghana&lt;/a&gt;, Apuri et al., &lt;em&gt;Environmental Communication&lt;/em&gt; 10.1080/17524032.2025.2519046&lt;/p&gt;
  583. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1623978" target="_blank"&gt;Exploring the impact of education on sustainable resource efficiency: the interplay with CO2 emissions, renewable energy, and agriculture in G20 nations&lt;/a&gt;, Zhiying &amp;amp; Sidi, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1623978" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1623978&lt;/p&gt;
  584. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100720" target="_blank"&gt;Farmers&amp;rsquo; climate change perceptions in central Colombia: A propensity score matching approach using protection motivation theory and psychological distance&lt;/a&gt;, Cano &amp;amp; Castro-Campos, &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100720" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100720&lt;/p&gt;
  585. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09085-w" target="_blank"&gt;Impacts of climate change on global agriculture accounting for adaptation&lt;/a&gt;, Hultgren et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09085-w&lt;/p&gt;
  586. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1594747" target="_blank"&gt;Livelihood adaptation to climate-related changes in agroecological zones in developing countries&amp;mdash;challenges, prospects, and policy concerns&lt;/a&gt;, Hamer et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1594747" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1594747&lt;/p&gt;
  587. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100721" target="_blank"&gt;Local to regional-scale mechanisms behind successful climate services for agriculture in Latin America&lt;/a&gt;, Giraldo et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100721" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100721&lt;/p&gt;
  588. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  589. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adv5413" target="_blank"&gt;Safeguarding crop photosynthesis in a rapidly warming world&lt;/a&gt;, Bernacchi et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adv5413&lt;/p&gt;
  590. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104123" target="_blank"&gt;The political economy of carbon farming: Analyzing agribusiness&amp;rsquo; accumulation strategy and the imaginary of soil carbon markets&lt;/a&gt;, Hackfort &amp;amp; Haas, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104123" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104123&lt;/p&gt;
  591. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110647" target="_blank"&gt;The TreeChill model: A new framework for predicting the impact of erratic winter weather on trees&lt;/a&gt;, Guzm&amp;aacute;n-Delgado et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110647" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110647&lt;/p&gt;
  592. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  593. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.wace.2025.100781" target="_blank"&gt;A pseudo global warming based system to study how climate change affects high impact rainfall events&lt;/a&gt;, Lenderink et al., &lt;em&gt;Weather and Climate Extremes&lt;/em&gt; 10.1016/j.wace.2025.100781&lt;/p&gt;
  594. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8927" target="_blank"&gt;A Study of Recent Changes in Moisture Flux Patterns Over India: Implications for Indian Summer Monsoon Rainfall&lt;/a&gt;, Amarjeet et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8927&lt;/p&gt;
  595. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.03.010" target="_blank"&gt;An integrated modelling framework for evaluating the synergistic impacts of low-carbon transitions and air pollution controls on air quality and health in Guangzhou, China&lt;/a&gt;, SHU et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.03.010" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.03.010&lt;/p&gt;
  596. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd042218" target="_blank"&gt;Assessing Climate Change Impacts on the March 2024 Compound Floods and Saharan Dust Outbreak in Europe&lt;/a&gt;, Pons et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jd042218" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jd042218&lt;/p&gt;
  597. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl114870" target="_blank"&gt;Detectable Anthropogenic Influence in Mean Precipitation of China&lt;/a&gt;, Wang et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl114870" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl114870&lt;/p&gt;
  598. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;, Mascaro et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114292&lt;/p&gt;
  599. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116445" target="_blank"&gt;Impact of Increasing Greenhouse Gases on the Ionosphere and Thermosphere Response to a May 2024-Like Geomagnetic Superstorm&lt;/a&gt;, Pedatella et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116445" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116445&lt;/p&gt;
  600. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt;Evidence of Emerging Increasing Trends in Observed Subdaily Heavy Precipitation Frequency in the United States&lt;/a&gt;, Mascaro et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl114292" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl114292&lt;/p&gt;
  601. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108289" target="_blank"&gt;Human influence on summer wetting in Northwest China from 1961 to 2014: Roles of greenhouse gases and anthropogenic aerosols&lt;/a&gt;, He et al., &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108289&lt;/p&gt;
  602. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd043074" target="_blank"&gt;Intensified Tibetan Plateau Spring Warming Exacerbate Summer Extreme Precipitation in Central Asia Since the 2000s&lt;/a&gt;, Ma et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2024jd043074&lt;/p&gt;
  603. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104938" target="_blank"&gt;Long eccentricity control on the clay minerals deposition in the northwestern Philippine Sea during the Miocene Climate Optimum&lt;/a&gt;, Ren et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104938&lt;/p&gt;
  604. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02408-9" target="_blank"&gt;Tree ring isotopes reveal an intensification of the hydrological cycle in the Amazon&lt;/a&gt;, Cintra et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02408-9&lt;/p&gt;
  605. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1007/s12583-025-2033-0" target="_blank"&gt;Warming-Induced Increase in Flooding in the Taklimakan Desert&lt;/a&gt;, Su et al., &lt;em&gt;Journal of Earth Science&lt;/em&gt; 10.1007/s12583-025-2033-0&lt;/p&gt;
  606. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  607. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2517638" target="_blank"&gt;Afforestation for climate change mitigation: how impactful is China&amp;rsquo;s fiscal policy?&lt;/a&gt;, Zheng et al., &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2517638&lt;/p&gt;
  608. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2517643" target="_blank"&gt;Climate change risks and opportunities: do sustainable business practices matter?&lt;/a&gt;, Maji &amp;amp; Boruah , &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2517643&lt;/p&gt;
  609. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/jiec.70054" target="_blank"&gt;Pricing the green transition: An investment appraisal of Romanian low-carbon steel&lt;/a&gt;, B?la?a &amp;amp; Sandberg, &lt;em&gt;Journal of Industrial Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/jiec.70054" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/jiec.70054&lt;/p&gt;
  610. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1614968" target="_blank"&gt;The impact of climate risk on renewable energy investments&lt;/a&gt;, Li et al., &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1614968" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1614968&lt;/p&gt;
  611. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  612. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104147" target="_blank"&gt;A quiet public? Procedural justice in Portuguese wind energy governance&lt;/a&gt;, Oliveira et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104147" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104147&lt;/p&gt;
  613. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104122" target="_blank"&gt;Affordable solar for whom? Understanding the effects of a policy intervention on residential solar adoption among vulnerable communities&lt;/a&gt;, Kaul &amp;amp; Hernandez-Cortes, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2025.104122&lt;/p&gt;
  614. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102459" target="_blank"&gt;Driving climate action with the VISUALIZER: A dashboard for transportation emissions data analysis &amp;amp; visualization&lt;/a&gt;, Fraser &amp;amp; Gao, &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102459&lt;/p&gt;
  615. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.esd.2025.101747" target="_blank"&gt;Integrating electric mobility and distributed solar in carbon-negative Panama: Readiness assessment and policy roadmap for sustainable energy transition&lt;/a&gt;, Boya-Lara, &lt;em&gt;Energy for Sustainable Development&lt;/em&gt; 10.1016/j.esd.2025.101747&lt;/p&gt;
  616. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104080" target="_blank"&gt;Integrity challenges in carbon markets: Comparing UNFCCC and voluntary REDD+ verification in the Amazon Biome&lt;/a&gt;, Yang &amp;amp; Park, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; 10.1016/j.envsci.2025.104080&lt;/p&gt;
  617. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/23251042.2025.2517426" target="_blank"&gt;Masculinity, femininity, and support for climate policy&lt;/a&gt;, Silva et al., &lt;em&gt;Environmental Sociology&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/23251042.2025.2517426&lt;/p&gt;
  618. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02361-7" target="_blank"&gt;Navigating the black box of fair national emissions targets&lt;/a&gt;, Dekker et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41558" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02361-7&lt;/p&gt;
  619. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114722" target="_blank"&gt;Supporting building heat decarbonization with heat Pumps: Analysis of subsidy schemes in Swiss leading cantons&lt;/a&gt;, Li et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114722" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114722&lt;/p&gt;
  620. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104152" target="_blank"&gt;Sustainable energy technology adoption for a low-carbon future: A global meta-analysis of psychological determinants&lt;/a&gt;, Eppe et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104152" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104152&lt;/p&gt;
  621. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104169" target="_blank"&gt;Unleashing American Energy? Uncertainties in energy transition developments under a new Trump administration&lt;/a&gt;, Deberdt et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104169" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104169&lt;/p&gt;
  622. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  623. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s44168-025-00263-0" target="_blank"&gt;A mental health focus to amplify climate resilience actions&lt;/a&gt;, Mishra et al., &lt;em&gt;npj Climate Action&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s44168" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s44168-025-00263-0&lt;/p&gt;
  624. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2517644" target="_blank"&gt;Assessment of existing datasets for tracking progress towards the Global Goal on Adaptation (and beyond)&lt;/a&gt;, Biesbroek et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2517644" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2517644&lt;/p&gt;
  625. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloenvcha.2025.103027" target="_blank"&gt;Beyond adjustment: A new paradigm for climate change adaptation in a complex world&lt;/a&gt;, Amorim-Maia &amp;amp; Olazabal Olazabal , &lt;em&gt;Global Environmental Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.gloenvcha.2025.103027" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.gloenvcha.2025.103027&lt;/p&gt;
  626. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1539858" target="_blank"&gt;Co-benefits of resilience planning: a review of analysis tools and methods&lt;/a&gt;, Helgeson et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1539858" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1539858&lt;/p&gt;
  627. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1578605" target="_blank"&gt;Developing practical climate adaptation and mitigation toolkits for Canadian forest-based communities: a systematic review&lt;/a&gt;, Antwi et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1578605" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1578605&lt;/p&gt;
  628. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005016" target="_blank"&gt;Future Spatially Explicit Patterns of Land Transitions in the United States With Multiple Stressors&lt;/a&gt;, Gurgel et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005016" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005016&lt;/p&gt;
  629. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02454-3" target="_blank"&gt;Private investments in climate change adaptation are increasing in Europe, although sectoral differences remain&lt;/a&gt;, Cort&amp;eacute;s Arbu&amp;eacute;s et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02454-3&lt;/p&gt;
  630. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  631. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/asl.1304" target="_blank"&gt;Analysis of Malaria Measurements Under Climate Change in Douala, Cameroon: Simulations From the CORDEX-CORE Ensemble&lt;/a&gt;, Lenouo et al., &lt;em&gt;Atmospheric Science Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/asl.1304" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/asl.1304&lt;/p&gt;
  632. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60218-1" target="_blank"&gt;Global warming may increase the burden of obstructive sleep apnea&lt;/a&gt;, Lechat et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60218-1&lt;/p&gt;
  633. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000512" target="_blank"&gt;Improving an integrative framework of health system resilience and climate change: Lessons from Bangladesh and Haiti&lt;/a&gt;, Ridde et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000512" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000512&lt;/p&gt;
  634. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1186/s40249-025-01326-4" target="_blank"&gt;The impact of hot nights on dengue incidence: a nationwide case crossover study in Brazil&lt;/a&gt;, Su et al., &lt;em&gt;Infectious Diseases of Poverty&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1186/s40249" target="_blank"&gt; Open Access&lt;/a&gt; 10.1186/s40249-025-01326-4&lt;/p&gt;
  635. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change &amp;amp; geopolitics&lt;/strong&gt;&lt;/p&gt;
  636. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104124" target="_blank"&gt;Analysing the Global Assembly&amp;rsquo;s influence: The challenges of linking to the deliberative system of global climate governance&lt;/a&gt;, Conway-Lamb et al., &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104124" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104124&lt;/p&gt;
  637. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/23251042.2025.2507287" target="_blank"&gt;Dynamic networks of negotiation for international climate change cooperation&lt;/a&gt;, Almquist et al., &lt;em&gt;Environmental Sociology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/23251042.2025.2507287" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/23251042.2025.2507287&lt;/p&gt;
  638. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human culture&lt;/strong&gt;&lt;/p&gt;
  639. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1573803" target="_blank"&gt;Climate change, socioeconomic, environmental, and political drivers of road traffic fatalities in Somalia: a multivariate time series analysis&lt;/a&gt;, Ahmed et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1573803" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1573803&lt;/p&gt;
  640. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  641. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1073/pnas.2422334122" target="_blank"&gt;Global health and climate benefits from walking and cycling infrastructure&lt;/a&gt;, Millard-Ball et al., &lt;em&gt;Proceedings of the National Academy of Sciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1073/pnas.2422334122" target="_blank"&gt; Open Access&lt;/a&gt; 10.1073/pnas.2422334122&lt;/p&gt;
  642. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60450-9" target="_blank"&gt;The archaeology of climate change: a blueprint for integrating environmental and cultural systems&lt;/a&gt;, Burke et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60450-9&lt;/p&gt;
  643. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  644. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/science.adx4305" target="_blank"&gt;Address Arctic shipping crisis at COP30&lt;/a&gt;, Du et al., &lt;em&gt;Science&lt;/em&gt; 10.1126/science.adx4305&lt;/p&gt;
  645. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1001/jama.1987.03400240091033" target="_blank"&gt;Friend or foe? Diesel generators and the global energy transition&lt;/a&gt;, Poulton, &lt;em&gt;JAMA: The Journal of the American Medical Association&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1001/jama.1987.03400240091033&lt;/p&gt;
  646. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70238" target="_blank"&gt;Ocean Acidification: Another Planetary Boundary Crossed&lt;/a&gt;, Findlay et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70238" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70238&lt;/p&gt;
  647. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70238" target="_blank"&gt;Ocean Acidification: Another Planetary Boundary Crossed&lt;/a&gt;, Findlay et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70238" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70238&lt;/p&gt;
  648. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.001" target="_blank"&gt;State of polar climate (2024)&lt;/a&gt;, Ding et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.001&lt;/p&gt;
  649. &lt;hr /&gt;
  650. &lt;h3&gt;&lt;a id="gov-ngo"&gt;&lt;/a&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  651. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.nyiso.com/documents/20142/2223020/2025-Power-Trends.pdf/51517a1b-36fa-4f3d-d44d-eabe23598514?t=1748866865402" target="_blank"&gt;2025 Power Report&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;New York Independent System Operator&lt;/strong&gt;&lt;/p&gt;
  652. &lt;blockquote&gt;The flagship report explores the issues and challenges shaping the grid of the future based on the latest facts and data, information, and figures. This year's report spotlights the uncertainty inherent in forecasting the adoption of emerging technologies like electric vehicles and electric heating equipment.&lt;/blockquote&gt;
  653. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.oecd.org/content/dam/oecd/en/publications/reports/2025/06/investing-in-climate-for-growth-and-development_9ce9b093/16b7cbc7-en.pdf" target="_blank"&gt;Investing in Climate for Growth and Development. The Case for Enhanced NDCs&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;OECD/UNDP&lt;/strong&gt;&lt;/p&gt;
  654. &lt;blockquote&gt;Climate action has gained momentum over the past decade, driving real economic opportunities. However, current efforts are not keeping pace with rising risks. Slower climate action means delaying investments that are critical to ensure future climate resilience, prosperity and well-being. In 2025 countries have a window of opportunity to regain momentum and realize the multiple benefits of strengthened climate action as they submit updated national climate plans &amp;ndash; or Nationally Determined Contributions (NDCs). This comes as an OECD-UNDP report provides new evidence that accelerating climate action is not only feasible, it also makes economic sense &amp;ndash; driving growth, unlocking development dividends and preventing losses from climate disasters.&lt;/blockquote&gt;
  655. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.meteo.cat/wpweb/climatologia/butlletins-i-episodis-meteorologics/butlleti-anual-dindicadors-climatics/" target="_blank"&gt;The Annual Bulletin of Climate Indicators&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Servei Meteorol&amp;ograve;gic de Catalunya&lt;/strong&gt;&lt;/p&gt;
  656. &lt;blockquote&gt;The authors analyze the evolution of the recent climate in Catalonia, from various perspectives, and capture the characteristics of the variability and climate change that affects Catalonians. The report has eight chapters that correspond to the eight climate systems or variables monitored: air temperature, precipitation, insolation, climate extremes, secular observatories, synoptic patterns, sea and phenology. This analysis highlights the dynamics of variability and the obvious signs of climate change in the country. In the face of the accelerated advance of global warming driven by human activity, it is essential to have a precise and objective diagnosis to guide efficient adaptation and mitigation strategies. The 2024 edition of the BAIC is fully in line with this purpose (Google Translate).&lt;/blockquote&gt;
  657. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.wwf.org.uk/sites/default/files/2025-06/state-of-the-worlds-saltmarshes-2025.pdf" target="_blank"&gt;The State of the World's Saltmarshes 2025: A Global Call to Action for Coastal Resilience and Adaptation&lt;/a&gt;, &lt;/strong&gt;Brook et al., &lt;strong&gt;WWF&lt;/strong&gt;&lt;/p&gt;
  658. &lt;blockquote&gt;The authors integrate saltmarshes into the broader blue carbon agenda &amp;ndash; putting them at the heart of global efforts to tackle climate change, restore nature and build coastal resilience. They show just how powerful these tidal wetlands are. From carbon sequestration to natural flood defense to fisheries support, saltmarshes are doing heavy lifting with little recognition. The authors shine a light on what has been lost and continues to be lost where the biggest opportunities lie and what needs to change. They also look at the political tools and funding mechanisms that can turn things around &amp;mdash; if action is taken now.&lt;/blockquote&gt;
  659. &lt;p&gt;&lt;strong&gt;&lt;a href="http://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Iceland-Greenland-heat-2.pdf" target="_blank"&gt;Climate change drives record-breaking heat in Iceland and Greenland challenging cold adapted ecosystems and societies&lt;/a&gt;, &lt;/strong&gt;Kew et al., &lt;strong&gt;World Weather Attribution&lt;/strong&gt;&lt;/p&gt;
  660. &lt;blockquote&gt;Researchers from Iceland, the Netherlands, Sweden, Denmark, the United States and the United Kingdom collaborated to assess to what extent human-induced climate change altered the likelihood and intensity of the extreme heat in the region. The analysis focuses on the 7 hottest days in May over Iceland, as the heat was long-lasting there and affected more people, and also on the single most hottest May day at stations Ittoqqortoormiit (Eastern coast of Greenland), Egilssta&amp;eth;ir Airport and Reykjavik (Iceland), to examine exceptional heat on local scales. When combining the observation-based analysis with climate models, to quantify the role of climate change in this 7-day heat event, we find that climate models underestimate the increase in heat found in observations, but not by as much as in other regions. Based on the combined analysis we conclude that climate change made the extreme heat about 3&amp;deg;C hotter and about 40 times more likely. There is more uncertainty in the estimate for the increase in likelihood and notably it is much smaller than in other heat attribution studies in extratropical latitudes. Given the known underestimation of temperature trends in climate models, this is thus likely an underestimation.&lt;/blockquote&gt;
  661. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.ciht.org.uk/media/n42ldzip/climates-report-june-2025-v2complete-single-pages.pdf" target="_blank"&gt;Doubling down on climate action in highways and transportation&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Chartered Institution of Highways &amp;amp; Transportation&lt;/strong&gt;&lt;/p&gt;
  662. &lt;blockquote&gt;The significance of climate change for society and in turn highways and transportation is profound. Taking action to address it has become central to professional concerns. The Chartered Institution of Highways &amp;amp; Transportation (CIHT) accordingly has climate action as one of its three core themes. CIHT embarked in 2024 on an initiative called CLIMATES &amp;ndash; Changing Landscapes for Infrastructure and Mobility: Assessing Transport and Environment Scenarios. CLIMATES has sought to better equip professionals to determine their priorities and actions in the present in the face of future climate change possibilities, and to voice opinion across the CIHT membership that can inform how the Institution champions its climate action theme. CLIMATES has been designed to take its participants on a journey with the help of futures techniques. This journey begins with sense-checking concerns about climate change and its effects and examining the climate change outlook. Participants then &amp;lsquo;travel&amp;rsquo; to different possible futures for 2035. These are defined by: (1) the extent of progress internationally to contain global greenhouse gas emissions; and (2) the extent of progress nationally on climate action (mitigation, adaptation, and resilience).&lt;/blockquote&gt;
  663. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.sipri.org/sites/default/files/2025-06/sipri-nupi_fact_sheet_haiti.pdf" target="_blank"&gt;Climate, Peace and Security Fact Sheet: Haiti&lt;/a&gt;, &lt;/strong&gt;Koefoed et al., &lt;strong&gt;The Norwegian Institute of International Affairs and the Stockholm International Peace Research Institute&lt;/strong&gt;&lt;/p&gt;
  664. &lt;blockquote&gt;The authors focus on Haiti and the series of conflict- and climate-related issues that face the country. They offer a range of recommended actions for the international community to address these issues effectively. Located on the Atlantic hurricane belt, Haiti is susceptible to earthquakes and is particularly vulnerable to the adverse effects of climate change due to its geographical location as well as political instability, extreme poverty and gang violence. Rising sea levels, changing precipitation patterns and frequent natural disasters and extreme weather events, such as hurricanes, floods, droughts, landslides and earthquakes, exacerbate the country&amp;rsquo;s humanitarian crisis. Flooding during El Ni&amp;ntilde;o years worsens existing food insecurity and drives displacement, increasing population pressure on host communities and fueling social tensions.&lt;/blockquote&gt;
  665. &lt;p&gt;&lt;strong&gt;&lt;a href="https://files.wri.org/d8/s3fs-public/2025-05/rethinking-biofuels-us-midwest.pdf?VersionId=q1j1lKJKG6fsDjiZfi.kb_CpxSqrtiV7" target="_blank"&gt;Rethinking biofuels in the US Midwest&lt;/a&gt;, &lt;/strong&gt;Leslie-Bole et al., &lt;strong&gt;World Resources Institute&lt;/strong&gt;&lt;/p&gt;
  666. &lt;blockquote&gt;The authors discuss the environmental, economic and social impacts of first-generation biofuels in the Midwest. They analyze how policies promoting corn- and soy-based biofuels&amp;mdash;often funded by taxpayers&amp;mdash;contribute to land use change, rising greenhouse gas emissions, water degradation and unequal economic benefits. With interest in using biofuels for aviation increasing, the authors urge policymakers to re-evaluate the role of biofuels in future climate and agricultural policy and to explore more sustainable, equitable alternatives for Midwestern communities and ecosystems.&lt;/blockquote&gt;
  667. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.ipeglobal.com/issue-note-weathering-the-storm/" target="_blank"&gt;Weathering the Storm. Managing Monsoons in a Warming Climate&lt;/a&gt;, &lt;/strong&gt;Abinash Mohanty and Krishna Vsav, &lt;strong&gt;IPE Global&lt;/strong&gt;&lt;/p&gt;
  668. &lt;blockquote&gt;The authors analyze district-level spatial and temporal assessments coupled with dynamic ensemble climate modelling to develop heat stress scenarios for 2030 and 2040, correlating how it can trigger incessant and erratic extreme rainfall events. The authors found that by 2030, climate change is expected to drive 43 per cent rise in intensity of extreme rainfall events across India, making the country hotter and wetter. Mumbai, Chennai, Delhi, Surat, Thane, Hyderabad, Patna and Bhubaneswar are projected going to witness two-fold increase in heat wave days. Extended heat wave conditions are likely to trigger more frequent, and incessant and erratic rainfall events. 8 out of 10 districts in India are going to experience multiple instances of incessant and erratic rainfall by 2030. The frequency, intensity, and unpredictability of these extreme heat and rainfall events have risen significantly in recent decades.&lt;/blockquote&gt;
  669. &lt;p&gt;&lt;strong&gt;&lt;a href="https://rhg.com/wp-content/uploads/2025/06/Three-Key-Outcomes-of-OBBBA-on-US-Manufacturing-and-Innovation-1.pdf" target="_blank"&gt;Three Key Outcomes of the &amp;ldquo;One Big Beautiful Bill Act&amp;rdquo; on US Manufacturing and Innovation&lt;/a&gt;, &lt;/strong&gt;King et al., &lt;strong&gt;Rhodium Group&lt;/strong&gt;&lt;/p&gt;
  670. &lt;blockquote&gt;The &amp;ldquo;One Big Beautiful Bill Act&amp;rdquo; (OBBBA) budget reconciliation bill passed by the House raises energy costs on consumers and businesses and pushes down on demand for clean energy technologies by effectively repealing a number of energy-related tax credits. There are additional important implications of the House bill for US technology investment, manufacturing, and innovation including nearly all states face the threat of lost investment from the House bill, which totals $522 billion nationally, with the top 10 states comprising 62% of this investment; lower demand for clean technologies, such as electric vehicles (EVs) and solar paired with the loss of support for clean technology manufacturing, could stall growth in the burgeoning clean manufacturing industry in the US, which contributed $14 billion to economic growth in the first quarter of 2025l and emerging clean technologies like advanced nuclear and geothermal face disproportionate risk from the House bill given their long development timelines and challenges in finding affordable capital, with at least 2.2 GW of first-of-a-kind and early commercial deployments facing an uncertain future.&lt;/blockquote&gt;
  671. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cgs.umd.edu/sites/default/files/2025-06/file_CGS_US%20Clean%20Energy%20Policy%20Rollbacks_report.pdf" target="_blank"&gt;U.S. Clean Energy Policy Rollbacks. The Economic and Public Health Impacts Across States&lt;/a&gt;, &lt;/strong&gt;Zhao et al., &lt;strong&gt;Center for Global Sustainability, University of Maryland&lt;/strong&gt;&lt;/p&gt;
  672. &lt;blockquote&gt;Over the coming decade, the Inflation Reduction Act (IRA), Bipartisan Infrastructure Law (BIL), EPA regulations on power plants and tailpipe emissions, and other existing federal clean energy policies are expected to provide a range of economic and health benefits for American communities in addition to accelerating the clean energy transition. The authors found that rolling back these clean energy policies can cause substantial damages to economic and health outcomes across the country, resulting in a $1.1 trillion reduction in U.S. GDP by 2035, a $160 billion cumulative income loss, and at least 22,800 additional deaths of Americans cumulatively over the next decade.&lt;/blockquote&gt;
  673. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.nerc.com/pa/RAPA/PA/Performance%20Analysis%20DL/NERC_SOR_2025_Overview.pdf" target="_blank"&gt;2025 State of Reliability. Assessment Overview of 2024 Bulk Power System Performance&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;North American Electric Reliability Corporation&lt;/strong&gt;&lt;/p&gt;
  674. &lt;blockquote&gt;The authors found that the North American bulk power system (BPS) remained reliable and resilient in 2024. The authors show that today&amp;rsquo;s transmission system is demonstrably more reliable and resilient with the severity and duration of outages declining, and system restoration times growing shorter. However, newer and emerging risks are challenging grid reliability in new ways, which will require agility to better assess these risks, and develop and implement mitigations, all while the system undergoes rapid transformation.&lt;/blockquote&gt;
  675. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.bluegreenalliance.org/wp-content/uploads/2025/06/Jobs-Research-Brief.pdf" target="_blank"&gt;House Budget Bill Puts Over Two Million Jobs at Risk. State-Level Analysis of Employment Risk Under a Repeal of Clean Manufacturing Tax Credits&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;BlueGreen Alliance&lt;/strong&gt;&lt;/p&gt;
  676. &lt;blockquote&gt;Congressional Republicans are currently moving budget bills that repeal or restrict clean manufacturing tax credits through the reconciliation process. As of the drafting of this brief, the U.S. House has passed its version of the bill, and the U.S. Senate is in the process of drafting its version. Republicans in Congress and the administration have stated they hope to have a final bill on President Trump&amp;rsquo;s desk by July 4, though that deadline is subject to change. The authors conducted an analysis of the potential effects of the policies in the House bill on the employment footprint of manufacturing and found that repealing the clean manufacturing tax credits puts over two million jobs at risk.&lt;/blockquote&gt;
  677. &lt;p&gt;&lt;strong&gt;&lt;a href="https://theclimaterealityproject.app.box.com/s/jw30lpua7r7wsl53wxoaopwm5tx35zdh" target="_blank"&gt;National Climate League Report (Canada)&lt;/a&gt;, &lt;/strong&gt;Muhajarine et al., &lt;strong&gt;The Canadian branch of The Climate Reality Project&lt;/strong&gt;&lt;/p&gt;
  678. &lt;blockquote&gt;The authors reviewed the climate plans and policies of 53 municipalities across Canada to gather information to answer a set of questions relating to 23 policy indicators, while reaching out to local officials to fill the gaps. The authors focus this year was on policies and examining the connection between these policies and measurable outcomes. The survey included municipalities from all 10 Canadian provinces; from municipalities of 15,000 people to over a million.&lt;/blockquote&gt;
  679. &lt;p&gt;&lt;strong&gt;&lt;a href="https://sydney.org.au/wp-content/uploads/2025/06/Committee-for-Sydney-Sydney-as-a-renewable-energy-zone-June-2025.pdf" target="_blank"&gt;Sydney as a Renewable Energy Zone: A metropolis of energy equity, affordability and abundance&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Committee for Sydney, Arup and Arcadis&lt;/strong&gt;&lt;/p&gt;
  680. &lt;blockquote&gt;This is a once-in-a-generation opportunity for Metropolitan Sydney to help keep the lights on, reach net zero, and make energy cheaper and more accessible to households and businesses to achieve energy equity. This is possible by accelerating renewable energy generation and storage at local, district and Sydney-wide scales. Sydney could meet at least 75% of its annual energy needs through rooftop solar paired with battery storage. While central business district (CBD) buildings might cover only 5% of their energy needs through rooftop solar, industrial estates could produce between 500% to 1000% of their energy requirements, creating substantial excess power that could benefit nearby residential areas, including apartment buildings that currently lack access to solar. The existing electricity distribution network across Sydney is already in place and underutilized, presenting an immediate opportunity to boost local energy independence and reliability. However, the barriers to realizing this opportunity are real.&lt;/blockquote&gt;
  681. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.deepskyclimate.com/blog/insurers-retreat-as-2025-wildfire-risk-reaches-dangerous-levels" target="_blank"&gt;Insurers Retreat as 2025 Wildfire Risk Reaches Dangerous Levels&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Deep Sky&lt;/strong&gt;&lt;/p&gt;
  682. &lt;blockquote&gt;Insurance companies are abandoning homeowners in the highest risk wildfire areas. They cannot charge prices high enough to take on the risk they see coming. Exiting the market has become their last resort. In California, 1 in 5 homes in the most extreme fire risk areas has lost coverage since 2019. There are now over 150,000 uninsured households in these areas in California alone. Insurance markets are a leading indicator of how financial markets will deal with the climate crisis. Just as insurers will not do business in key areas now, so too will investors avoid those kinds of risks. Insurance markets may be the first to show the effects of the climate crisis but the disruption won&amp;rsquo;t stop there. Home insurance premiums have shot up 42% in the most fire prone areas of California. One in five homes in extreme fire risk areas of California has lost coverage since 2019. Spring fire risk in the U.S. Southwest and Northern Mexico has reached a ten-year record&lt;/blockquote&gt;
  683. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.actionaidusa.org/wp-content/uploads/2025/06/Caution-Required-Protecting-Communities-from-Carbon-Markets-Final.pdf" target="_blank"&gt;Caution Required: Protecting Communities from Carbon Markets&lt;/a&gt;, &lt;/strong&gt;Kelly Stone and Doug Hertzler, &lt;strong&gt;ActionAid USA&lt;/strong&gt;&lt;/p&gt;
  684. &lt;blockquote&gt;Carbon markets promise quick, easy climate &amp;ldquo;solutions,&amp;rdquo; but the authors show they routinely fail to cut emissions. Instead, they fuel corporate greenwashing, land grabs, and human-rights abuses across the Global South. The authors draws on Kenya&amp;rsquo;s long history of offset projects and Liberia&amp;rsquo;s emerging deals (notably with Blue Carbon) to expose patterns of violence, livelihood loss, and communities selling their future out of urgent need for revenue. It is time to demand robust safeguards&amp;mdash;and real, grant-based climate finance that truly protects people and the planet.&lt;/blockquote&gt;
  685. &lt;p&gt;&lt;strong&gt;&lt;a href="https://repositorio.uloyola.es/handle/20.500.12412/6665" target="_blank"&gt;Clima incierto: percepciones sobre el cambio clim&amp;aacute;tico y migraci&amp;oacute;n (&lt;/a&gt;, &lt;/strong&gt;S&amp;aacute;nchez Carrasc et al., &lt;strong&gt;Universidad Loyola, Granada&lt;/strong&gt;&lt;/p&gt;
  686. &lt;blockquote&gt;Nuestro estudio en seis municipios del departamento de Cop&amp;aacute;n, Honduras, muestra que muchas personas ya est&amp;aacute;n notando c&amp;oacute;mo el cambio clim&amp;aacute;tico est&amp;aacute; afectando sus vidas, especialmente en la agricultura. Las sequ&amp;iacute;as, lluvias irregulares y tormentas intensas est&amp;aacute;n da&amp;ntilde;ando los cultivos, lo que genera preocupaci&amp;oacute;n e incertidumbre sobre el futuro. Aunque la mayor&amp;iacute;a de las personas no quieren irse, el deterioro del medio ambiente, sumado a la pobreza y la falta de apoyo gubernamental, lleva a muchos a pensar en migrar como una salida. (Our study in six municipalities in the department of Cop&amp;aacute;n, Honduras, shows that many people are already noticing how climate change is affecting their lives, especially in agriculture. Droughts, erratic rains and intense storms are damaging crops, leading to concern and uncertainty about the future. Although most people do not want to leave, the deterioration of the environment, coupled with poverty and lack of government support, leads many to think of migrating as a way out, GOogle Translate)&lt;/blockquote&gt;
  687. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.bankingonclimatechaos.org/wp-content/uploads/2025/06/BOCC_2025_FINAL2_WEB_spreads.pdf" target="_blank"&gt;The Banking on Climate Chaos: Fossil Fuel Finance Report 2025&lt;/a&gt;, &lt;/strong&gt;Schwartz et al., &lt;strong&gt;The Sierra Club&lt;/strong&gt;&lt;/p&gt;
  688. &lt;blockquote&gt;The authors examine the lending and underwriting activities of the world&amp;rsquo;s top 65 banks to more than 2,700 fossil fuel companies. While the world&amp;rsquo;s top scientists from the International Energy Agency (IEA) and others have repeatedly stated there can be no new fossil fuel expansion in a net-zero by 2050 scenario, banks have ignored this climate risk and continue to increase their financing for dirty energy companies expanding fossil fuel infrastructure. This financing comes amid a rapid retreat from climate commitments made by many banks at COP26 in Glasgow in 2021. The 65 biggest banks globally committed $869 B USD to companies conducting business in fossil fuels in 2024. The 65 biggest banks globally committed $429 B USD to companies expanding fossil fuel production and infrastructure in 2024. Over 2/3 of banks covered in this report 45 banks) increased their fossil fuel financing from 2023 to 2024. 48 of the 65 banks in this report increased fossil fuel expansion finance from 2023 to 2024.&lt;/blockquote&gt;
  689. &lt;p&gt;&lt;strong&gt;&lt;a href="https://go.auroraer.com/l/885013/2025-06-09/phvkq/885013/17494806532yw0P8mp/060625_Aurora_DR_and_Reliability_Assessment.pdf" target="_blank"&gt;The US Reliability Challenge and the Value of Flexibility&lt;/a&gt;, &lt;/strong&gt;Williams et al., &lt;strong&gt;Aurora Energy Research&lt;/strong&gt;&lt;/p&gt;
  690. &lt;blockquote&gt;The electric grid faces a new reliability crisis as traditional peak-focused planning misses emerging shoulder month vulnerabilities. When thermal plants take maintenance outages during these periods, dangerous reliability gaps emerge that current metrics like Effective Load Carrying Capability (ELCC) fail to capture. AI-driven demand growth is accelerating this problem, requiring a fundamental shift to year-round reliability planning and unprecedented grid flexibility. Traditional reliability planning misses the danger of shoulder months when baseload thermal plants take maintenance outages. Current capacity metrics fail to capture these periods of concern, creating blind spots that could trigger unexpected blackouts. ERCOT will face load shedding in both summer and shoulder months by 2030 under current thermal outage conditions. Additionally, demand swings are growing&amp;mdash;16% of hours will need 10GW+ ramps by 2035, underscoring the need for a fleet of flexible resources to maintain reliability. Smart demand response from data centers could eliminate the need for 10GW of new generation in ERCOT by 2030. Batteries and peaking gas are reducing strain on baseload plants and preventing costly cycling. Mastering flexibility economics will define grid success in the next decade.&lt;/blockquote&gt;
  691. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.swissre.com/institute/research/sonar/sonar2025.html" target="_blank"&gt;Swiss Re SONAR. New emerging risk insights&lt;/a&gt;, &lt;/strong&gt;Anchen et al., &lt;strong&gt;Swiss Re Institute&lt;/strong&gt;&lt;/p&gt;
  692. &lt;blockquote&gt;This year's SONAR report identifies eight emerging risks, such as the impacts of extreme heat, fungal disease spreading and building fungicide resistance, harm caused by plastics, and potential claims from increased consumption of ultra-processed foods. The report also raises five significant structural risks facing insurers.&lt;/blockquote&gt;
  693. &lt;p&gt;&lt;strong&gt;&lt;a href="https://climatecommunication.yale.edu/wp-content/uploads/2025/06/climate-change-american-mind-politics-policy-spring-2025c.pdf" target="_blank"&gt;Climate Change in the American Mind: Politics &amp;amp; Policy, Spring 2025&lt;/a&gt;, &lt;/strong&gt;Leiserowitz et al., &lt;strong&gt;Yale University and George Mason University&lt;/strong&gt;&lt;/p&gt;
  694. &lt;blockquote&gt;This report is based on findings from a nationally representative survey. Interview dates: May 1 -12, 2025. Interviews: 1,040 adults (18+), 915 of whom are registered to vote. Average margin of error for registered voters: +/- 3 percentage points at the 95% confidence level. 52% of registered voters think global warming should be a high or very high priority for the president and Congress. 64% of registered voters think developing sources of clean energy should be a high or very high priority for the president and Congress. Majorities of registered voters support a range of policies to reduce carbon pollution and promote clean energy. These include, 88% support federal funding to help farmers improve practices to protect and restore the soil so it absorbs and stores more carbon; 80% support funding more research into renewable energy sources; 75% support regulating carbon dioxide as a pollutant; 71% support tax credits or rebates to encourage people to buy electric appliances, such as heat pumps and induction stoves; 67% support transitioning the U.S. economy from fossil fuels to 100% clean energy by 2050 ; and 63% support requiring fossil fuel companies to pay for the damages caused by global warming.&lt;/blockquote&gt;
  695. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.unepfi.org/wordpress/wp-content/uploads/2025/06/APAC_Policy-brief_climate-risks-financial-regulation.pdf" target="_blank"&gt;Climate-related risks in financial regulation and supervision in APAC. A policy landscape analysis&lt;/a&gt;, &lt;/strong&gt;Martindale et al., &lt;strong&gt;United Nations Environment Programme&lt;/strong&gt;&lt;/p&gt;
  696. &lt;blockquote&gt;The authors assess how Asia-Pacific central banks and banking supervisors are leveraging prudential regulation&amp;mdash;rules and requirements intended to ensure the financial sector&amp;rsquo;s stability and soundness&amp;mdash;in relation to climate change within their respective mandates.&lt;/blockquote&gt;
  697. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.iag.co.nz/newsroom/news-releases/climate-change-poll-2025" target="_blank"&gt;New Zealand at climate change crossroads&lt;/a&gt;, &lt;/strong&gt;AMI, State and NZI, &lt;strong&gt;IAG New Zealand&lt;/strong&gt;&lt;/p&gt;
  698. &lt;blockquote&gt;New Zealanders are expecting more extreme weather events as a result of climate change. They want more to be done to reduce the risks and costs of these events to help keep insurance affordable and available. 90% of New Zealanders anticipate more extreme storms, 89% foresee more frequent and intense flooding, and 88% expect coastal flooding due to rising sea levels. As New Zealanders brace for a future shaped by more frequent and severe climate events, many expect the cost of these events to be reflected in insurance premiums.&lt;/blockquote&gt;
  699. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.dataforprogress.org/blog/2025/6/17/voters-are-concerned-about-rising-costs-and-think-climate-change-will-financially-affect-them" target="_blank"&gt;Voters Are Concerned About Rising Costs and Think Climate Change Will Financially Affect Them&lt;/a&gt;, &lt;/strong&gt;Brynne Robbins and Elias Kemp, &lt;strong&gt;Data for Progress&lt;/strong&gt;&lt;/p&gt;
  700. &lt;blockquote&gt;Voters nearly universally believe that energy and environmental issues are important to address. This holds across party lines: 95% of Democrats, 94% of Independents, and 88% of Republicans indicate that energy and environmental issues are either important or a top priority to them. However, the degree of importance varies significantly with party affiliation. Nearly half (49%) of Democrats say energy and environmental issues are a top priority, while only a third (33%) of Independents and just under a quarter (23%) of Republicans feel the same. When asked whether they believe climate change will have a direct financial impact on them and their family, a majority (58%) of likely voters say it will impact them either greatly or somewhat. Democrats most commonly believe this, with 73% saying that they will be either greatly or somewhat impacted, while only 41% of Republicans believe the same. Just 52% of white voters predict they&amp;rsquo;ll be impacted, compared with 64% of Black voters and 73% of Latino voters. Women (62%), voters under 45 (66%), and voters with a college degree (60%) also predict greater financial impact.&lt;/blockquote&gt;
  701. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cleanenergycanada.org/poll-two-thirds-of-canadians-favour-developing-clean-energy-over-fossil-fuels-while-85-wish-to-maintain-or-increase-federal-climate-action/" target="_blank"&gt;Two-thirds of Canadians favour developing clean energy over fossil fuels, while 85% wish to maintain or increase federal climate action&lt;/a&gt;, &lt;/strong&gt;Abacus Data, &lt;strong&gt;Clean Energy Canada&lt;/strong&gt;&lt;/p&gt;
  702. &lt;blockquote&gt;Two-thirds of Canadians say they would prioritize clean over conventional energy. Specifically, 67% of respondents say that, assuming both were priorities, they would generally favor clean energy projects such as critical minerals, renewable power and transmission, and energy storage. The remaining 33% would prefer conventional fossil fuel projects like oil and gas, including LNG development. Asked how crucial the two energy sectors will be to the Canadian economy over the next decade, 87% say clean energy will be very (45%) or pretty (42%) important, while 83% say fossil fuels will be very (36%) or pretty (47%) important. In other words, the four-point advantage for clean energy increases to nine points among those who see at least one of these sectors as &amp;ldquo;very important.&amp;rdquo;&lt;/blockquote&gt;
  703. &lt;hr /&gt;
  704. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  705. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  706. &lt;h3&gt;Suggestions&lt;/h3&gt;
  707. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  708. &lt;h3&gt;Previous edition&lt;/h3&gt;
  709. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_24.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  710. <link>https://skepticalscience.com/new_research_2025_25.html</link>
  711. <guid>https://skepticalscience.com/new_research_2025_25.html</guid>
  712. <pubDate>Thu, 19 Jun 2025 15:58:46 EST</pubDate>
  713. </item>  <item>
  714. <title>The role of aerosol declines in recent warming</title>
  715. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://www.theclimatebrink.com/p/the-role-of-aerosol-declines-in-recent"&gt;re-post from The Climate Brink&lt;/a&gt;&lt;/p&gt;
  716. &lt;p&gt;&lt;span&gt;Over at&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/explainer-how-human-caused-aerosols-are-masking-global-warming/"&gt;Carbon Brief&lt;/a&gt;&lt;span&gt;&amp;nbsp;I have a new detailed explainer on aerosols. They have a major (but poorly constrained) cooling effect on the climate, masking about 0.5C warming from CO2 and other greenhouse gases that would otherwise have occurred.&lt;/span&gt;&lt;/p&gt;
  717. &lt;p&gt;However, we are rapidly reducing both aerosol emissions and their resulting climate cooling effect. Global emissions of SO2, the most important aerosol, have fallen by 40% since the mid?2000s. China has cut its SO2 emissions more than 70% over the same period.&lt;/p&gt;
  718. &lt;p&gt;&lt;span&gt;This is a good thing; SO2 is a major precursor to PM2.5, which is responsible for&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://ourworldindata.org/outdoor-air-pollution"&gt;millions of deaths&lt;/a&gt;&lt;span&gt;&amp;nbsp;from outdoor air pollution worldwide. But reductions to clean the air are quickly unmasking more warming from our past greenhouse gas emissions.&lt;/span&gt;&lt;/p&gt;
  719. &lt;p&gt;&lt;span&gt;While the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/explainer-how-human-caused-aerosols-are-masking-global-warming/"&gt;Carbon Brief piece&lt;/a&gt;&lt;span&gt;&amp;nbsp;goes into quite a bit of detail about how aerosols influence the climate and how emissions have changed over time, I thought readers here would be particularly interested in the novel part of the piece where I estimate the global temperature impact of these recent reductions.&lt;/span&gt;&lt;/p&gt;
  720. &lt;!--more--&gt;
  721. &lt;h3 class="header-anchor-post"&gt;Effects of low-sulphur shipping fuel&lt;/h3&gt;
  722. &lt;p&gt;&lt;span&gt;The climate effects of the IMO&amp;rsquo;s 2020 phase-out of most of the sulphur content in shipping fuel has received a lot of attention over the past two years (see Carbon Brief&amp;rsquo;s&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/analysis-how-low-sulphur-shipping-rules-are-affecting-global-warming/"&gt;earlier coverage of the topic&lt;/a&gt;&lt;span&gt;).&lt;/span&gt;&lt;/p&gt;
  723. &lt;p&gt;&lt;span&gt;This has been explored by researchers as&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.realclimate.org/index.php/archives/2025/03/wmo-update-on-2023-4-anomalies/"&gt;a potential explanation&lt;/a&gt;&lt;span&gt;&amp;nbsp;for the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/state-of-the-climate-2024-sets-a-new-record-as-the-first-year-above-1-5c/"&gt;record levels of warming&lt;/a&gt;&lt;span&gt;&amp;nbsp;the world has experienced in recent years.&lt;/span&gt;&lt;/p&gt;
  724. &lt;p&gt;Determining the climate effects of low-sulphur shipping fuel is less straightforward than simply assessing the reduction in global SO2 emissions.&lt;/p&gt;
  725. &lt;p&gt;The impact of additional SO2 emissions on cloud formation diminishes as emissions increase, meaning that reductions in SO2 over areas with low background sulphate concentrations, such as the ocean, could result in a proportionately larger warming effect than in highly polluted areas, such as south Asia.&lt;/p&gt;
  726. &lt;p&gt;&lt;span&gt;This is somewhat countered by the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://acp.copernicus.org/articles/18/16793/2018/"&gt;concentration&lt;/a&gt;&lt;span&gt;&amp;nbsp;of shipping in specific &amp;ldquo;lanes&amp;rdquo; and by natural emissions of dimethyl sulphide produced by&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://academic.oup.com/nsr/article/8/2/nwaa140/5861306"&gt;algae&lt;/a&gt;&lt;span&gt;&amp;nbsp;that are not present on land. Assessing the radiative forcing impact of the IMO&amp;rsquo;s 2020 regulations in greater detail requires the use of sophisticated climate models that can simulate these regional effects.&lt;/span&gt;&lt;/p&gt;
  727. &lt;p&gt;Carbon Brief conducted a survey of the literature on the climate impacts of the 2020 low-sulphur marine fuel regulations. Of eight studies published in peer-reviewed journals over the past two years, shown in the chart below, most determined a radiative forcing change of around 0.11 to 0.14 watts per meter squared (w/m2).&lt;/p&gt;
  728. &lt;p&gt;&lt;span&gt;One estimate from&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://acp.copernicus.org/articles/24/13361/2024/"&gt;Skeie et al. (2024)&lt;/a&gt;&lt;span&gt;&amp;nbsp;was a bit lower at around 0.08 w/m2 and another from&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.tandfonline.com/doi/full/10.1080/00139157.2025.2434494"&gt;Hansen et al. (2025)&lt;/a&gt;&lt;span&gt;&amp;nbsp;was substantially higher than all the others at 0.5 w/m2.&lt;/span&gt;&lt;/p&gt;
  729. &lt;div class="captioned-image-container"&gt;
  730. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F7d02a44a-7eb9-4bcb-9f70-9b67f2dfe3ce_1600x1111.png" alt="" width="550" height="382" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/7d02a44a-7eb9-4bcb-9f70-9b67f2dfe3ce_1600x1111.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:1011,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  731. &lt;em&gt;Estimates of global average radiative forcing changes from the IMO 2020 regulations published in the last two years. See the Methodology section in the Carbon Brief article for links to individual studies.&lt;/em&gt;&lt;/div&gt;
  732. &lt;p&gt;&lt;span&gt;To account for these differing studies, Carbon Brief used the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://docs.fairmodel.net/en/latest/"&gt;FaIR&lt;/a&gt;&lt;span&gt;&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/guest-post-the-role-emulator-models-play-in-climate-change-projections/"&gt;climate model emulator&lt;/a&gt;&lt;span&gt;&amp;nbsp;to simulate the effects of the radiative forcing estimated in each study on global average surface temperatures between 2020 and 2030. This includes 841 different simulations for each study to account for uncertainties in the climate response to aerosol forcing. (See: Methodology in the Carbon Brief article for further details.)&lt;/span&gt;&lt;/p&gt;
  733. &lt;p&gt;These estimates were then all combined to provide a central estimate (50th percentile) that gives each study equal weight, as well as a 5th to 95th percentile range across all the simulations for each different forcing estimate, as shown in the figure below.&lt;/p&gt;
  734. &lt;div class="captioned-image-container"&gt;
  735. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F8ccf102b-f9a9-4c4f-b892-b345e92ef889_1556x1096.png" alt="" width="550" height="388" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/8ccf102b-f9a9-4c4f-b892-b345e92ef889_1556x1096.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:1026,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  736. &lt;em&gt;&lt;span&gt;Range (5th to 95th percentile) and central estimate (50th percentile) of simulated global average surface temperature responses to the IMO 2020 regulations across the radiative forcing estimates in the literature. Analysis by Carbon Brief using the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://docs.fairmodel.net/en/latest/"&gt;FaIR model&lt;/a&gt;&lt;span&gt;.&lt;/span&gt;&lt;/em&gt;&lt;/div&gt;
  737. &lt;p&gt;Overall, this approach provides a best estimate of 0.04C (0.02C to 0.16C) additional warming from the IMO&amp;rsquo;s 2020 regulations as of 2025, increasing to 0.05C (0.03C to 0.2C) by 2030.&lt;/p&gt;
  738. &lt;p&gt;These large uncertainty ranges are due to the inclusion of the Hansen et al. (2025) estimate, which represents something of an outlier relative to other published studies. Note that the warming of the climate system associated with the IMO 2020 regulations increases over time in the plot due to the ocean&amp;rsquo;s slow rate of warming buffering the climate response to forcing changes.&lt;/p&gt;
  739. &lt;h3 class="header-anchor-post"&gt;Declines in Chinese SO2 are unmasking warming&lt;/h3&gt;
  740. &lt;p&gt;&lt;span&gt;China&amp;rsquo;s reduction of SO2 emissions by more than 70% since 2007 represents a remarkable&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://rapidtransition.org/stories/so%E2%82%82-long-sulphur-how-china-rapidly-cut-sulphur-dioxide-emissions-to-help-clear-the-air/"&gt;public health success story&lt;/a&gt;&lt;span&gt;. It is estimated to have&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.newscientist.com/article/2258054-chinas-cuts-to-air-pollution-may-have-saved-150000-lives-each-year/"&gt;prevented&lt;/a&gt;&lt;span&gt;&amp;nbsp;hundreds of thousands of premature deaths from air pollution annually.&lt;/span&gt;&lt;/p&gt;
  741. &lt;p&gt;These rapid emissions cuts by China represent more than half the reduction in global SO2 emissions since 2007. They have been a major contributor to global temperature increases over the past two decades.&lt;/p&gt;
  742. &lt;p&gt;&lt;span&gt;To determine the impact of Chinese SO2 reductions on global average surface temperatures, Carbon Brief used Chinese SO2 emissions data from the Community Emissions Data System (&lt;/span&gt;&lt;a rel="" href="https://www.pnnl.gov/projects/ceds"&gt;CEDS&lt;/a&gt;&lt;span&gt;) combined with the FaIR climate model emulator.&lt;/span&gt;&lt;/p&gt;
  743. &lt;p&gt;The figure below shows the central estimate and 5th to 95th percentile across 841 different FaIR model simulations to account for uncertainties in the climate response to SO2 emissions.&lt;/p&gt;
  744. &lt;div class="captioned-image-container"&gt;
  745. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0ca36709-15ba-4257-8199-23b1a70ac124_1556x1094.png" alt="" width="550" height="387" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/0ca36709-15ba-4257-8199-23b1a70ac124_1556x1094.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:1024,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  746. &lt;em&gt;Range (5th to 95th percentile) and median (50th percentile) of simulated global mean surface temperature responses to declines in Chinese SO2 emissions. Analysis by Carbon Brief using the FaIR model.&lt;/em&gt;&lt;/div&gt;
  747. &lt;p&gt;The figure above shows that Chinese SO2 declines were likely responsible for a global temperature increase of around 0.06C (0.02C to 0.13C) between 2007 and 2025, increasing to 0.07C (0.02C to 0.14C) by 2030.&lt;/p&gt;
  748. &lt;p&gt;Much of this increase occurred between 2007 and 2020, with a more modest contribution of Chinese aerosol changes to warming in recent years.&lt;/p&gt;
  749. &lt;p&gt;&lt;span&gt;These results are nearly identical to those found in&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.researchsquare.com/article/rs-6005409/v1"&gt;a study currently undergoing peer review&lt;/a&gt;&lt;span&gt;&amp;nbsp;by&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://cicero.oslo.no/en/employees/bjorn-hallvard-samset"&gt;Dr Bj&amp;oslash;rn Samset&lt;/a&gt;&lt;span&gt;&amp;nbsp;and colleagues at&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://cicero.oslo.no/en"&gt;CICERO&lt;/a&gt;&lt;span&gt;, which finds a best estimate of 0.07C (0.02C to 0.12C) using a large set of simulations from eight different Earth system models.&lt;/span&gt;&lt;/p&gt;
  750. &lt;p&gt;This suggests that Chinese SO2 reductions are responsible for approximately 12% of the around 0.5C warming the world experienced between 2007 and 2024.&lt;/p&gt;
  751. &lt;h3 class="header-anchor-post"&gt;What aerosol cuts mean for current and future warming&lt;/h3&gt;
  752. &lt;p&gt;It is clear that rapid reductions in global SO2 emissions have had a major impact on the global climate.&lt;/p&gt;
  753. &lt;p&gt;The combination of declines in emissions since 2007 in China and the rest of the world, along with declines in SO2 from shipping after 2020, have collectively unmasked a substantial amount of warming driven by GHGs.&lt;/p&gt;
  754. &lt;p&gt;While the reduction in SO2 emissions in other countries has been proportionately smaller than that seen in China, collectively it adds up to 0.03C (0.01C to 0.07C) of warming in 2025.&lt;/p&gt;
  755. &lt;p&gt;The figure below provides a best-estimate of all three factors: declines in SO2 emissions in shipping, China and the rest of the world.&lt;/p&gt;
  756. &lt;div class="captioned-image-container"&gt;
  757. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5877be25-da95-49f3-a66c-c8ef197e6ec8_1546x1077.png" alt="" width="550" height="383" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/5877be25-da95-49f3-a66c-c8ef197e6ec8_1546x1077.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:1014,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:118208,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:&amp;quot;image/png&amp;quot;,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:&amp;quot;https://www.theclimatebrink.com/i/165587663?img=https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5877be25-da95-49f3-a66c-c8ef197e6ec8_1546x1077.png&amp;quot;,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  758. &lt;em&gt;Combined central (50th percentile) estimates of modeled global average surface temperature changes from IMO 2020, Chinese SO2 and rest-of-world SO2 declines between 2005 and 2030. Analysis by Carbon Brief using the FaIR model.&lt;/em&gt;&lt;/div&gt;
  759. &lt;p&gt;Taken together, these declines in SO2 emissions may represent around 0.14C additional warming today, or more than a quarter of the approximately 0.5C warming the world has experienced between 2007 and 2024.&lt;/p&gt;
  760. &lt;p&gt;However, the uncertainty in the climate response to changes in aerosol emissions remains large, particularly for changes in shipping emissions, so it is hard to rule out either a much smaller or much larger effect.&lt;/p&gt;
  761. &lt;p&gt;&lt;span&gt;These results are in line with&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.theclimatebrink.com/p/exploring-the-drivers-of-modern-global"&gt;other recent analyses&lt;/a&gt;&lt;span&gt;&amp;nbsp;showing that changes in aerosol emissions are contributing to an increase in the rate of human-caused global warming in recent years.&lt;/span&gt;&lt;/p&gt;
  762. &lt;p&gt;The figure below uses a similar FaIR-based climate modeling approach to assess how different factors contributing to human-caused warming have changed over time.&lt;/p&gt;
  763. &lt;div class="captioned-image-container"&gt;
  764. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F32eb9bbc-b69e-466d-a582-19776b78c621_1600x1117.png" alt="" width="550" height="384" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/32eb9bbc-b69e-466d-a582-19776b78c621_1600x1117.png&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:1016,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  765. &lt;em&gt;&lt;span&gt;Drivers of decadal warming rates between 1970-1979 and 2015-2024, excluding natural factors like volcanoes and solar cycle variation. From an analysis using the FaIR model at&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.theclimatebrink.com/p/exploring-the-drivers-of-modern-global"&gt;The Climate Brink&lt;/a&gt;&lt;span&gt;, adapted from earlier work by&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://github.com/chrisroadmap/temperature-attribution"&gt;Dr Chris Smith&lt;/a&gt;&lt;span&gt;.&lt;/span&gt;&lt;/em&gt;&lt;/div&gt;
  766. &lt;p&gt;This shows that the rate of human-caused warming remained relatively flat at around 0.18C per decade from 1980 to 2005, before accelerating to around 0.27C over the past decade.&lt;/p&gt;
  767. &lt;p&gt;The primary driver of this recent acceleration in warming has been declining aerosol emissions.&lt;/p&gt;
  768. &lt;p&gt;Aerosols have flipped from reducing the rate of decadal warming (as emissions increased) to increasing the rate of warming (as emissions decreased) after 2005 by unmasking warming from CO2 and other GHGs.&lt;/p&gt;
  769. &lt;p&gt;The rate of warming from CO2 has increased over time as emissions have increased, though it has plateaued over the past decade as increases in global emissions have slowed.&lt;/p&gt;
  770. &lt;p&gt;&lt;span&gt;However, the rate of warming from all GHG emissions &amp;ndash; CO2, methane and others &amp;ndash; has been relatively consistent since 1970. This is primarily due to the declining contribution of other GHGs to additional warming, likely associated with the phaseout of halocarbons after the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol"&gt;Montreal Protocol&lt;/a&gt;&lt;span&gt;.&lt;/span&gt;&lt;/p&gt;
  771. &lt;p&gt;&lt;span&gt;Future declines in aerosols are expected in most of the&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change/"&gt;Shared Socioeconomic Pathways&lt;/a&gt;&lt;span&gt;&amp;nbsp;(SSPs) used to simulate potential levels of future warming for the IPCC AR6 report, as shown in the figure below.&lt;/span&gt;&lt;/p&gt;
  772. &lt;p&gt;Modelled future SO2 emissions are generally dependent on broader mitigation trends &amp;ndash; worlds with less fossil-fuel use result in less sulphur emissions &amp;ndash; but are also highly variable across different models.&lt;/p&gt;
  773. &lt;p&gt;Observed SO2 emissions (black line) are broadly at the same level as (though slightly below) the SSP2-4.5 scenario (yellow line), which is the pathway that most closely matches current climate policies.&lt;/p&gt;
  774. &lt;p&gt;&lt;span&gt;Observed SO2 emissions are also similar to those in the very-high emissions&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/explainer-the-high-emissions-rcp8-5-global-warming-scenario/"&gt;SSP5-8.5 scenario&lt;/a&gt;&lt;span&gt;&amp;nbsp;(lower grey line), while being higher than emissions in the most ambitious mitigation scenario (SSP1-1.9, green line) and below those in the SSP1-2.6 scenario (navy blue line).&lt;/span&gt;&lt;/p&gt;
  775. &lt;div class="captioned-image-container"&gt;
  776. &lt;div class="image2-inset"&gt;&lt;img class="sizing-normal" src="https://substackcdn.com/image/fetch/w_1456,c_limit,f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F9a00d975-0c27-46a9-8ebc-a381f82eb508_1600x900.jpeg" alt="" width="550" height="309" data-attrs="{&amp;quot;src&amp;quot;:&amp;quot;https://substack-post-media.s3.amazonaws.com/public/images/9a00d975-0c27-46a9-8ebc-a381f82eb508_1600x900.jpeg&amp;quot;,&amp;quot;srcNoWatermark&amp;quot;:null,&amp;quot;fullscreen&amp;quot;:null,&amp;quot;imageSize&amp;quot;:null,&amp;quot;height&amp;quot;:819,&amp;quot;width&amp;quot;:1456,&amp;quot;resizeWidth&amp;quot;:null,&amp;quot;bytes&amp;quot;:null,&amp;quot;alt&amp;quot;:null,&amp;quot;title&amp;quot;:null,&amp;quot;type&amp;quot;:null,&amp;quot;href&amp;quot;:null,&amp;quot;belowTheFold&amp;quot;:true,&amp;quot;topImage&amp;quot;:false,&amp;quot;internalRedirect&amp;quot;:null,&amp;quot;isProcessing&amp;quot;:false,&amp;quot;align&amp;quot;:null,&amp;quot;offset&amp;quot;:false}" /&gt;&lt;/div&gt;
  777. &lt;em&gt;&lt;span&gt;Global SO2 emissions under different SSP baseline and mitigation pathways compared to observed SO2 emissions from CEDS. Credit:&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://x.com/Peters_Glen/status/1776198494564344113"&gt;Glen Peters&lt;/a&gt;&lt;span&gt;.&lt;/span&gt;&lt;/em&gt;&lt;/div&gt;
  778. &lt;p&gt;Given differences across modeling groups, it is hard to infer too much about which SSP scenario is most in line with real-world SO2 emissions. However, it is worth noting that the current SSPs do not include a scenario where SO2 emissions continue to rapidly decline while emissions of CO2 and other GHGs increase.&lt;/p&gt;
  779. &lt;p&gt;&lt;span&gt;Interestingly, the best-estimate cooling effect from sulphur dioxide is more or less counterbalanced by the warming effect of methane emissions today. As a result, scenarios where all GHG emissions are&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/explainer-will-global-warming-stop-as-soon-as-net-zero-emissions-are-reached/"&gt;brought to zero&lt;/a&gt;&lt;span&gt;&amp;nbsp;do not result in sustained additional warming due to unmasking from declining aerosols.&lt;/span&gt;&lt;/p&gt;
  780. &lt;p&gt;However, if CO2 emissions alone were reduced to zero, while non-CO2 emissions were held constant, cutting global aerosol emissions to zero would result in between 0.2C and 1.2C of additional warming.&lt;/p&gt;
  781. &lt;p&gt;&lt;span&gt;This means that aerosol emissions represent something of a wildcard for future warming over the 21st century. Continued rapid reductions in SO2 emissions will contribute to an&amp;nbsp;&lt;/span&gt;&lt;a rel="" href="https://www.carbonbrief.org/factcheck-why-the-recent-acceleration-in-global-warming-is-what-scientists-expect/"&gt;acceleration&lt;/a&gt;&lt;span&gt;&amp;nbsp;in the rate of global warming in the coming years.&lt;/span&gt;&lt;/p&gt;</description>
  782. <link>https://skepticalscience.com/aerosol-role-recent-warming.html</link>
  783. <guid>https://skepticalscience.com/aerosol-role-recent-warming.html</guid>
  784. <pubDate>Wed, 18 Jun 2025 15:30:08 EST</pubDate>
  785. </item>  <item>
  786. <title>10 ways that Trump’s tax bill would undermine his energy promises</title>
  787. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/06/10-ways-that-trumps-tax-bill-would-undermine-his-energy-promises/"&gt;re-post from Yale Climate Connections&lt;/a&gt;&lt;/p&gt;
  788. &lt;p class="has-drop-cap"&gt;President Donald Trump has promised to reduce&amp;nbsp;&lt;a href="https://www.yahoo.com/news/trump-says-elected-president-ll-202724792.html"&gt;gas prices&lt;/a&gt;, improve&amp;nbsp;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/01/declaring-a-national-energy-emergency/"&gt;energy security&lt;/a&gt;, create&amp;nbsp;&lt;a href="https://www.whitehouse.gov/fact-sheets/2025/04/fact-sheet-president-donald-j-trump-declares-national-emergency-to-increase-our-competitive-edge-protect-our-sovereignty-and-strengthen-our-national-and-economic-security/"&gt;domestic manufacturing jobs&lt;/a&gt;, boost the economy, and ensure that Americans breathe the&amp;nbsp;&lt;a href="https://trumpwhitehouse.archives.gov/briefings-statements/remarks-president-trump-americas-environmental-leadership/"&gt;cleanest air&lt;/a&gt;. But by&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/05/one-big-beautiful-climate-killing-bill/"&gt;gutting the Inflation Reduction Act&lt;/a&gt;, or IRA, Congress&amp;rsquo; big new budget bill would undermine all of these objectives &amp;ndash; and more.&lt;/p&gt;
  789. &lt;p&gt;House Republicans&amp;rsquo; top two priorities are to extend the soon-to-expire tax cuts that they passed in 2017, and to minimize the amount that doing so will add to&amp;nbsp;&lt;a href="https://www.pgpf.org/national-debt-clock/"&gt;the nation&amp;rsquo;s over $36 trillion in debt&lt;/a&gt;. The massive budget bill they narrowly passed in May is their effort to achieve both.&lt;/p&gt;
  790. &lt;p&gt;&lt;a href="https://www.cbo.gov/publication/61461"&gt;The Congressional Budget Office estimated&lt;/a&gt;&amp;nbsp;that the House bill&amp;rsquo;s proposed tax cuts would add about $4.5 trillion to the debt over the next decade &amp;ndash; more than a 12% increase from today&amp;rsquo;s levels.&lt;/p&gt;
  791. &lt;p&gt;To pay for some of those tax cuts, the House bill would repeal most of the IRA&amp;rsquo;s climate and clean energy investments. The IRA, passed by Democrats in 2022, committed hundreds of billions of dollars to developing clean energy and fighting climate change.&lt;/p&gt;
  792. &lt;p&gt;The Congressional Budget Office estimated that the proposed repeal of climate and clean energy investments would shave $567 billion off the tax bill&amp;rsquo;s additions to the national debt. But repealing those investments would also come at a cost.&lt;/p&gt;
  793. &lt;p&gt;Eight groups have analyzed the specific impacts the tax bill&amp;rsquo;s IRA repeal would have on Americans. Three &amp;ndash; at&amp;nbsp;&lt;a href="https://zenodo.org/records/15490326"&gt;Princeton&lt;/a&gt;,&amp;nbsp;&lt;a href="https://energyinnovation.org/report/assessing-impacts-of-the-2025-reconciliation-bill-on-u-s-energy-costs-jobs-health-and-emissions/"&gt;Energy Innovation&lt;/a&gt;&amp;nbsp;(a Yale Climate Connections content-sharing partner), and&amp;nbsp;&lt;a href="https://rhg.com/research/ways-and-means-brings-the-hammer-down-on-energy-credits/"&gt;Rhodium Group&lt;/a&gt;&amp;nbsp;&amp;ndash; evaluated the impacts of the entire bill, while five others &amp;ndash;&amp;nbsp;&lt;a href="https://auroraer.com/media/reform-to-clean-energy-tax-credits/"&gt;Aurora Energy Research&lt;/a&gt;,&amp;nbsp;&lt;a href="https://www.rff.org/publications/issue-briefs/projected-impacts-of-repealing-the-section-45y-and-48e-technology-neutral-clean-electricity-tax-credits/"&gt;Resources for the Future&lt;/a&gt;,&amp;nbsp;&lt;a href="https://www.brattle.com/wp-content/uploads/2025/02/A-Wide-Array-of-Resources-is-Needed-to-Meet-Growing-US-Energy-Demand.pdf"&gt;Brattle Group&lt;/a&gt;,&amp;nbsp;&lt;a href="https://cebuyers.org/wp-content/uploads/2025/02/CEBA_Electricity-Price-Impacts-of-Technology-Neutral-Tax-Incentives-With-Incremental-Electricity-Demand-From-Data-Centers_February-2025.pdf"&gt;National Economic Research Associates&lt;/a&gt;, and&amp;nbsp;&lt;a href="https://underthreat.seia.org/threat/#jobs"&gt;Solar Energy Industries Association&lt;/a&gt;&amp;nbsp;&amp;ndash; looked specifically at the repeal of the IRA&amp;rsquo;s clean electricity tax credits.&lt;/p&gt;
  794. &lt;p&gt;The results were consistent in finding that Republicans&amp;rsquo; proposed IRA repeal would increase household energy bills, imperil a nascent domestic manufacturing boom, raise the risks of power outages, disadvantage artificial intelligence development U.S., and increase pollution at the expense of the health of U.S. residents &amp;ndash;&amp;nbsp;all outcomes that undermine Trump&amp;rsquo;s stated goals.&lt;/p&gt;
  795. &lt;p&gt;A number of&amp;nbsp;&lt;a href="https://www.eenews.net/articles/senate-enters-pivotal-week-on-reconciliation"&gt;Republican Senators have expressed discomfort with the handling of clean energy in the House bill&lt;/a&gt;&amp;nbsp;and may make significant changes in their version.&lt;/p&gt;
  796. &lt;!--more--&gt;
  797. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;A hidden gas tax&lt;/span&gt;&lt;/h4&gt;
  798. &lt;p&gt;Although the rate of inflation in the U.S. has slowed, the cost of living is still high. Average&amp;nbsp;&lt;a href="https://fred.stlouisfed.org/series/GASREGCOVM"&gt;gasoline prices&lt;/a&gt;&amp;nbsp;remain about $3 per gallon, about 50 cents higher than they were before the COVID pandemic. On the campaign trail,&amp;nbsp;&lt;a href="https://www.yahoo.com/news/trump-says-elected-president-ll-202724792.html"&gt;Trump promised&lt;/a&gt;&amp;nbsp;to push gasoline prices down below $2 per gallon.&lt;/p&gt;
  799. &lt;p&gt;The House bill would instead raise gasoline prices. If its proposed repeals of electric vehicle tax credits come to fruition, Princeton and Resources for the Future estimate that there would be 7.4 million fewer EVs on American roads by 2030 and 20-40 million fewer by 2035. That would leave more cars guzzling gasoline, with that demand contributing to elevated prices at the pump.&lt;/p&gt;
  800. &lt;p&gt;Rhodium Group projected that gasoline prices would rise by three to 15 cents per gallon if the EV tax credits are repealed compared to leaving them in place.&lt;/p&gt;
  801. &lt;p&gt;And because fueling up an EV costs about&amp;nbsp;&lt;a href="https://www.consumerreports.org/hybrids-evs/evs-offer-big-savings-over-traditional-gas-powered-cars/"&gt;$800 less per year&lt;/a&gt;&amp;nbsp;than a new gasoline car on average, tens of millions of Americans would miss out on those savings, too.&lt;/p&gt;
  802. &lt;p&gt;Overall, repealing the EV tax credits would raise average U.S. household vehicle fueling costs by an estimated $40 to $200 per year, the modelers found.&lt;/p&gt;
  803. &lt;h4 class="wp-block-heading"&gt;And an electricity tax&lt;/h4&gt;
  804. &lt;p&gt;Trump&amp;nbsp;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/01/declaring-a-national-energy-emergency/"&gt;declared a national energy emergency&lt;/a&gt;&amp;nbsp;on his first day in office, citing the &amp;ldquo;active threat to the American people from high energy prices.&amp;rdquo;&amp;nbsp;&lt;a href="https://fred.stlouisfed.org/series/APU000072610"&gt;Electricity prices&lt;/a&gt;&amp;nbsp;are about 33% higher than pre-pandemic levels. During the previous decade, those rates had been stable, increasing by less than 10%.&lt;/p&gt;
  805. &lt;p&gt;If the proposed repeals of clean electricity tax credits are signed into law, the modelers estimate that only about half as many new solar and wind power generation facilities would be built over the next decade.&lt;/p&gt;
  806. &lt;p&gt;&lt;img class="perfmatters-lazy entered pmloaded" title="" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/06/null-2.png?w=2000&amp;amp;ssl=1" alt="A pair of bar charts show that if the IRA is preserved, U.S. electricity capacity will grow significantly by 2035. " width="550" data-recalc-dims="1" data-src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/06/null-2.png?w=2000&amp;amp;ssl=1" data-ll-status="loaded" /&gt;&lt;em&gt;New U.S. annual electricity capacity additions through 2035 if EPA climate regulations and the IRA are both repealed (Full Repeal scenario on the left) vs. if EPA regulations are repealed but the IRA is preserved (Executive Repeal scenario on the right). (Image credit:&amp;nbsp;&lt;a href="https://zenodo.org/records/15490326"&gt;Princeton REPEAT&lt;/a&gt;&amp;nbsp;/ CC BY 4.0)&lt;/em&gt;&lt;/p&gt;
  807. &lt;p&gt;This slowed deployment would come at exactly the wrong time for American wallets. In the next decade, electricity demand is forecast to rise five to 10 times faster than it has over the past 20 years &amp;ndash; the result of rapidly expanding data centers, artificial intelligence, electrification of vehicles and buildings, and increased air conditioning use. Electricity demand would begin to outstrip supply, leading to higher prices.&lt;/p&gt;
  808. &lt;p&gt;&lt;img class="perfmatters-lazy entered pmloaded" title="" src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/06/null-3.png?w=2000&amp;amp;ssl=1" alt="A line graph shows that after relatively stable demand for 20 years, electricity demand is set to balloon by 2035. " width="550" data-recalc-dims="1" data-src="https://i0.wp.com/yaleclimateconnections.org/wp-content/uploads/2025/06/null-3.png?w=2000&amp;amp;ssl=1" data-ll-status="loaded" /&gt;&lt;em&gt;Total annual U.S. electricity consumption since 1980 (white) and projected forward through 2035 (orange). (Image credit:&amp;nbsp;&lt;a href="https://zenodo.org/records/15490326"&gt;Princeton REPEAT&lt;/a&gt;&amp;nbsp;/ CC BY 4.0)&lt;/em&gt;&lt;/p&gt;
  809. &lt;p&gt;The reports estimate that repealing the IRA&amp;rsquo;s clean electricity tax credits would result in annual U.S. household electricity bills increasing by $46 to $160 over the next decade. Most analyses agree that states in the windy middle of the country, which currently enjoy low electricity rates thanks to cheap wind energy production, would see the largest cost increases resulting from the tax credit repeal.&lt;/p&gt;
  810. &lt;h4 class="wp-block-heading"&gt;Plus a tax on the other kind of gas&lt;/h4&gt;
  811. &lt;p&gt;With fewer clean electricity deployments, utilities would also have to burn more natural gas, a fossil fuel composed primarily of climate-warming methane, to meet the rising power demand. Rhodium Group estimated that this would make natural gas prices rise by 2-7%, contributing to higher home heating and cooking bills for households with gas appliances&amp;nbsp;&lt;em&gt;(Editor&amp;rsquo;s note: This sentence was updated June 12, 2025, to correct the name of the organization that performed the estimate.)&lt;/em&gt;&lt;/p&gt;
  812. &lt;p&gt;Overall, average U.S. household energy costs would increase by a total of between $1,000 and $3,000 over the next 10 years if House Republicans&amp;rsquo; budget bill passes. And because it also includes the repeal of the IRA&amp;rsquo;s incentives to make homes more energy efficient and install rooftop solar and battery systems, fewer Americans would be able to avoid these rising energy costs.&lt;/p&gt;
  813. &lt;h4 class="wp-block-heading"&gt;Danger of falling behind China in the artificial intelligence race&lt;/h4&gt;
  814. &lt;p&gt;At the same time as U.S. power demand is rising fast,&amp;nbsp;&lt;a href="https://www.spglobal.com/commodity-insights/en/news-research/latest-news/electric-power/052025-us-gas-fired-turbine-wait-times-as-much-as-seven-years-costs-up-sharply"&gt;natural gas turbines are facing years of delivery backlogs&lt;/a&gt;. As a result, many experts have concluded that clean electricity &amp;ndash; especially solar panels and batteries, which&amp;nbsp;&lt;a href="https://www.eia.gov/todayinenergy/detail.php?id=64126#:~:text=Solar%20and%20battery%20storage%20to,U.S.%20Energy%20Information%20Administration%20(EIA)"&gt;accounted for over 80% of new U.S. electricity generation capacity added in 2024&lt;/a&gt;&amp;nbsp;&amp;ndash; are the only sources that can be deployed quickly enough to meet that rapidly growing demand.&lt;/p&gt;
  815. &lt;p&gt;If the clean electricity tax credits are repealed and only half as much new clean power is deployed in the coming years, that would force consumers, including developers of artificial intelligence, or AI, to compete for an increasingly insufficient and expensive power supply.&lt;/p&gt;
  816. &lt;p&gt;A&amp;nbsp;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/01/removing-barriers-to-american-leadership-in-artificial-intelligence/"&gt;January executive order&lt;/a&gt;&amp;nbsp;stated, &amp;ldquo;With the right Government policies, we can solidify our position as the global leader in AI and secure a brighter future for all Americans.&amp;rdquo;&lt;/p&gt;
  817. &lt;p&gt;But leaving AI developers scrambling to find sufficient power sources for their data centers would undermine that goal.&lt;/p&gt;
  818. &lt;p&gt;As Robbie Orvis, a senior director for modeling and analysis at Energy Innovation&amp;nbsp;&lt;a href="https://grist.org/politics/trump-big-beautiful-bill-congress-energy-costs"&gt;told Grist&lt;/a&gt;, &amp;ldquo;The ironic thing is that what&amp;rsquo;s in the bill, the net results of it will be completely contradictory to what the [Trump] administration&amp;rsquo;s stated policy priorities are and will cede a lot of the AI development and the manufacturing to China specifically.&amp;rdquo;&lt;/p&gt;
  819. &lt;h4 class="wp-block-heading"&gt;More frequent power outages&lt;/h4&gt;
  820. &lt;p&gt;As Trump&amp;rsquo;s energy emergency declaration noted, &amp;ldquo;An affordable and reliable domestic supply of energy is a fundamental requirement for the national and economic security of any nation.&amp;rdquo;&lt;/p&gt;
  821. &lt;p&gt;A lack of sufficient power generation would be especially dangerous during the kinds of extreme weather events that are becoming more frequent and severe as a result of climate change. Just look to Texas and California, which have both experienced costly blackouts in recent years, but were able to avoid power outages during&amp;nbsp;&lt;a href="https://www.reformaustin.org/infrastructure/texas-grid-stays-strong-despite-pushback-on-renewables/"&gt;spring 2025&lt;/a&gt;&amp;nbsp;and&amp;nbsp;&lt;a href="https://www.caiso.com/about/news/energy-matters-blog/managing-the-july-2024-heat-wave-with-our-partners-in-california-and-the-west"&gt;summer 2024&lt;/a&gt;&amp;nbsp;heat waves thanks to their rapid deployments of solar energy and batteries. But if the states aren&amp;rsquo;t able to keep up with rising power demand,&amp;nbsp;&lt;a href="https://www.expressnews.com/business/article/texas-ercot-rolling-blackouts-summer-risk-20368146.php"&gt;the risks of blackouts would return&lt;/a&gt;.&lt;/p&gt;
  822. &lt;p&gt;As Brendan Pierpont, Energy Innovation&amp;rsquo;s Director of Electricity Modeling&amp;nbsp;&lt;a href="https://www.realclearenergy.org/articles/2025/06/02/one_big_blackout_bill_the_house_reconciliation_bill_threatens_grid_reliability_1113662.html"&gt;put it&lt;/a&gt;, repealing the IRA&amp;rsquo;s clean electricity tax credits would threaten many planned clean energy projects and &amp;ldquo;leave grids unprepared for extreme weather and other unforeseen events, risking blackouts.&amp;rdquo;&lt;/p&gt;
  823. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;Imperiled American manufacturing&lt;/span&gt;&lt;/h4&gt;
  824. &lt;p&gt;&lt;a href="https://www.whitehouse.gov/fact-sheets/2025/04/fact-sheet-president-donald-j-trump-declares-national-emergency-to-increase-our-competitive-edge-protect-our-sovereignty-and-strengthen-our-national-and-economic-security/"&gt;An April executive order&lt;/a&gt;&amp;nbsp;stated that &amp;ldquo;President Trump recognizes that increasing domestic manufacturing is critical to U.S. national security.&amp;rdquo; That&amp;rsquo;s exactly&amp;nbsp;&lt;a href="https://e2.org/announcements/"&gt;what the IRA has been achieving&lt;/a&gt;, with hundreds of new clean energy projects announced since the bill was signed into law, representing hundreds of thousands of jobs and hundreds of billions of dollars of investments in communities around the country. As MIT and Rhodium&amp;rsquo;s&amp;nbsp;&lt;a href="https://www.cleaninvestmentmonitor.org/database"&gt;Clean Investment Monitor&lt;/a&gt;&amp;nbsp;illustrates, the vast majority of those investments have been in batteries, EVs, and solar panels.&lt;/p&gt;
  825. &lt;p&gt;Repealing the IRA&amp;rsquo;s clean electricity and EV tax credits would imperil many of these projects and their associated jobs and economic benefits. Princeton&amp;rsquo;s analysis concluded that automakers and battery companies might even be forced to reduce output and lay off workers from some of the new U.S. factories that have already been built.&lt;/p&gt;
  826. &lt;h4 class="wp-block-heading"&gt;Lost jobs and economic growth&lt;/h4&gt;
  827. &lt;p&gt;The April executive order also highlighted that domestic manufacturing brings &amp;ldquo;better-paying American jobs making beautiful American-made cars, appliances, and other goods.&amp;rdquo;&lt;/p&gt;
  828. &lt;div id="id_126912" class="newspack-popup-container newspack-popup newspack-inline-popup newspack-lightbox-no-border" data-segments="14345" data-frequency="0,0,0,month"&gt;
  829. &lt;div class="wp-block-group is-style-border"&gt;
  830. &lt;div class="wp-block-group__inner-container is-layout-constrained wp-block-group-is-layout-constrained"&gt;
  831. &lt;p&gt;But repealing the IRA would reduce demand for domestic EV, solar, battery, and wind manufacturing, and eliminate construction jobs building new clean power facilities. The reports estimate that if the budget bill passes, hundreds of thousands of jobs would be lost throughout the U.S. economy, and the country&amp;rsquo;s gross domestic product could lose more than $1 trillion as a result.&lt;/p&gt;
  832. &lt;/div&gt;
  833. &lt;/div&gt;
  834. &lt;/div&gt;
  835. &lt;p&gt;Southern states and districts represented by Republicans, where most of those new facilities and jobs are located, have the most to lose from these canceled projects and potential layoffs.&lt;/p&gt;
  836. &lt;p&gt;&lt;img class="perfmatters-lazy entered pmloaded" src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXflB7882uux4gnG6LXrAKSzW0r7ePxwWgR9gr7vYC0ArxYdnJLAO9OObV4N177YCkLJwDHLoqVXbsPJ84tXwUKjFAAaDs-k5EBk80bBHDiL9ioFCKG-9POzEsx7dNUcyyso-97q?key=s5VaesPz5etGMn_kUIgH4Q" alt="A map of North America shows that clean energy projects are concentrated in Republican areas of the U.S. Southeast " width="550" data-src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXflB7882uux4gnG6LXrAKSzW0r7ePxwWgR9gr7vYC0ArxYdnJLAO9OObV4N177YCkLJwDHLoqVXbsPJ84tXwUKjFAAaDs-k5EBk80bBHDiL9ioFCKG-9POzEsx7dNUcyyso-97q?key=s5VaesPz5etGMn_kUIgH4Q" data-ll-status="loaded" /&gt;&lt;em&gt;Clean energy projects announced since the IRA passed in August 2022. Red circles are in districts represented by House Republicans, blue by House Democrats. Bigger circles represent projects with larger financial investments. (Image:&amp;nbsp;&lt;a href="https://e2.org/announcements/"&gt;E2&lt;/a&gt;&amp;nbsp;/ used with permission)&lt;/em&gt;&lt;/p&gt;
  837. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;More pollution and unhealthier Americans&lt;/span&gt;&lt;/h4&gt;
  838. &lt;p&gt;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/02/establishing-the-presidents-make-america-healthy-again-commission/"&gt;A February executive order&lt;/a&gt;&amp;nbsp;stated that &amp;ldquo;It shall be the policy of the Federal Government to aggressively combat the critical health challenges facing our citizens,&amp;rdquo; and Trump has&amp;nbsp;&lt;a href="https://trumpwhitehouse.archives.gov/briefings-statements/remarks-president-trump-americas-environmental-leadership/"&gt;said&lt;/a&gt;&amp;nbsp;that he considers it &amp;ldquo;a top priority to ensure that America has among the very cleanest air and cleanest water on the planet.&amp;rdquo;&lt;/p&gt;
  839. &lt;p&gt;But repealing the IRA would increase the burning of fossil fuels in power plants and cars, generating more air pollution. This would harm public health, leading to thousands of extra premature American deaths over the next decade, according to Energy Innovation&amp;rsquo;s analysis.&lt;/p&gt;
  840. &lt;p&gt;It would also leave U.S. climate pollution just 20-30% below 2005 levels by 2030, falling about halfway short of the country&amp;rsquo;s prior commitment to reduce emissions 50% by 2030. Total emissions would be an estimated 3 billion tons higher over the next decade than if the IRA were left in place. That&amp;rsquo;s equivalent to adding an extra six months&amp;rsquo; worth of U.S. climate pollution over the next decade &amp;ndash; and at a time when emissions need to fall dramatically to meet climate targets.&lt;/p&gt;
  841. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;But those tax cuts&lt;/span&gt;&lt;/h4&gt;
  842. &lt;p&gt;Overall, although repealing the IRA would save the government around $567 billion over the next decade, it would cost about $1 trillion in economic growth, $1,000 or more per household in higher energy costs, and hundreds of thousands of lost domestic manufacturing and construction jobs. It would also result in reduced energy security, a higher risk of blackouts, a disadvantage for domestic artificial intelligence development, 3 billion extra tons of climate pollution, and the loss of thousands of lives.&lt;/p&gt;
  843. &lt;p&gt;But don&amp;rsquo;t forget the bill would cut taxes for the ultrawealthy. That&amp;rsquo;s likely why Trump is urging Congress to&amp;nbsp;&lt;a href="https://www.politico.com/live-updates/2025/06/09/congress/johnson-trumps-megabill-is-still-on-track-00394985"&gt;pass it&lt;/a&gt;&amp;nbsp;by July 4.&lt;/p&gt;</description>
  844. <link>https://skepticalscience.com/10-ways-tax-bill-undermine-energy.html</link>
  845. <guid>https://skepticalscience.com/10-ways-tax-bill-undermine-energy.html</guid>
  846. <pubDate>Mon, 16 Jun 2025 14:25:05 EST</pubDate>
  847. </item>  <item>
  848. <title>2025 SkS Weekly Climate Change &amp; Global Warming News Roundup #24</title>
  849. <description>&lt;div class="greenbox" style="text-align: justify;"&gt;A listing of 28 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 8, 2025 thru Sat, June 14, 2025.&lt;/div&gt;
  850. &lt;h3&gt;Stories we promoted this week, by category:&lt;/h3&gt;
  851. &lt;p&gt;&lt;strong&gt;Climate Science and Research (8 articles)&lt;/strong&gt;&lt;/p&gt;
  852. &lt;ul&gt;
  853. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://youtu.be/IPc4BIqIx7I?si=N8tib6k0d5FSQVZ-" target="_blank"&gt;Stefan Rahmstorf - Atlantic ocean circulation: a dangerous tipping point for European climate?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; IFIMAC on Youtube, Stefan Rahmstorf, May 27, 2025.&lt;/li&gt;
  854. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://theconversation.com/ocean-mud-locks-up-much-of-the-planets-carbon-were-digging-deep-to-map-these-ancient-stores-257068" target="_blank"&gt;Ocean mud locks up much of the planet&amp;rsquo;s carbon &amp;ndash; we&amp;rsquo;re digging deep to map these ancient stores&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Deep down at the bottom of the sea, mud is one of the most important natural archives of Earth&amp;rsquo;s past &amp;ndash; holding clues of shifting climates, coastlines, ocean conditions and carbon storage.&lt;/em&gt; The Conversation, Sophie Ward &amp;amp; Zoe Roseby, June 6, 2025.&lt;/li&gt;
  855. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/temperature-check/amoc-atlantic-ocean-collapse-science-tipping-point/" target="_blank"&gt;When will a vital system of currents in the Atlantic Ocean collapse? Depends on whom you ask.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;New research suggests the currents that help shape the climate may be weakening more slowly than thought.&lt;/em&gt; Grist, Rebecca Egan McCarthy, Jun 09, 2025.&lt;/li&gt;
  856. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://thehill.com/policy/equilibrium-sustainability/5340239-ocean-acidity-study-climate-change-carbon/" target="_blank"&gt;Ocean acidity crosses vital threshold, study finds&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; TheHill.com Just In, Saul Elbein, Jun 09, 2025.&lt;/li&gt;
  857. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theclimatebrink.com/p/the-role-of-aerosol-declines-in-recent" target="_blank"&gt;The role of aerosol declines in recent warming&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;SO2 declines have contributed ~25% of recent warming and driven recent acceleration. &lt;/em&gt; The Climate Brink, Zeke Hausfather, Jun 10, 2025.&lt;/li&gt;
  858. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.carbonbrief.org/ocean-current-collapse-could-trigger-profound-cooling-in-northern-europe-even-with-global-warming/" target="_blank"&gt;Ocean current `collapse` could trigger `profound cooling` in northern Europe - even with global warming&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A &amp;ldquo;collapse&amp;rdquo; of key Atlantic ocean currents would cause winter temperatures to plunge across northern Europe, overriding the warming driven by human activity, which seems a good reason not to accidentally break the AMOC. &lt;/em&gt; Carbon Brief, Cecilia Keating, Jun 11, 2025.&lt;/li&gt;
  859. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_24.html" target="_blank"&gt;Skeptical Science New Research for Week #24 2025&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A weekly digest of recently published research on matters of human-caused climate change, how we'll fix Earth's climate and/or learn to live with the mess we've made.&lt;/em&gt; Skeptical Science, Doug Bostrom &amp;amp; Marc Kodack, Jun 12, 2025.&lt;/li&gt;
  860. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/13062025/dire-sea-level-warming-polar-ice-sheets/" target="_blank"&gt;New Climate Study Highlights Dire Sea Level Warmings&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;To learn about how polar ice sheets melted during an ancient era, scientists examined fossil coral reefs in the tropics.&lt;/em&gt; Inside Climate News, Bob Berwyn, Jun 13, 2025.&lt;/li&gt;
  861. &lt;/ul&gt;
  862. &lt;!--more--&gt;
  863. &lt;p&gt;&lt;strong&gt;Climate Change Impacts (5 articles)&lt;/strong&gt;&lt;/p&gt;
  864. &lt;ul&gt;
  865. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/environment/2025/jun/09/the-scientists-warning-the-world-about-ocean-acidification-evil-twin-of-the-climate-crisis" target="_blank"&gt;How the `evil twin` of the climate crisis is threatening our oceans&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;In seas around the world pH levels are falling &amp;ndash; and scientists are increasingly frustrated that the problem is not being taken seriously enough&lt;/em&gt; The Guardian, Lisa Bachelor, Jun 09, 2025.&lt;/li&gt;
  866. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://yaleclimateconnections.org/2025/06/that-swiss-glacier-collapse-it-wasnt-a-one-off/" target="_blank"&gt;That Swiss glacier collapse? It wasn`t a one-off&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Climate change is greasing the skids for glacier detachments that can lead to rock-ice avalanches. &lt;/em&gt; Yale Climate Connections, Bob Henson, Jun 09, 2025.&lt;/li&gt;
  867. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.independent.co.uk/news/greenland-iceland-record-heat-may-b2768219.html" target="_blank"&gt;Greenland and Iceland saw record heat in May. What does that mean for the planet?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A new analysis says human-caused climate change had a key role in the record-breaking heat wave in Iceland and Greenland in May&lt;/em&gt; The Independent News, Isabella O'Malley, Jun 11, 2025.&lt;/li&gt;
  868. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theclimatebrink.com/p/what-do-the-latest-wmo-temperature" target="_blank"&gt;What do the latest WMO temperature projections imply for 1.5C?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The next five years are expected to be quite warm&lt;/em&gt; The Climate Brink, Zeke Hausfather, Jun 12, 2025.&lt;/li&gt;
  869. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://phys.org/news/2025-06-fossil-corals-possibly-steeper-sea.html" target="_blank"&gt;Fossil corals point to possibly steeper sea level rise under a warming world&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Phys.org, University of Wisconsin-Madison, Jun 13, 2025.&lt;/li&gt;
  870. &lt;/ul&gt;
  871. &lt;p&gt;&lt;strong&gt;Climate Education and Communication (4 articles)&lt;/strong&gt;&lt;/p&gt;
  872. &lt;ul&gt;
  873. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.distilled.earth/p/can-a-story-change-someones-mind" target="_blank"&gt;Can a Story Change Someone's Mind?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Climate journalist muses on the power of stories to change minds.&lt;/em&gt; Distilled, Michael Thomas, Jun 07, 2025.&lt;/li&gt;
  874. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://insideclimatenews.org/news/10062025/summer-fellows-to-report-on-environmental-issues-around-the-country/" target="_blank"&gt;Inside Climate News Selects 11 Summer Fellows to Report on Environmental Issues Around the Country&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Dozens of students and recent graduates have deepened their understanding of climate change reporting since the fellowship program began.&lt;/em&gt; Inside Climate News, ICN Editors, Jun 10, 2025.&lt;/li&gt;
  875. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.theguardian.com/us-news/2025/jun/11/climate-website-shut-down-noaa" target="_blank"&gt;Major US climate website likely to be shut down after almost all staff fired&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Climate.gov, which supports public education on climate science, will soon no longer publish new content&lt;/em&gt; The Guardian, Eric Holthaus, Jun 11, 2025.&lt;/li&gt;
  876. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://reportearth.substack.com/p/what-climate-journalism-means-heading" target="_blank"&gt;What climate journalism means heading into a 1.5 C world&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Five charts and fifty-five opinions about the state of the field, and where it is going.&lt;/em&gt; ReportEarth, Chris Mooney, June 14, 2025.&lt;/li&gt;
  877. &lt;/ul&gt;
  878. &lt;p&gt;&lt;strong&gt;Climate Change Mitigation and Adaptation (3 articles)&lt;/strong&gt;&lt;/p&gt;
  879. &lt;ul&gt;
  880. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/energy/data-centers-are-building-their-own-gas-power-plants-in-texas/" target="_blank"&gt;Data centers are building their own gas power plants in Texas&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A race to turn our climate clock back relay on dangerously dirty energy supply systems, as panicky AI firms scramble to maintain or gain advantage. &lt;/em&gt; Grist, Dylan Baddour , Jun 08, 2025.&lt;/li&gt;
  881. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.independent.co.uk/news/business/ccs-northern-ireland-co2-england-cinderella-b2766850.html" target="_blank"&gt;Geologists unveil UK `super regions` with best potential for transition projects&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;The UK has a diverse subsurface, which can play a key role in supporting efforts to reach the country&amp;rsquo;s legally binding climate goals, geologists say.&lt;/em&gt; The Independent News, Rebecca Speare-Cole, Jun 09, 2025.&lt;/li&gt;
  882. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.nytimes.com/2025/06/10/climate/carbon-capture-comes-back-down-to-earth.html?unlocked_article_code=1.OE8.dC2P.dOIVXUygcu_v&amp;amp;smid=url-share" target="_blank"&gt;Carbon Capture Comes Back Down to Earth&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Billions have been invested in technologies to remove carbon dioxide from the sky in recent years. But Trump&amp;rsquo;s policies have clouded the outlook.&lt;/em&gt; NYT, David Gelles, Jun 10, 2025.&lt;/li&gt;
  883. &lt;/ul&gt;
  884. &lt;p&gt;&lt;strong&gt;Climate Policy and Politics (3 articles)&lt;/strong&gt;&lt;/p&gt;
  885. &lt;ul&gt;
  886. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.desmog.com/2025/06/10/oil-gas-lobby-eu-methane-policy-research/" target="_blank"&gt;Oil and Gas Lobby Behind `Concerted` Attempt to Weaken EU Methane Policy, Research Finds&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Reopening the legislation &amp;ldquo;would be like destroying a bridge [the EU] spent a lot of time building,&amp;rdquo; experts say.&lt;/em&gt; DeSmog, Stella Levantesi, Jun 10, 2025.&lt;/li&gt;
  887. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.desmog.com/2025/06/12/how-maga-lobbying-is-undermining-eu-climate-rules/" target="_blank"&gt;How MAGA Lobbying is Undermining EU Climate Rules&lt;/a&gt;&lt;/strong&gt; &lt;em&gt; European leaders are bending to the demands of U.S. climate science deniers.&lt;/em&gt; DeSmog, Sam Bright, Jun 12, 2025.&lt;/li&gt;
  888. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.eenews.net/articles/trump-is-trying-to-kill-the-us-climate-effort-it-was-already-in-trouble/" target="_blank"&gt;Trump is trying to kill the US climate effort. It was already in trouble.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; E&amp;amp;E News, Zack Colman, Jun 12, 2025.&lt;/li&gt;
  889. &lt;/ul&gt;
  890. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Solutions (2 articles)&lt;/strong&gt;&lt;/p&gt;
  891. &lt;ul&gt;
  892. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://www.abc.net.au/news/2025-06-09/electric-vehicle-myths-misinformation-battery-ev-australia-study/105394232" target="_blank"&gt;Are EVs more likely to catch fire? Why we're still falling for the myths&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;Comon limitations of human cognitive abilty fully on view, and nobody is truly immune&amp;mdash; we can all benefit from training in critical thinking!&lt;/em&gt; ABC News, Annika Burgess, Jun 09, 2025.&lt;/li&gt;
  893. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/is-range-restriction-a-problem-for-ev.htm" target="_blank"&gt;Sabin 33 #32 - Is range restriction a problem for EVs?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, Sabin Climate Team, June 10, 2025.&lt;/li&gt;
  894. &lt;/ul&gt;
  895. &lt;p&gt;&lt;strong&gt;Climate Law and Justice (1 article)&lt;/strong&gt;&lt;/p&gt;
  896. &lt;ul&gt;
  897. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://grist.org/justice/youth-climate-activists-new-suit-trump-executive-orders/" target="_blank"&gt;Youth climate activists won lawsuits in Montana and Hawai`i. Now they`re targeting Trump.&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&amp;ldquo;Trump&amp;rsquo;s fossil fuel orders are a death sentence for my generation."&lt;/em&gt; Grist, Sophie Hurwitz, Jun 06, 2025.&lt;/li&gt;
  898. &lt;/ul&gt;
  899. &lt;p&gt;&lt;strong&gt;Public Misunderstandings about Climate Science (1 article)&lt;/strong&gt;&lt;/p&gt;
  900. &lt;ul&gt;
  901. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/fact-brief-1934.html" target="_blank"&gt;Fact brief - Was 1934 the hottest year in the global record?&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;&lt;/em&gt; Skeptical Science, Sue Bin Park, Jun 14, 2025.&lt;/li&gt;
  902. &lt;/ul&gt;
  903. &lt;p&gt;&lt;strong&gt;Miscellaneous (1 article)&lt;/strong&gt;&lt;/p&gt;
  904. &lt;ul&gt;
  905. &lt;li style="margin-bottom: 5px; text-align: left;"&gt;&lt;strong&gt;&lt;a href="https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_23.html" target="_blank"&gt;2025 SkS Weekly Climate Change &amp;amp; Global Warming News Roundup #23&lt;/a&gt;&lt;/strong&gt; &lt;em&gt;A listing of 26 news and opinion articles we found interesting and shared on social media during the past week: Sun, June 1, 2025 thru Sat, June 7, 2025.&lt;/em&gt; Skeptical Science, B&amp;auml;rbel Winkler &amp;amp; Doug Bostrom, Jun 08, 2025.&lt;/li&gt;
  906. &lt;/ul&gt;
  907. &lt;div class="bluebox"&gt;If you happen upon high quality climate-science and/or climate-myth busting articles from reliable sources while surfing the web, please feel free to submit them via&amp;nbsp;&lt;strong&gt;&lt;a href="https://sks.to/FB-posts-form" target="_blank"&gt;this Google form&lt;/a&gt;&lt;/strong&gt; so that we may share them widely. Thanks!&lt;/div&gt;</description>
  908. <link>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_24.html</link>
  909. <guid>https://skepticalscience.com/2025-SkS-Weekly-News-Roundup_24.html</guid>
  910. <pubDate>Sun, 15 Jun 2025 10:38:28 EST</pubDate>
  911. </item>  <item>
  912. <title>Fact brief - Was 1934 the hottest year in the global record?</title>
  913. <description>&lt;p class="bluebox"&gt;&lt;img class="figureleft" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-Banner-250px.jpg" alt="FactBrief" width="248" height="44" /&gt;Skeptical Science is partnering with&amp;nbsp;&lt;a href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; to produce fact briefs &amp;mdash; bite-sized fact checks of trending claims. You can submit claims you think need checking via &lt;a href="https://gigafact.org/tipline?org_id=1813" target="_blank"&gt;the tipline&lt;/a&gt;.&lt;/p&gt;
  914. &lt;h3&gt;Was 1934 the hottest year in the global record?&lt;/h3&gt;
  915. &lt;p&gt;&lt;img class="figureleft zoomable" src="https://skepticalscience.com/pics/Gigafact-Fact-Brief-No-200px.jpg" alt="No" width="200" height="59" /&gt;1934 was a particularly hot year in the contiguous United States, but not globally exceptional. Worldwide, 1934 was a relatively cooler year and does not stand out in the global record.&lt;/p&gt;
  916. &lt;p&gt;The myth began when NASA corrected 6 years of erroneous U.S. temperature data in 2007, shifting 1934 ahead in the U.S. dataset due to earlier calculation errors. Adjustments accounted for factors like time-of-observation bias and weather station changes. Regionally, 1934&amp;rsquo;s U.S. heat was part of the Dust Bowl, a crisis caused by drought and poor land management.&lt;/p&gt;
  917. &lt;p&gt;However, while regional temperature spikes occur naturally, global climate change concerns long-term and worldwide trends.&lt;/p&gt;
  918. &lt;p&gt;Global temperatures have risen since the Industrial Revolution, driven by human emissions of greenhouse gases. The ten hottest years on record were between 2015 and 2025. 1934 saw a global temperature anomaly of -0.16 C, while 2024&amp;rsquo;s record high was 1.28 C above the 20th century average.&lt;/p&gt;
  919. &lt;p&gt;&lt;a href="https://sks.to/1934" target="_blank"&gt;Go to full rebuttal on Skeptical Science&lt;/a&gt; or &lt;a href="https://gigafact.org/fact-briefs/was-1934-the-hottest-year-on-global-record/" target="_blank"&gt;to the fact brief on Gigafact&lt;/a&gt;&lt;/p&gt;
  920. &lt;hr /&gt;
  921. &lt;p&gt;This fact brief is responsive to quotes such as &lt;a href="https://archive.ph/oFUeK" target="_blank"&gt;this one&lt;/a&gt;.&lt;/p&gt;
  922. &lt;hr /&gt;
  923. &lt;p&gt;&lt;strong&gt;Sources&lt;/strong&gt;&lt;/p&gt;
  924. &lt;p&gt;National Drought Mitigation Center&amp;nbsp;&lt;a href="https://web.archive.org/web/20250211010349/https://drought.unl.edu/dustbowl/" target="_blank"&gt;The Dust Bowl&lt;/a&gt;&lt;/p&gt;
  925. &lt;p&gt;World Meteorological Organization&amp;nbsp;&lt;a href="https://wmo.int/publication-series/state-of-global-climate-2024" target="_blank"&gt;State of the Global Climate 2024&lt;/a&gt;&lt;/p&gt;
  926. &lt;p&gt;The Climate Brink&amp;nbsp;&lt;a href="https://web.archive.org/web/20250418163208/https://www.theclimatebrink.com/p/which-was-warmer-the-1930s-or-the" target="_blank"&gt;Which was warmer: the 1930s or the last 10 years&lt;/a&gt;&lt;/p&gt;
  927. &lt;p&gt;PolitiFact&amp;nbsp;&lt;a href="https://web.archive.org/web/20231130140219/https://www.politifact.com/factchecks/2023/nov/03/facebook-posts/its-getting-hot-in-here-the-us-is-warmer-now-than/" target="_blank"&gt;1936 in the United States was &amp;ldquo;much hotter than 2023."&lt;/a&gt;&lt;/p&gt;
  928. &lt;p&gt;EPA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250516140009/https://www.epa.gov/climate-indicators/climate-change-indicators-us-and-global-temperature" target="_blank"&gt;Climate Change Indicators: U.S. and Global Temperature&lt;/a&gt;&lt;/p&gt;
  929. &lt;p&gt;NASA&amp;nbsp;&lt;a href="https://web.archive.org/web/20250608055941/https://science.nasa.gov/climate-change/evidence/" target="_blank"&gt;Evidence&lt;/a&gt;&lt;/p&gt;
  930. &lt;!--more--&gt;
  931. &lt;p&gt;&lt;strong&gt;About fact briefs published on Gigafact&lt;/strong&gt;&lt;br /&gt;&lt;br /&gt;Fact briefs are short, credibly sourced summaries that offer "yes/no" answers in response to claims found online. They rely on publicly available, often primary source data and documents. Fact briefs are created by contributors to &lt;a rel="noreferrer" href="https://gigafact.org/" target="_blank"&gt;Gigafact&lt;/a&gt; &amp;mdash; a nonprofit project looking to expand participation in fact-checking and protect the democratic process. &lt;a href="https://gigafact.org/skeptical-science" target="_blank"&gt;See all of our published fact briefs here&lt;/a&gt;.&lt;/p&gt;
  932. &lt;p&gt;&lt;a href="https://gigafact.org/fact-brief-quiz/skeptical-science" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Gigafact-Quiz-Image-570px.jpg" alt="Gigafact Quiz" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;</description>
  933. <link>https://skepticalscience.com/fact-brief-1934.html</link>
  934. <guid>https://skepticalscience.com/fact-brief-1934.html</guid>
  935. <pubDate>Sat, 14 Jun 2025 10:52:40 EST</pubDate>
  936. </item>  <item>
  937. <title>Skeptical Science New Research for Week #24 2025</title>
  938. <description>&lt;h3&gt;Open access notables&lt;img class="figureright zoomable" src="https://skepticalscience.com//pics/SkS_weekly_research_small.jpg" alt="" width="250" height="139" /&gt;&lt;/h3&gt;
  939. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1029/2025gl115362" target="_blank"&gt;A Rapid Deterioration of the Transmissive Atmospheric Radiative Regime in the Western Arctic&lt;/a&gt;&lt;/strong&gt;, Bertossa &amp;amp; L&amp;rsquo;Ecuyer,&amp;nbsp;&lt;em&gt;Geophysical Research Letters:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  940. &lt;blockquote&gt;
  941. &lt;p&gt;&lt;em&gt;The tendency for the atmosphere to reside in one of two radiative states (&amp;ldquo;transmissive&amp;rdquo; or &amp;ldquo;opaque&amp;rdquo;) is unique to the high latitudes. This phenomenon makes the Arctic climate particularly sensitive to change if the conditions that support one of these states vanish. This study examines 25&amp;nbsp;years of in-situ data from the North Slope of Alaska to investigate how these two states have changed over time. While November once had nearly equal occurrences of both states, the transmissive state has almost completely disappeared, resulting in an increase of over 30&amp;nbsp;W/m2&amp;nbsp;in surface downwelling longwave radiation since the turn of the century. This dramatic shift highlights a crucial climate feedback that any region prone to sea ice loss may experience&amp;mdash;reducing the transmissive state enhances atmospheric warming and moistening, further promoting the opaque state. This feedback accelerates surface energy imbalances and could amplify Arctic change beyond current projections.&lt;/em&gt;&lt;/p&gt;
  942. &lt;p&gt;&lt;em&gt;&lt;sup&gt;This work was supported, in part, by the NASA Earth Ventures-Instrument (EV-I) program's Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) mission under Grant 80NSSC18K1485.&lt;/sup&gt;&lt;/em&gt;&lt;/p&gt;
  943. &lt;/blockquote&gt;
  944. &lt;p&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02345-7" target="_blank"&gt;Regional emperor penguin population declines exceed modelled projections&lt;/a&gt;&lt;/strong&gt;, Fretwell et al.,&amp;nbsp;&lt;em&gt;Communications Earth &amp;amp; Environment:&lt;/em&gt;&lt;/p&gt;
  945. &lt;blockquote&gt;
  946. &lt;p&gt;&lt;em&gt;Emperor penguin populations are predicted to decline rapidly over the current century owing to habitat loss in Antarctica arising from warming oceans and loss of seasonal sea ice. Previous work using very high-resolution satellite imagery from 2009 to 2018 revealed a population decrease of 9.5%, characterized by a continuous decline until 2016, with a slight recovery until 2018. Our study, for the sector 0&amp;deg; to 90&amp;deg;W, includes the recent period of sea-ice loss between 2020 and 2023 and provides a regional population update for around a third of the global population. We used supervised classification of very high-resolution imagery, linked to a Markov model and Bayesian statistics. Results indicate a significant reduction in emperor penguin numbers, variance in the methodology is relatively high, but provides a best fit estimate of 22% decline over the period equating to a reduction of 1.6% per year. This decline exceeds the predictions of demographic models based on high-emission scenarios. It is unclear whether the sector analyzed here reflects conditions around the entire continent and our results highlight the need to extend the analysis to all sectors of Antarctica to determine whether these trends are reflected elsewhere.&lt;/em&gt;&amp;nbsp;&lt;/p&gt;
  947. &lt;/blockquote&gt;
  948. &lt;p&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2501267" target="_blank"&gt;Considering durability in carbon dioxide removal strategies for climate change mitigation&lt;/a&gt;&lt;/strong&gt;, Streck et al.,&amp;nbsp;&lt;em&gt;Climate Policy:&lt;/em&gt;&lt;/span&gt;&lt;/p&gt;
  949. &lt;blockquote&gt;
  950. &lt;p&gt;&lt;em&gt;Durability &amp;ndash; together with scalability and sustainability &amp;ndash; is an essential condition of CDR. It depends on (i) the duration of CO2&amp;nbsp;storage and (ii) the risk of reversing such storage. The risk profile of durability varies widely across CDR methods. Because engineered, novel CDR methods involve more stable forms of CO2&amp;nbsp;storage than nature-based CDR, these methods are often promoted as a priority for CDR mitigation investments. However, shorter-term CDR plays an essential role in balancing sources and sinks of greenhouse gases in the second half of this century. Decision makers must also consider CDR policies in a larger context that takes into account readiness and feasibility, policy alignment and co-benefits of different CDR methods. They must also address durability in CDR policies and contracts, which tend to span much shorter timeframes than those contemplated by science when discussing durability. We argue that nature-based conventional CDR and novel engineered CDR that show complementary timing and risk profiles can be deployed in synergistic CDR portfoliosto balance the conditions of durability, feasibility and social and environmental sustainability.&lt;/em&gt;&lt;/p&gt;
  951. &lt;/blockquote&gt;
  952. &lt;p&gt;&lt;span&gt;&lt;span&gt;&lt;strong&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09047-2" target="_blank"&gt;Warming accelerates global drought severity&lt;/a&gt;&lt;/strong&gt;, Gebrechorkos et al.,&amp;nbsp;&lt;em&gt;Nature:&lt;/em&gt;&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;
  953. &lt;blockquote&gt;
  954. &lt;p&gt;&lt;em&gt;Drought is one of the most common and complex natural hazards affecting the environment, economies and populations globally. However, there are significant uncertainties in global drought trends, and a limited understanding of the extent to which a key driver, atmospheric evaporative demand (AED), impacts the recent evolution of the magnitude, frequency, duration and areal extent of droughts. Here, by developing an ensemble of high-resolution global drought datasets for 1901&amp;ndash;2022, we find an increasing trend in drought severity worldwide. Our findings suggest that AED has increased drought severity by an average of 40% globally. Not only are typically dry regions becoming drier but also wet areas are experiencing drying trends. During the past 5&amp;thinsp;years (2018&amp;ndash;2022), the areas in drought have expanded by 74% on average compared with 1981&amp;ndash;2017, with AED contributing to 58% of this increase. The year 2022 was record-breaking, with 30% of the global land area affected by moderate and extreme droughts, 42% of which was attributed to increased AED. Our findings indicate that AED has an increasingly important role in driving severe droughts and that this tendency will likely continue under future warming scenarios.&lt;/em&gt;&amp;nbsp;&lt;/p&gt;
  955. &lt;/blockquote&gt;
  956. &lt;h3&gt;From this week's government/NGO &lt;a href="#gov-ngo"&gt;section&lt;/a&gt;:&lt;/h3&gt;
  957. &lt;p&gt;&lt;strong&gt;&lt;a href="https://policyintegrity.org/files/publications/Power_Sector_GHG_Contribution_Issue_Brief_vF.pdf" target="_blank"&gt;The Scale of Significance: Power Plants&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Peter Howard and Jason Schwartz,&amp;nbsp;&lt;strong&gt;Institute for Policy Integrity&lt;/strong&gt;&lt;/p&gt;
  958. &lt;blockquote&gt;The Trump Administration is openly questioning the significance of U.S. contributions to climate change, playing down U.S. greenhouse gas emissions as contributing only &amp;ldquo;some mysterious amount above zero to climate change.&amp;rdquo; According to a leaked draft of a proposed regulatory repeal, Trump&amp;rsquo;s EPA will compare the U.S. power sector&amp;rsquo;s greenhouse gas emissions to worldwide totals and find, judged on that relative scale, the sector&amp;rsquo;s contribution to climate change is neither &amp;ldquo;significant&amp;rdquo; nor &amp;ldquo;meaningful.&amp;rdquo; That kind of skewed appraisal would produce the reductio ad absurdum under which no U.S. sector, sliced thinly enough, is ever a significant source of greenhouse gases&amp;mdash;a clearly irrational outcome. By any measure, emissions from major U.S. industries like the electric power sector contribute significantly to climate damages. The best available evidence shows that each year of greenhouse gas emissions from U.S. coal-fired and gas-fired power plants will contribute to climate damages responsible for thousands of U.S. deaths and hundreds of billions in economics harms.&lt;/blockquote&gt;
  959. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.catf.us/wp-content/uploads/2025/06/09151001/beyond-lcoe.pdf" target="_blank"&gt;Beyond LCOE: A Systems-Oriented Perspective for Evaluating Electricity Decarbonization Pathways&lt;/a&gt;,&amp;nbsp;&lt;/strong&gt;Moraski et al.,&amp;nbsp;&lt;strong&gt;Clean Air Task Force&lt;/strong&gt;&lt;/p&gt;
  960. &lt;blockquote&gt;Levelized Cost of Electricity (LCOE) is a widely used standardized metric to assess electricity generation project costs per expected generation output. Often used to compare technology costs, LCOE has become a ubiquitous metric used in electricity industry literature, cost forecasts, project business cases, and policy making. The LCOE metric is popular in part due to its simplicity and standardization and has been used widely to display LCOE declines of solar and wind. LCOE is calculated by summing the discounted project cost, primarily capital and operating expenditures, and dividing those costs by the discounted expected electricity generation over the life of the project. While LCOE is a good metric to track historical technology cost evolution, it is not an appropriate tool to use in the context of long-term planning and policymaking for deep decarbonization. The authors explain why LCOE fails to reflect the full complexity of electricity systems and can lead to decisions that jeopardize reliability, affordability, and clean generation.&lt;/blockquote&gt;
  961. &lt;h3&gt;112 articles in 51 journals by 634 contributing authors&lt;/h3&gt;
  962. &lt;p&gt;&lt;strong&gt;Physical science of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  963. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl115362" target="_blank"&gt;A Rapid Deterioration of the Transmissive Atmospheric Radiative Regime in the Western Arctic&lt;/a&gt;, Bertossa &amp;amp; L&amp;rsquo;Ecuyer, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl115362" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl115362&lt;/p&gt;
  964. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-08903-5" target="_blank"&gt;Drivers of the extreme North Atlantic marine heatwave during 2023&lt;/a&gt;, England et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-08903-5&lt;/p&gt;
  965. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl115061" target="_blank"&gt;Effective Heat Capacity and Its Role in Arctic Amplification&lt;/a&gt;, Previdi &amp;amp; Polvani, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl115061" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl115061&lt;/p&gt;
  966. &lt;!--more--&gt;
  967. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/acp-25-5617-2025" target="_blank"&gt;How does the lifetime of detrained cirrus impact the high-cloud radiative effect in the tropics?&lt;/a&gt;, Horner &amp;amp; Gryspeerdt, &lt;em&gt;Atmospheric Chemistry and Physics&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/acp" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/acp-25-5617-2025&lt;/p&gt;
  968. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41612-025-01105-w" target="_blank"&gt;Strengthened influence of Atlantic Ni&amp;ntilde;o on ENSO in a warming climate&lt;/a&gt;, Zhang et al., &lt;em&gt;npj Climate and Atmospheric Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41612" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41612-025-01105-w&lt;/p&gt;
  969. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl113124" target="_blank"&gt;Understanding ENSO Weakening in Warmer Climates&lt;/a&gt;, Tuckman, &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl113124" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl113124&lt;/p&gt;
  970. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Observations of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  971. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1126/sciadv.ads0307" target="_blank"&gt;Satellites reveal hot spots of ocean changes in the early 21st century&lt;/a&gt;, Li et al., &lt;em&gt;Science Advances&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1126/sciadv.ads0307" target="_blank"&gt; Open Access&lt;/a&gt; 10.1126/sciadv.ads0307&lt;/p&gt;
  972. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8920" target="_blank"&gt;Simultaneous Drought and Heatwave Events During Austral Summer in Northeast Brazil&lt;/a&gt;, Bezerra et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8920&lt;/p&gt;
  973. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09047-2" target="_blank"&gt;Warming accelerates global drought severity&lt;/a&gt;, Gebrechorkos et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09047-2&lt;/p&gt;
  974. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Instrumentation &amp;amp; observational methods of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  975. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/bg-22-2621-2025" target="_blank"&gt;Reconstructing central African hydroclimate over the past century using freshwater bivalve shell geochemistry&lt;/a&gt;, Kelemen et al., &lt;em&gt;Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/bg" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/bg-22-2621-2025&lt;/p&gt;
  976. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000644" target="_blank"&gt;The IPCC Interactive Atlas DataLab: Online reusability for regional climate change assessment&lt;/a&gt;, Cimadevilla et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000644" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000644&lt;/p&gt;
  977. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Modeling, simulation &amp;amp; projection of climate change, effects&lt;/strong&gt;&lt;/p&gt;
  978. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl116032" target="_blank"&gt;Atmospheric Fronts Drive Future Changes in Extratropical Extreme Precipitation&lt;/a&gt;, Konstali et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl116032" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl116032&lt;/p&gt;
  979. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jd042963" target="_blank"&gt;Constraining Future Projections of Freezing Level Height and Equilibrium-Line Altitudes in the Tropical Andes Based on CMIP6&lt;/a&gt;, Turner et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2024jd042963&lt;/p&gt;
  980. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-25-0066.1" target="_blank"&gt;Western Mediterranean Droughts Fostered by Arctic Sea Ice Loss&lt;/a&gt;, Saurral et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-25-0066.1&lt;/p&gt;
  981. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Advancement of climate &amp;amp; climate effects modeling, simulation &amp;amp; projection&lt;/strong&gt;&lt;/p&gt;
  982. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4401-2024" target="_blank"&gt;An improved and extended parameterization of the CO2 15 &amp;micro;m cooling in the middle and upper atmosphere (CO2&amp;amp;cool&amp;amp;fort-1.0)&lt;/a&gt;, L&amp;oacute;pez-Puertas et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4401-2024&lt;/p&gt;
  983. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-24-0042.1" target="_blank"&gt;ICON: Toward Vertically Integrated Model Configurations for Numerical Weather Prediction, Climate Predictions, and Projections&lt;/a&gt;, M&amp;uuml;ller et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-24-0042.1&lt;/p&gt;
  984. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024gl112756" target="_blank"&gt;The Sea Surface Temperature Pattern Effect on Outgoing Longwave Radiation: The Role of Large-Scale Convective Aggregation&lt;/a&gt;, Quan et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024gl112756" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024gl112756&lt;/p&gt;
  985. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-2024-568" target="_blank"&gt;Using a data-driven statistical model to better evaluate surface turbulent heat fluxes in weather and climate numerical models: a&amp;nbsp;demonstration study&lt;/a&gt;, Zouzoua et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/egusphere-2024-568&lt;/p&gt;
  986. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Cryosphere &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  987. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-04753-3" target="_blank"&gt;Annual and sub-seasonal dynamics of a rapidly eroding permafrost coastline along the Beaufort Sea in northern Alaska&lt;/a&gt;, Ward Jones et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-04753-3&lt;/p&gt;
  988. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jcli-d-23-0509.1" target="_blank"&gt;Dynamic and Thermodynamic Impacts of Atmospheric Rivers on Sea Ice Thickness in the Arctic since 2000&lt;/a&gt;, Gong et al., &lt;em&gt;Journal of Climate&lt;/em&gt; 10.1175/jcli-d-23-0509.1&lt;/p&gt;
  989. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.rse.2025.114815" target="_blank"&gt;Mapping of sea ice in 1975 and 1976 using the NIMBUS-6 Scanning Microwave Spectrometer (SCAMS)&lt;/a&gt;, Kolbe et al., &lt;em&gt;Remote Sensing of Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.rse.2025.114815" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.rse.2025.114815&lt;/p&gt;
  990. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1177/09596836251340827" target="_blank"&gt;Permafrost Peat Plateau on Sosnovets Island: Formation and Long-Term Stability (the White Sea, NW Russia)&lt;/a&gt;, Kutenkov et al., &lt;em&gt;The Holocene&lt;/em&gt; 10.1177/09596836251340827&lt;/p&gt;
  991. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104914" target="_blank"&gt;Seasonal and interannual variability of Karakoram glacier surface albedo from AVHRR-MODIS data, 1982&amp;ndash;2020&lt;/a&gt;, Xie et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104914&lt;/p&gt;
  992. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/joc.8934" target="_blank"&gt;Surface Temperature Influenced by Downward Longwave Radiation Is the Main Driver of Deglaciation in Central Asia&lt;/a&gt;, Tang et al., &lt;em&gt;International Journal of Climatology&lt;/em&gt; 10.1002/joc.8934&lt;/p&gt;
  993. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Sea level &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  994. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02414-x" target="_blank"&gt;Waterline responses to climate forcing along the North American West Coast&lt;/a&gt;, Graffin et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02414-x&lt;/p&gt;
  995. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Paleoclimate &amp;amp; paleogeochemistry&lt;/strong&gt;&lt;/p&gt;
  996. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104915" target="_blank"&gt;Climate change and cascading effects on nomadic societies in the Mongolian Steppe (16th&amp;ndash;18th Century)&lt;/a&gt;, Han et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104915&lt;/p&gt;
  997. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-60551-5" target="_blank"&gt;Enhanced deglacial carbon transport by Pacific southern-sourced intermediate and mode water&lt;/a&gt;, Karas et al., &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-60551-5&lt;/p&gt;
  998. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.gloplacha.2025.104924" target="_blank"&gt;Isotopic evidence from a Brazos River (Texas, USA) cretaceous/paleogene boundary section consistent with a pulse of greenhouse warming shortly after the Chicxulub impact&lt;/a&gt;, MacLeod et al., &lt;em&gt;Global and Planetary Change&lt;/em&gt; 10.1016/j.gloplacha.2025.104924&lt;/p&gt;
  999. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Biology &amp;amp; climate change, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  1000. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110610" target="_blank"&gt;A combined effect of heat and drought limits the growth of Central European silver fir&lt;/a&gt;, Marcis et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110610&lt;/p&gt;
  1001. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1101/2024.07.23.604846" target="_blank"&gt;Anthropogenic climate change will likely outpace coral range expansion&lt;/a&gt;, Vogt-Vincent et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1101/2024.07.23.604846" target="_blank"&gt; Open Access&lt;/a&gt; 10.1101/2024.07.23.604846&lt;/p&gt;
  1002. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70130" target="_blank"&gt;Body size as a mediator of climatic effects: Insights from a long-term study of social Iberian magpies&lt;/a&gt;, Avil&amp;eacute;s et al., &lt;em&gt;Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecy.70130" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecy.70130&lt;/p&gt;
  1003. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107244" target="_blank"&gt;Comparative thermal tolerance of haploid and diploid phases of two intertidal Antarctic red algae &lt;em&gt;Iridaea cordata&lt;/em&gt; and &lt;em&gt;Sarcopeltis antarctica&lt;/em&gt;&lt;/a&gt;, Navarro et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107244&lt;/p&gt;
  1004. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110657" target="_blank"&gt;Coping with warming and drying climate: Xylem adjustment in four temperate diffuse-porous tree species in northeastern China&lt;/a&gt;, Yuan et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110657&lt;/p&gt;
  1005. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/ddi.70044" target="_blank"&gt;Enduring a Major Marine Heatwave: The Role of Local Cool Refugia and Kelp Forests in the Resilience of Marine Invertebrates&lt;/a&gt;, Maucieri et al., &lt;em&gt;Diversity and Distributions&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/ddi.70044" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/ddi.70044&lt;/p&gt;
  1006. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70258" target="_blank"&gt;Environmental Change Is Reshaping the Temperature Sensitivity of Sesquiterpene Emissions and Their Atmospheric Impacts&lt;/a&gt;, Bourtsoukidis et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70258" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70258&lt;/p&gt;
  1007. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecy.70124" target="_blank"&gt;High thermal variation in maximum temperatures invert Brett's heat-invariant rule at fine spatial scales&lt;/a&gt;, Pintanel et al., &lt;em&gt;Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecy.70124" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecy.70124&lt;/p&gt;
  1008. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126371" target="_blank"&gt;Higher growth synchrony and responsiveness to drought in managed-young than in unmanaged-old sessile oak stands during a shift to hotter summers&lt;/a&gt;, Petritan et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.dendro.2025.126371" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.dendro.2025.126371&lt;/p&gt;
  1009. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126369" target="_blank"&gt;Hotter winter-spring droughts accelerated the growth decline of marginal pedunculate oak (&lt;em&gt;Quercus robur&lt;/em&gt;) populations in dry sites from Romania&lt;/a&gt;, Nechita &amp;amp; Camarero, &lt;em&gt;Dendrochronologia&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.dendro.2025.126369" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.dendro.2025.126369&lt;/p&gt;
  1010. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000632" target="_blank"&gt;Impact of heatwave amplitude, duration, and timing on parasite fitness at different baseline temperatures&lt;/a&gt;, McCartan et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000632" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000632&lt;/p&gt;
  1011. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70274" target="_blank"&gt;Multi-Decadal Trends in Northern Lakes Show Contrasting Responses of Phytoplankton and Benthic Macroinvertebrates to Climate Change&lt;/a&gt;, Johnson et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70274" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70274&lt;/p&gt;
  1012. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/23251042.2025.2513090" target="_blank"&gt;Possibilities for a critical social science of assisted ecosystem adaptation and other climate intervention practices&lt;/a&gt;, Lockie &amp;amp; Paxton, &lt;em&gt;Environmental Sociology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/23251042.2025.2513090" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/23251042.2025.2513090&lt;/p&gt;
  1013. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecog.07775" target="_blank"&gt;Powerful yet challenging: mechanistic niche models for predicting invasive species potential distribution under climate change&lt;/a&gt;, Fenollosa et al., &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecog.07775" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecog.07775&lt;/p&gt;
  1014. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70272" target="_blank"&gt;Projected Increases in Climate Extremes Across Global Vertebrate Diversity Hotspots&lt;/a&gt;, van den Bosch et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70272" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70272&lt;/p&gt;
  1015. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02345-7" target="_blank"&gt;Regional emperor penguin population declines exceed modelled projections&lt;/a&gt;, Fretwell et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02345-7&lt;/p&gt;
  1016. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005762" target="_blank"&gt;Responses of the Natural Phytoplankton Assemblage to Patagonian Dust Input and Anthropogenic Changes in the Southern Ocean&lt;/a&gt;, Demasy et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005762" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005762&lt;/p&gt;
  1017. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41598-025-02318-y" target="_blank"&gt;Snowmelt and laying date impact the parental care strategy of a high-Arctic shorebird&lt;/a&gt;, Etchart et al., &lt;em&gt;Scientific Reports&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41598" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41598-025-02318-y&lt;/p&gt;
  1018. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110628" target="_blank"&gt;Temperature-driven shifts in spatiotemporal stability of climate-growth responses of Douglas-fir (&lt;em&gt;Pseudotsuga menziesii&lt;/em&gt;) from the southern Baltic Sea region&lt;/a&gt;, Klisz et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.agrformet.2025.110628" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.agrformet.2025.110628&lt;/p&gt;
  1019. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1101/2024.11.25.625168" target="_blank"&gt;The Accelerating Exposure of European Protected Areas to Climate Change&lt;/a&gt;, Cimatti et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://www.biorxiv.org/content/biorxiv/early/2024/11/26/2024.11.25.625168.full.pdf" target="_blank"&gt; Open Access&lt;/a&gt; &lt;strong&gt;&lt;a href="https://www.biorxiv.org/content/biorxiv/early/2024/11/26/2024.11.25.625168.full.pdf" target="_blank"&gt;pdf&lt;/a&gt;&lt;/strong&gt; 10.1101/2024.11.25.625168&lt;/p&gt;
  1020. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ece3.71523" target="_blank"&gt;The Effect of Structure Building Small Mammals in a Shifting Arctic Landscape&lt;/a&gt;, Roy &amp;amp; McLaren, &lt;em&gt;Ecology and Evolution&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ece3.71523" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ece3.71523&lt;/p&gt;
  1021. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.marenvres.2025.107287" target="_blank"&gt;Thermal priming and epigenetic changes improve heat-tolerance mechanisms of tropical seagrasses under warming ocean along Palk Bay region, southeast coast of India&lt;/a&gt;, Danaraj et al., &lt;em&gt;Marine Environmental Research&lt;/em&gt; 10.1016/j.marenvres.2025.107287&lt;/p&gt;
  1022. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/1365-2745.70074" target="_blank"&gt;Tolerance of organisms composing an Arctic kelp community to ocean warming and marine heatwaves&lt;/a&gt;, Lebrun et al., &lt;em&gt;Journal of Ecology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/1365" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/1365-2745.70074&lt;/p&gt;
  1023. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70281" target="_blank"&gt;Urban Tree Growth and Drought Responses Show Evidence of Climate Resilience&lt;/a&gt;, Esperon?Rodriguez et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70281" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70281&lt;/p&gt;
  1024. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70288" target="_blank"&gt;Warmer Lakes Support Phytoplankton Over Fish&lt;/a&gt;, Mooney et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70288" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70288&lt;/p&gt;
  1025. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.dendro.2025.126375" target="_blank"&gt;Warming aggravates physiological drought in &lt;em&gt;Betula platyphylla&lt;/em&gt; during the winter&amp;ndash;spring transitional period in Greater Khingan Mountains&lt;/a&gt;, Li et al., &lt;em&gt;Dendrochronologia&lt;/em&gt; 10.1016/j.dendro.2025.126375&lt;/p&gt;
  1026. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02421-y" target="_blank"&gt;Warming and freshening coastal waters impact harmful algal bloom frequency in high latitudes&lt;/a&gt;, Silva et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02421-y&lt;/p&gt;
  1027. &lt;p style="text-align: left;"&gt;&lt;strong&gt;GHG sources &amp;amp; sinks, flux, related geochemistry&lt;/strong&gt;&lt;/p&gt;
  1028. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.earscirev.2025.105184" target="_blank"&gt;Carbon sequestration in mangrove ecosystems: Sources, transportation pathways, influencing factors, and its role in the carbon budget&lt;/a&gt;, Ali et al., &lt;em&gt;Earth&lt;/em&gt; 10.1016/j.earscirev.2025.105184&lt;/p&gt;
  1029. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025gl114614" target="_blank"&gt;Coastal Restoration May Not Necessarily Enhance Blue Carbon Sink&lt;/a&gt;, Zhu et al., &lt;em&gt;Geophysical Research Letters&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2025gl114614" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2025gl114614&lt;/p&gt;
  1030. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70251" target="_blank"&gt;Current Forest Carbon Offset Buffer Pool Contributions Do Not Adequately Insure Against Disturbance-Driven Carbon Losses&lt;/a&gt;, Anderegg et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70251" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70251&lt;/p&gt;
  1031. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024jg008465" target="_blank"&gt;Data-Driven Modeling of 4D Ocean and Coastal Acidification in the Massachusetts and Cape Cod Bays From Surface Measurements&lt;/a&gt;, Champenois et al., &lt;em&gt;Journal of Geophysical Research: Biogeosciences&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024jg008465" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024jg008465&lt;/p&gt;
  1032. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/essd-2025-294" target="_blank"&gt;High-resolution global map (100 m) of soil organic carbon reveals critical ecosystems for carbon storage&lt;/a&gt;, Cr&amp;eacute;z&amp;eacute; et al., &lt;em&gt;&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/essd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/essd-2025-294&lt;/p&gt;
  1033. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02438-3" target="_blank"&gt;Limited evidence that tropical inundation and precipitation powered the 2020&amp;ndash;2022 methane surge&lt;/a&gt;, Xiong et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02438-3&lt;/p&gt;
  1034. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02382-2" target="_blank"&gt;Long term carbon export from mountain forests driven by hydroclimate and extreme event driven landsliding&lt;/a&gt;, Howarth et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02382-2&lt;/p&gt;
  1035. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09023-w" target="_blank"&gt;Old carbon routed from land to the atmosphere by global river systems&lt;/a&gt;, Dean et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09023-w&lt;/p&gt;
  1036. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt;Spatial and temporal variations of gross primary production simulated by land surface model BCC&amp;amp;AVIM2.0&lt;/a&gt;, Li et al., &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2023.02.001" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2023.02.001&lt;/p&gt;
  1037. &lt;p style="text-align: left;"&gt;&lt;strong&gt;CO2 capture, sequestration science &amp;amp; engineering&lt;/strong&gt;&lt;/p&gt;
  1038. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2501267" target="_blank"&gt;Considering durability in carbon dioxide removal strategies for climate change mitigation&lt;/a&gt;, Streck et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2501267" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2501267&lt;/p&gt;
  1039. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Decarbonization&lt;/strong&gt;&lt;/p&gt;
  1040. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104141" target="_blank"&gt;From innovation to integration: institutional design challenges for emerging energy storage technologies in the Netherlands&lt;/a&gt;, Kranenburg &amp;amp; Groenleer, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104141" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104141&lt;/p&gt;
  1041. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2025jd044085" target="_blank"&gt;Satellite-Based Climate Effects of Photovoltaic Plants in China&lt;/a&gt;, Li et al., &lt;em&gt;Journal of Geophysical Research: Atmospheres&lt;/em&gt; 10.1029/2025jd044085&lt;/p&gt;
  1042. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Geoengineering climate&lt;/strong&gt;&lt;/p&gt;
  1043. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.accre.2025.06.003" target="_blank"&gt;Simulated terrestrial climate and carbon cycle response to cloud albedo enhancement over ocean and land&lt;/a&gt;, FANG &amp;amp; CAO Cao, &lt;em&gt;Advances in Climate Change Research&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.accre.2025.06.003" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.accre.2025.06.003&lt;/p&gt;
  1044. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1582747" target="_blank"&gt;The impact of stratospheric aerosol injection: a regional case study&lt;/a&gt;, Cohen et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1582747" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1582747&lt;/p&gt;
  1045. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change communications &amp;amp; cognition&lt;/strong&gt;&lt;/p&gt;
  1046. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2510371" target="_blank"&gt;Emotion as Motive: Aligning Hope and Action in Jane Goodall&amp;rsquo;s Climate Rhetoric&lt;/a&gt;, Murphy, &lt;em&gt;Environmental Communication&lt;/em&gt; 10.1080/17524032.2025.2510371&lt;/p&gt;
  1047. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1093/pnasnexus/pgaf172" target="_blank"&gt;Limited effectiveness of psychological inoculation against misinformation in a social media feed&lt;/a&gt;, Wang et al., &lt;em&gt;PNAS Nexus&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1093/pnasnexus/pgaf172" target="_blank"&gt; Open Access&lt;/a&gt; 10.1093/pnasnexus/pgaf172&lt;/p&gt;
  1048. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41560-025-01790-0" target="_blank"&gt;Mapping, understanding and reducing belief in misinformation about electric vehicles&lt;/a&gt;, Bretter et al., &lt;em&gt;Nature Energy&lt;/em&gt; 10.1038/s41560-025-01790-0&lt;/p&gt;
  1049. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02402-1" target="_blank"&gt;Neural topic modeling reveals German television&amp;rsquo;s climate change coverage&lt;/a&gt;, Schirmag et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02402-1&lt;/p&gt;
  1050. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17524032.2025.2512373" target="_blank"&gt;Rising Seas: Representations of Antarctica, Climate Change, And Sea Level Rise in U.S. Newspaper Coverage&lt;/a&gt;, Bruns et al., &lt;em&gt;Environmental Communication&lt;/em&gt; 10.1080/17524032.2025.2512373&lt;/p&gt;
  1051. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Agronomy, animal husbundry, food production &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1052. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1576058" target="_blank"&gt;Agro-meteorological services in the era of climate change: a bibliometric review of research trends, knowledge gaps, and global collaboration&lt;/a&gt;, Khatibu &amp;amp; Ngowi, &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1576058" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1576058&lt;/p&gt;
  1053. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fclim.2025.1537045" target="_blank"&gt;An index-based approach to assess the vulnerability of coffee-based farmers to climate change and variability across districts in Western Ethiopia&lt;/a&gt;, Akafu et al., &lt;em&gt;Frontiers in Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fclim.2025.1537045" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fclim.2025.1537045&lt;/p&gt;
  1054. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1002/ecog.07815" target="_blank"&gt;Combined effects of temperature change and natural habitat on the abundance of arthropod trait syndromes in agroecosystems&lt;/a&gt;, Guezen &amp;amp; Anand, &lt;em&gt;Ecography&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1002/ecog.07815" target="_blank"&gt; Open Access&lt;/a&gt; 10.1002/ecog.07815&lt;/p&gt;
  1055. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1111/gcb.70291" target="_blank"&gt;From Depletion to Restoration: Lessons From Long-Term Monitoring of Carbon Gains and Losses in Cropping Systems&lt;/a&gt;, Moore et al., &lt;em&gt;Global Change Biology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1111/gcb.70291" target="_blank"&gt; Open Access&lt;/a&gt; 10.1111/gcb.70291&lt;/p&gt;
  1056. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/gmd-17-4871-2024" target="_blank"&gt;Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC&amp;amp;v1.0)&lt;/a&gt;, Han et al., &lt;em&gt;Geoscientific Model Development&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.5194/gmd" target="_blank"&gt; Open Access&lt;/a&gt; 10.5194/gmd-17-4871-2024&lt;/p&gt;
  1057. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.jenvp.2025.102651" target="_blank"&gt;The importance of a dynamic norm for climate adapted forest management via personal norm and perceived feasibility&lt;/a&gt;, Eriksson, &lt;em&gt;Journal of Environmental Psychology&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.jenvp.2025.102651" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.jenvp.2025.102651&lt;/p&gt;
  1058. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Hydrology, hydrometeorology &amp;amp; climate change&lt;/strong&gt;&lt;/p&gt;
  1059. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/jamc-d-24-0193.1" target="_blank"&gt;Assessing and Modifying the Formula for Estimating the Conditional Transition Probabilities and Daily Precipitation Variance under the Influence of Climate Change&lt;/a&gt;, Xiao et al., &lt;em&gt;Journal of Applied Meteorology and Climatology&lt;/em&gt; 10.1175/jamc-d-24-0193.1&lt;/p&gt;
  1060. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.atmosres.2025.108276" target="_blank"&gt;Evolution of rainfall in Italy over the last 200&amp;nbsp;years: Interactions between climate indices and global warming&lt;/a&gt;, Marco &amp;amp; Monica Bini, &lt;em&gt;Atmospheric Research&lt;/em&gt; 10.1016/j.atmosres.2025.108276&lt;/p&gt;
  1061. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.uclim.2025.102487" target="_blank"&gt;Impact of April and May, 2024 extreme precipitation on flooding in Rio Grande do Sul, Brazil&lt;/a&gt;, Neto et al., &lt;em&gt;Urban Climate&lt;/em&gt; 10.1016/j.uclim.2025.102487&lt;/p&gt;
  1062. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41586-025-09047-2" target="_blank"&gt;Warming accelerates global drought severity&lt;/a&gt;, Gebrechorkos et al., &lt;em&gt;Nature&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41586" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41586-025-09047-2&lt;/p&gt;
  1063. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change economics&lt;/strong&gt;&lt;/p&gt;
  1064. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.envsci.2025.104129" target="_blank"&gt;Climate policy, Least Developed Countries, and the Sustainable Development Goals: A critical review of SDG13 and infrastructural, institutional, and informational resilience&lt;/a&gt;, Seddik &amp;amp; Sovacool, &lt;em&gt;Environmental Science &amp;amp; Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.envsci.2025.104129" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.envsci.2025.104129&lt;/p&gt;
  1065. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104146" target="_blank"&gt;How do oil and gas workers cope with a changing economy? Economic vulnerability among rural Canadians in the oil and gas sector&lt;/a&gt;, Hodge et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104146" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104146&lt;/p&gt;
  1066. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.3389/fenvs.2025.1557830" target="_blank"&gt;Repercussions of energy efficiency, FinTech, industrialization, and technological advancements on climate change: evidence from G20 countries&lt;/a&gt;, Zhao &amp;amp; Arshad, &lt;em&gt;Frontiers in Environmental Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.3389/fenvs.2025.1557830" target="_blank"&gt; Open Access&lt;/a&gt; 10.3389/fenvs.2025.1557830&lt;/p&gt;
  1067. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/17583004.2025.2505727" target="_blank"&gt;The impact of the EU carbon border adjustment mechanism on China based on the climate club&lt;/a&gt;, Yue et al., &lt;em&gt;Carbon Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/17583004.2025.2505727" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/17583004.2025.2505727&lt;/p&gt;
  1068. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change mitigation public policy research&lt;/strong&gt;&lt;/p&gt;
  1069. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114718" target="_blank"&gt;Accelerating heat pump adoption in Switzerland: An agent-based policy assessment&lt;/a&gt;, Brodnicke et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114718" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114718&lt;/p&gt;
  1070. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2513023" target="_blank"&gt;Assessing risks to the implementation of NDCs under the Paris Agreement&lt;/a&gt;, Peterson &amp;amp; van Asselt, &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2513023" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2513023&lt;/p&gt;
  1071. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41467-025-59913-w" target="_blank"&gt;Carbon trade biases and the emerging mesoscale structure of the European Emissions Trading System network&lt;/a&gt;, Flori &amp;amp; Spelta, &lt;em&gt;Nature Communications&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s41467" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41467-025-59913-w&lt;/p&gt;
  1072. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2506610" target="_blank"&gt;Closing the ambition gap: Germany's energy transition in line with a 1.5&amp;deg;C carbon budget&lt;/a&gt;, J&amp;uuml;rgens et al., &lt;em&gt;Climate Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1080/14693062.2025.2506610" target="_blank"&gt; Open Access&lt;/a&gt; 10.1080/14693062.2025.2506610&lt;/p&gt;
  1073. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.enpol.2025.114717" target="_blank"&gt;Coal communities&amp;rsquo; views on local economic Futures: Implications for energy transition policy and planning&lt;/a&gt;, Greenberg et al., &lt;em&gt;Energy Policy&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.enpol.2025.114717" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.enpol.2025.114717&lt;/p&gt;
  1074. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104142" target="_blank"&gt;Electrifying tensions: Stakeholder narratives to electrification of industry and transport in Sweden&lt;/a&gt;, Phan et al., &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.erss.2025.104142" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.erss.2025.104142&lt;/p&gt;
  1075. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02342-w" target="_blank"&gt;European Union needs large heat pump and targeted renovation subsidies to meet heating targets&lt;/a&gt;, Vivier et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02342-w&lt;/p&gt;
  1076. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02351-9" target="_blank"&gt;Improving cost&amp;ndash;benefit analyses for health-considered climate mitigation policymaking&lt;/a&gt;, Shen et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; 10.1038/s41558-025-02351-9&lt;/p&gt;
  1077. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02348-4" target="_blank"&gt;Meeting climate target with realistic demand-side policies in the residential sector&lt;/a&gt;, Vivier et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.21203/rs.3.rs" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02348-4&lt;/p&gt;
  1078. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.erss.2025.104085" target="_blank"&gt;Renewable energy communities assembling energy governance&lt;/a&gt;, Concetti, &lt;em&gt;Energy Research &amp;amp; Social Science&lt;/em&gt; 10.1016/j.erss.2025.104085&lt;/p&gt;
  1079. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change adaptation &amp;amp; adaptation public policy research&lt;/strong&gt;&lt;/p&gt;
  1080. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s43247-025-02444-5" target="_blank"&gt;Climate change adaptation in global mountain regions requires a multi-sectoral approach&lt;/a&gt;, Kapruwan et al., &lt;em&gt;Communications Earth &amp;amp; Environment&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1038/s43247" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s43247-025-02444-5&lt;/p&gt;
  1081. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100719" target="_blank"&gt;Floating and stilted structures as strategies in coastal climate adaptation: local monsoon adaptation practices and implications for flood risk management&lt;/a&gt;, Huebner, &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100719" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100719&lt;/p&gt;
  1082. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.5194/egusphere-egu25-4486" target="_blank"&gt;Global Mapping of Concurrent Hazards and Impacts Associated With Climate Extremes Under Climate Change&lt;/a&gt;, Messori et al., &lt;em&gt;&lt;/em&gt; 10.5194/egusphere-egu25-4486&lt;/p&gt;
  1083. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1029/2024ef005189" target="_blank"&gt;Increasing Exposures to Compound Wildfire Smoke and Extreme Heat Hazards in California, 2011&amp;ndash;2020&lt;/a&gt;, Jones?Ngo et al., &lt;em&gt;Earth's Future&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1029/2024ef005189" target="_blank"&gt; Open Access&lt;/a&gt; 10.1029/2024ef005189&lt;/p&gt;
  1084. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100715" target="_blank"&gt;Migration due to floodplain buyouts mimics general post-disaster migration patterns&lt;/a&gt;, Schwaller et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100715" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100715&lt;/p&gt;
  1085. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.crm.2025.100718" target="_blank"&gt;Non-stationary precipitation design standards for stormwater infrastructure modernization at USAF installations&lt;/a&gt;, Jaks et al., &lt;em&gt;Climate Risk Management&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1016/j.crm.2025.100718" target="_blank"&gt; Open Access&lt;/a&gt; 10.1016/j.crm.2025.100718&lt;/p&gt;
  1086. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Climate change impacts on human health&lt;/strong&gt;&lt;/p&gt;
  1087. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1080/14693062.2025.2514106" target="_blank"&gt;Cognition, emotion, and belief in the adaptation response of older people to heatwaves&lt;/a&gt;, Bourgeois et al., &lt;em&gt;Climate Policy&lt;/em&gt; 10.1080/14693062.2025.2514106&lt;/p&gt;
  1088. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1371/journal.pclm.0000566" target="_blank"&gt;Improving health professionals&amp;rsquo; capacity to respond to the climate crisis: Outcomes of the Caribbean climate and health responder course&lt;/a&gt;, Sorensen et al., &lt;em&gt;PLOS Climate&lt;/em&gt; &lt;a style="color: green;" href="https://doi.org/10.1371/journal.pclm.0000566" target="_blank"&gt; Open Access&lt;/a&gt; 10.1371/journal.pclm.0000566&lt;/p&gt;
  1089. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Other&lt;/strong&gt;&lt;/p&gt;
  1090. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1016/j.agrformet.2025.110609" target="_blank"&gt;Revealing future changes in China&amp;rsquo;s forest fire under climate change&lt;/a&gt;, Li et al., &lt;em&gt;Agricultural and Forest Meteorology&lt;/em&gt; 10.1016/j.agrformet.2025.110609&lt;/p&gt;
  1091. &lt;p style="text-align: left;"&gt;&lt;strong&gt;Informed opinion, nudges &amp;amp; major initiatives&lt;/strong&gt;&lt;/p&gt;
  1092. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/d41586-025-01826-1" target="_blank"&gt;How to spot suspicious papers: a sleuthing guide for scientists&lt;/a&gt;, Naddaf, &lt;em&gt;Nature&lt;/em&gt; 10.1038/d41586-025-01826-1&lt;/p&gt;
  1093. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1175/bams-d-25-0077.1" target="_blank"&gt;Kickoff of a Joint AMS/ASCE Effort to Assess the Potential Contribution of AI in Addressing Infrastructure Resilience in a Changing Climate&lt;/a&gt;, Giovannettone et al., &lt;em&gt;Bulletin of the American Meteorological Society&lt;/em&gt; 10.1175/bams-d-25-0077.1&lt;/p&gt;
  1094. &lt;p style="text-align: left;"&gt;&lt;a href="https://doi.org/10.1038/s41558-025-02354-6" target="_blank"&gt;Recommendations for producing knowledge syntheses to inform climate change assessments&lt;/a&gt;, Ford et al., &lt;em&gt;Nature Climate Change&lt;/em&gt; &lt;a style="color: green;" target="_blank"&gt; Open Access&lt;/a&gt; 10.1038/s41558-025-02354-6&lt;/p&gt;
  1095. &lt;hr /&gt;
  1096. &lt;h3&gt;&lt;a id="gov-ngo"&gt;&lt;/a&gt;Articles/Reports from Agencies and Non-Governmental Organizations Addressing Aspects of Climate Change&lt;/h3&gt;
  1097. &lt;p&gt;&lt;strong&gt;&lt;a href="https://atlaspolicy.com/the-advanced-manufacturing-tax-credit-is-rebuilding-u-s-manufacturing/" target="_blank"&gt;The Advanced Manufacturing Tax Credit is Rebuilding U.S. Manufacturing&lt;/a&gt;, &lt;/strong&gt;Taylor et al., &lt;strong&gt;Atlas Public Policy&lt;/strong&gt;&lt;/p&gt;
  1098. &lt;blockquote&gt;The authors outline the potential reach of the Advanced Manufacturing Production Tax Credit on the production of batteries, solar energy components, wind energy components, inverters, and critical minerals. To date, a total of $48.3 billion in announced investments and 62,700 jobs are associated with operational facilities that qualify for the tax credit. There is a further $137.2 billion and 103,100 jobs in tracked announcements at facilities that are planned or under construction that will be eligible for the tax credit. Overwhelmingly, the factories supporting this manufacturing are in Republican House Congressional districts (77 percent of all investments).&lt;/blockquote&gt;
  1099. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.epa.ie/publications/monitoring--assessment/climate-change/EPA_NCCRA_Main-Report_Published_June_2025.pdf" target="_blank"&gt;National Climate Change Risk Assessment Main Report (Ireland)&lt;/a&gt;, &lt;/strong&gt;KPMG Ireland, &lt;strong&gt;Environemnt Protection Agency (Ireland)&lt;/strong&gt;&lt;/p&gt;
  1100. &lt;blockquote&gt;Ireland&amp;rsquo;s first National Climate Change Risk Assessment (NCCRA) provides a comprehensive national overview of the potential risks and opportunities posed by climate change for Ireland. It will play a critical role in meeting national policy objectives and supporting sectoral and local authority climate adaptation planning processes. The NCCRA integrates scientific and technical knowledge with input from expert stakeholders, to identify, assess, and prioritize climate change risks to build a comprehensive understanding of risks.&lt;/blockquote&gt;
  1101. &lt;p&gt;&lt;strong&gt;&lt;a href="https://oceanpanel.org/wp-content/uploads/2025/06/OP_mCDR_Blue-Paper-1.pdf" target="_blank"&gt;Principles for responsible and effective marine carbon dioxide removal development and governance&lt;/a&gt;, &lt;/strong&gt;Doney et al., &lt;strong&gt;The High Level Panel for a Sustainable Ocean Economy&lt;/strong&gt;&lt;/p&gt;
  1102. &lt;blockquote&gt;Launched on June 4, 2025, at the One Ocean Science Congress in Nice, France, ahead of the United Nations Ocean Conference, this Blue Paper was commissioned by the High Level Panel for a Sustainable Ocean Economy (Ocean Panel) to inform evidence-based decision-making on the responsible development and governance of marine carbon dioxide removal (mCDR). As countries seek to meet the goals of the Paris Agreement, mCDR approaches&amp;mdash;designed to enhance the ocean&amp;rsquo;s natural capacity to absorb and store carbon through biological and chemical processes&amp;mdash;are likely to play a complementary role alongside emissions reductions. However, significant knowledge gaps remain regarding their effectiveness, cost, permanence, and potential environmental and social impacts.&lt;/blockquote&gt;
  1103. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.climatecouncil.ie/councilpublications/councilworkingpaperseries/Working%20Paper%20No.%2037%20Alignment%20between%20energy%20transition%20pathways%20for%20Irish%20CBs%20with%20EU%20energy%20and%20climate%20targets.pdf" target="_blank"&gt;Analysis of the alignment between energy transition pathways for Irish carbon budgets with EU energy and climate targets&lt;/a&gt;, &lt;/strong&gt;Ciara Doherty and Hannah Daly, &lt;strong&gt;The Climate Change Advisory Council, Ireland&lt;/strong&gt;&lt;/p&gt;
  1104. &lt;blockquote&gt;The authors assess the alignment between Ireland&amp;rsquo;s national energy system decarbonization pathways and key EU energy and climate-related targets. Specifically, they examine how scenarios consistent with Ireland&amp;rsquo;s carbon budget, approved and legally adopted in the period to 2030 and proposed in the period to 2040, and sectoral emissions ceilings, compare to EU obligations, namely: &amp;bull; The EU Emissions Trading Scheme (EU-ETS) &amp;bull; The Effort Sharing Regulation (ESR) &amp;bull; The Energy Efficiency Directive (EED) &amp;bull; Indicative 2040 GHG emissions target The analysis focuses on energy-related sectors&amp;mdash;electricity, buildings, transport, and industry&amp;mdash;and excludes agriculture and land use, land use change and forestry (LULUCF), which are not included in the energy system model used.&lt;/blockquote&gt;
  1105. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.bafu.admin.ch/bafu/de/home/themen/klima/publikationen-studien/publikationen/klimabedingte-risiken-und-chancen.html" target="_blank"&gt;Climate risk analysis for Switzerland&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Federal Office for the Environment&lt;/strong&gt;&lt;/p&gt;
  1106. &lt;blockquote&gt;The authors identify and assesses climate risks and climate-related opportunities for Switzerland up to the year 2060. The content and methods of the first climate risk analysis published in 2017 was comprehensively reviewed and updated with the involvement of numerous specialists from the government, academic and business. The results serve as a basis for the Federal Council's future adaptation strategy and for developing adaptation strategies and action plans in the cantons and regions.&lt;/blockquote&gt;
  1107. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.pewresearch.org/science/2025/06/05/americans-views-on-energy-at-the-start-of-trumps-second-term/" target="_blank"&gt;Americans&amp;rsquo; Views on Energy at the Start of Trump&amp;rsquo;s Second Term&lt;/a&gt;, &lt;/strong&gt;Kennedy et al., &lt;strong&gt;Pew Research Center&lt;/strong&gt;&lt;/p&gt;
  1108. &lt;blockquote&gt;How have Americans&amp;rsquo; views on energy changed in recent years? The authors surveyed 5,085 U.S. adults from April 28 to May 4, 2025, to takes a look. While wind and solar power are still popular overall, Americans have become less supportive of these sources since the first Trump administration. This shift has been driven by sharp declines in support among Republicans and Republican leaners. Nuclear power has seen an increase in support in recent years, with more positive views among Republicans and Democrats alike. Phasing out the production of new gasoline cars and trucks by 2035 is unpopular with Americans. A majority oppose this proposal, and opposition has become more widespread since 2021 among both Republicans and Democrats. Americans are more likely to say they would seriously consider buying a hybrid vehicle (45%) than an electric vehicle (33%). Democrats remain more likely than Republicans to say that next time they purchase a vehicle, they would be interested in buying a hybrid or electric model.&lt;/blockquote&gt;
  1109. &lt;p&gt;&lt;strong&gt;&lt;a href="https://policyintegrity.org/files/publications/Power_Sector_GHG_Contribution_Issue_Brief_vF.pdf" target="_blank"&gt;The Scale of Significance: Power Plants&lt;/a&gt;, &lt;/strong&gt;Peter Howard and Jason Schwartz, &lt;strong&gt;Institute for Policy Integrity&lt;/strong&gt;&lt;/p&gt;
  1110. &lt;blockquote&gt;The Trump Administration is openly questioning the significance of U.S. contributions to climate change, playing down U.S. greenhouse gas emissions as contributing only &amp;ldquo;some mysterious amount above zero to climate change.&amp;rdquo; According to a leaked draft of a proposed regulatory repeal, Trump&amp;rsquo;s EPA will compare the U.S. power sector&amp;rsquo;s greenhouse gas emissions to worldwide totals and find, judged on that relative scale, the sector&amp;rsquo;s contribution to climate change is neither &amp;ldquo;significant&amp;rdquo; nor &amp;ldquo;meaningful.&amp;rdquo; That kind of skewed appraisal would produce the reductio ad absurdum under which no U.S. sector, sliced thinly enough, is ever a significant source of greenhouse gases&amp;mdash;a clearly irrational outcome. By any measure, emissions from major U.S. industries like the electric power sector contribute significantly to climate damages. The best available evidence shows that each year of greenhouse gas emissions from U.S. coal-fired and gas-fired power plants will contribute to climate damages responsible for thousands of U.S. deaths and hundreds of billions in economics harms.&lt;/blockquote&gt;
  1111. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.brettonwoodsproject.org/wp-content/uploads/2025/06/climate_finance_report_may_25_screen.pdf" target="_blank"&gt;A just energy transition deferred: How the World Bank counts pro-privatisation energy sector reforms as &amp;lsquo;climate finance&amp;rsquo;&lt;/a&gt;, &lt;/strong&gt;Jon Sward and Laure-Aliz&amp;eacute;e Le Lannou, &lt;strong&gt;The Bretton Woods Project&lt;/strong&gt;&lt;/p&gt;
  1112. &lt;blockquote&gt;The authors found that the World Bank counted 70 per cent of energy-sector reforms in Development Policy Financing as having 'climate co-benefits' between 2018-2023 - but most of these promoted a private-led energy transition.&lt;/blockquote&gt;
  1113. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.ceres.org/download/d16dea0f-bfa4-498f-a742-87ecd9e06c25" target="_blank"&gt;The 2025 Progress Report. Climate Risk Reporting in the U.S. Insurance Sector&lt;/a&gt;, &lt;/strong&gt;Jaclyn de Medicci Bruneau, &lt;strong&gt;Ceres&lt;/strong&gt;&lt;/p&gt;
  1114. &lt;blockquote&gt;The author analyzes climate disclosures from 526 insurance groups representing over 1,700 companies, following the Task Force on Climate Related Financial Disclosures (TCFD) framework's four pillars: governance, strategy, risk management, and metrics and targets. 99% of insurers reported on risk management, 97% on strategy, and 87% on governance. However, just 29% disclosed metrics and targets&amp;mdash;virtually unchanged from previous years. Only 28% of insurers disclosed across all four pillars of the TCFD framework. Use of climate scenario analysis is up 28%, with 148 insurance groups incorporating it in 2023.&lt;/blockquote&gt;
  1115. &lt;p&gt;&lt;strong&gt;&lt;a href="https://ncsd.moe.gov.kh/resources/document/cambodia-climate-change-strategic-plan-2024-2033" target="_blank"&gt;Cambodia Climate Change Strategic Plan 2024 -2033&lt;/a&gt;, &lt;/strong&gt;Department of Climate Change, &lt;strong&gt;Royal Government of Cambodia&lt;/strong&gt;&lt;/p&gt;
  1116. &lt;blockquote&gt;The Cambodia&amp;rsquo;s Climate Change Strategic Plan 2024-2033 (CCCSP 2024-2033) aims to address gaps identified in the approach towards the country&amp;rsquo;s Nationally Determined Contribution 3.0 (NDC3.0) and Long-Term Strategy for Carbon Neutrality targets and give specific attention to emerging climate themes and to the most vulnerable, marginalized and at risk-population, especially children and women. It has been developed to be aligned with key national policies such as the Pentagonal Strategy Phase 1 and the Circular Strategy on Environment 2023-2028 and line agency sectoral strategies. The CCCSP 2024-2033 also presents financial and technology needs and estimated resource needs which will be further refined according to the national development needs and circumstances. Moving forward it is anticipated the line agencies will develop and implement their respective action plans to support Cambodia&amp;rsquo;s progress towards carbon neutrality and climate resilience through inclusive and sustainable national development.&lt;/blockquote&gt;
  1117. &lt;p&gt;&lt;strong&gt;&lt;a href="https://files.wri.org/d8/s3fs-public/2025-06/climate-adaptation-investment-case.pdf" target="_blank"&gt;The Compelling Business Case for Climate Adaptation&lt;/a&gt;, &lt;/strong&gt;Brandon et al., &lt;strong&gt;World Resources Institute&lt;/strong&gt;&lt;/p&gt;
  1118. &lt;blockquote&gt;The authors found that investing $1 in adaptation can yield more than $10.50 in benefits over 10 years. This reflects not only the avoided losses from climate impacts, but also a wide range of economic, social and environmental benefits that are generated even when disasters don't occur. In other words, adaptation is not just a crucial response to the climate crisis; it is also one of the smartest investments of our time.&lt;/blockquote&gt;
  1119. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.danuinsight.org/_files/ugd/4e1fd6_91baadb8554a4fbbadd38cd9b040cd22.pdf" target="_blank"&gt;Silent Influence. Are companies failing to govern their climate lobbying?&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Danu Insight&lt;/strong&gt;&lt;/p&gt;
  1120. &lt;blockquote&gt;Corporate political lobbying is a critical global issue to the progression of climate change. However, there is little transparency in the market regarding which companies are supporting policy and who is effectively governing their climate lobbying actions. To address this gap, the authors examined the public disclosures of 8,500 of the largest listed companies and assessed them using data science and AI models to provide both quantitative and qualitative results.&lt;/blockquote&gt;
  1121. &lt;p&gt;&lt;strong&gt;&lt;a href="https://collections.unu.edu/eserv/UNU:10167/UNU-INWH-Policy-Brief-Wildfire-May-2005.pdf" target="_blank"&gt;Beyond Planting Trees: Taking Advantage of Satellite Observations to Improve Forest Carbon Management and Wildfire Prevention&lt;/a&gt;, &lt;/strong&gt;Lee et al., &lt;strong&gt;United Nations University, Institute for Water, Environment and Health&lt;/strong&gt;&lt;/p&gt;
  1122. &lt;blockquote&gt;In many parts of the world, forests and peatlands, previously considered to be the largest terrestrial carbon storehouses, are transitioning into super carbon emitters under warming conditions, due to large and frequent wildfires. Carbon mitigation actions and policies&amp;mdash; including carbon pricing, credit verification, and Voluntary Carbon Market (VCM) projects under the forestry and land-use category, as well as the Paris Agreement, fail to properly account for wildfire-related carbon emissions. Natural carbon sequestration in dry soils through forestation policies might be ineffective in warming environments with more frequent wildfires. Under certain conditions and mostly in arid and warming environments where the efficiency of photosynthesis is reduced, controlled harvesting and grazing could be actively considered as a strategy for maintaining soil and vegetation moisture and preventing increased carbon emissions. A global platform of near-real-time satellite observations of forest conditions is needed to ensure transparency and accountability of VCMs in accordance with the changing conditions of forests under global warming.&lt;/blockquote&gt;
  1123. &lt;p&gt;&lt;strong&gt;&lt;a href="https://drive.google.com/file/d/1qpGkLX8PTfcwh-7pRuYKUmIfdnL8eYRs/view" target="_blank"&gt;Wildfire: An Updated Look at Utility Risk and Mitigation&lt;/a&gt;, &lt;/strong&gt;Macomber et al., &lt;strong&gt;Stanford Law School&amp;rsquo;s Environmental and Natural Resources Law &amp;amp; Policy Program and the Stanford Woods Institute for the Environment&amp;rsquo;s Climate and Energy Policy Program&lt;/strong&gt;&lt;/p&gt;
  1124. &lt;blockquote&gt;The authors share new findings from survey of wildfire mitigation efforts across investor-owned utilities, and explore how utilities, policymakers, regulators, and community leaders can work together to reduce wildfire risk and create a more resilient, sustainable electric grid. The authors examined how investor-owned utilities (IOUs) across the country are confronting the escalating threat of wildfires. The key takeaway: while progress has been made across many Western states, utilities in some potentially high-risk areas remain underprepared. Using a combination of public data and wildfire hazard modeling, the authors assigned &amp;ldquo;tiers&amp;rdquo; to utility wildfire mitigation efforts. Tier 1 utilities have implemented comprehensive plans and technical measures&amp;mdash;like fast-trip settings that can turn power lines off more quickly when an object touches them during high-fire-risk periods&amp;mdash;to reduce the chance of ignitions. Tier 3 utilities, on the other hand, lack even a public plan describing their implementation of wildfire mitigation or safety shutoffs.&lt;/blockquote&gt;
  1125. &lt;p&gt;&lt;strong&gt;&lt;a href="https://cdn.catf.us/wp-content/uploads/2025/06/09151001/beyond-lcoe.pdf" target="_blank"&gt;Beyond LCOE: A Systems-Oriented Perspective for Evaluating Electricity Decarbonization Pathways&lt;/a&gt;, &lt;/strong&gt;Moraski et al., &lt;strong&gt;Clean Air Task Force&lt;/strong&gt;&lt;/p&gt;
  1126. &lt;blockquote&gt;Levelized Cost of Electricity (LCOE) is a widely used standardized metric to assess electricity generation project costs per expected generation output. Often used to compare technology costs, LCOE has become a ubiquitous metric used in electricity industry literature, cost forecasts, project business cases, and policy making. The LCOE metric is popular in part due to its simplicity and standardization and has been used widely to display LCOE declines of solar and wind. LCOE is calculated by summing the discounted project cost, primarily capital and operating expenditures, and dividing those costs by the discounted expected electricity generation over the life of the project. While LCOE is a good metric to track historical technology cost evolution, it is not an appropriate tool to use in the context of long-term planning and policymaking for deep decarbonization. The authors explain why LCOE fails to reflect the full complexity of electricity systems and can lead to decisions that jeopardize reliability, affordability, and clean generation.&lt;/blockquote&gt;
  1127. &lt;p&gt;&lt;strong&gt;&lt;a href="https://generation180.org/wp-content/uploads/PoweringaBrighterFutureinPennsylvania2025.pdf" target="_blank"&gt;Powering a Brighter Future in Pennsylvania&lt;/a&gt;, &lt;/strong&gt;&lt;strong&gt;Generation180&lt;/strong&gt;&lt;/p&gt;
  1128. &lt;blockquote&gt;During the last 10 years, the solar capacity at Pennsylvania K-12 educational institutions has more than tripled and the number of K-12 schools with solar installations has more than doubled. By the end of 2024, Pennsylvania reached a key milestone: over 100,000 students&amp;mdash;more than 5.5% of the state&amp;rsquo;s student population &amp;mdash; now attend a solar-powered school. Pennsylvania has made a commitment to build on this progress and support schools in accessing the benefits of solar energy. In 2024, Pennsylvania enacted the Solar for Schools Act and launched a new state grant program to help public schools statewide fund solar energy projects. In May 2025, the state awarded $22.6 million to support over 42 megawatts (MW) of new solar projects at 73 school sites&amp;mdash;71 of which are K-12 school. While this momentum is promising, currently only 2% of K-12 schools statewide have installed solar energy projects. There is more work to do for all Pennsylvania schools to access the benefits of clean energy. Solar is a practical solution that reduces costs, enhances energy independence, and inspires students to become informed and engaged citizens. By investing in solar energy for schools, Pennsylvania creates opportunities for students to develop valuable skills, strengthen their communities, and build a resilient future.&lt;/blockquote&gt;
  1129. &lt;p&gt;&lt;strong&gt;&lt;a href="https://www.sierraclub.org/sites/default/files/2025-06/the-long-term-will-be-decided-now.pdf" target="_blank"&gt;The Long Term Will Be Decided Now. Why Climate Risk Demands System-Level Action from Investors&lt;/a&gt;, &lt;/strong&gt;Ben Cushing, &lt;strong&gt;The Sierra Club&lt;/strong&gt;&lt;/p&gt;
  1130. &lt;blockquote&gt;The author explains why climate change must be treated as a system-level financial threat; then, he outlines how investors can use their influence to reduce emissions and protect long-term portfolio value. He argues that conventional strategies&amp;mdash;such as ESG integration and shareholder divestment&amp;mdash;do not confront companies&amp;rsquo; climate pollution or the broader economic damage driven by rising emissions. Instead, he lays out a practical framework for &amp;ldquo;system-level investing&amp;rdquo; that prioritizes real-world impact to mitigate systemic risk.&lt;/blockquote&gt;
  1131. &lt;hr /&gt;
  1132. &lt;h3&gt;About &lt;em&gt;New Research&lt;/em&gt;&lt;/h3&gt;
  1133. &lt;p&gt;Click &lt;a href="https://skepticalscience.com/About_Skeptical_Science_New_Research.shtml"&gt;here&lt;/a&gt; for the why and how of Skeptical Science &lt;em&gt;New Research&lt;/em&gt;.&lt;/p&gt;
  1134. &lt;h3&gt;Suggestions&lt;/h3&gt;
  1135. &lt;p&gt;Please let us know if you're aware of an article you think may be of interest for Skeptical Science research news, or if we've missed something that may be important. Send your input to Skeptical Science via our &lt;a href="https://skepticalscience.com/contact.php"&gt;contact form&lt;/a&gt;.&lt;/p&gt;
  1136. &lt;h3&gt;Previous edition&lt;/h3&gt;
  1137. &lt;p&gt;The previous edition of &lt;em&gt;Skeptical Science New Research&lt;/em&gt; may be found &lt;strong&gt;&lt;a href="https://skepticalscience.com/new_research_2025_23.html"&gt;here&lt;/a&gt;&lt;/strong&gt;.&lt;/p&gt;</description>
  1138. <link>https://skepticalscience.com/new_research_2025_24.html</link>
  1139. <guid>https://skepticalscience.com/new_research_2025_24.html</guid>
  1140. <pubDate>Thu, 12 Jun 2025 15:12:44 EST</pubDate>
  1141. </item>  <item>
  1142. <title>Climate Adam: Is China Finally Changing Its Climate Ways?</title>
  1143. <description>&lt;p class="greenbox"&gt;This video includes personal musings and conclusions of the creator climate scientist&amp;nbsp;&lt;a href="https://www.climateadam.co.uk/" target="_blank"&gt;Dr. Adam Levy&lt;/a&gt;. It is presented to our readers as an informed perspective. Please see video description for references (if any).&lt;/p&gt;
  1144. &lt;p&gt;To stop global warming, carbon emissions need to be cut to net zero as quickly as possible. And while some countries have been cutting back on fossil fuels, some major polluters - like China - have seen their emissions continue to increase. But thanks to the epic rise in clean energy solutions, it's just possible that that's starting to shift, and China's path to a low carbon future might be about to change for ever...&lt;/p&gt;
  1145. &lt;p&gt;Support ClimateAdam on patreon: &lt;a href="https://patreon.com/climateadam/" target="_blank"&gt;https://patreon.com/climateadam&lt;/a&gt;&lt;/p&gt;
  1146. &lt;p&gt;&lt;a href="https://www.youtube.com/watch?v=9-ynFjOe0yE" target="_blank"&gt;&lt;img src="https://i.ytimg.com/vi/9-ynFjOe0yE/hqdefault.jpg" data-pre-sourced="yes" data-sourced="yes" id="image1" data-original="https://i.ytimg.com/vi/9-ynFjOe0yE/hqdefault.jpg" data-src="https://i.ytimg.com/vi/9-ynFjOe0yE/hqdefault.jpg" alt="YouTube Video" "="" class="" style="max-width: 580px;"&gt;&lt;/a&gt;&lt;/p&gt;
  1147. &lt;!--more--&gt;</description>
  1148. <link>https://skepticalscience.com/ClimateAdam-is-china-finally-changing-its-climate-ways.html</link>
  1149. <guid>https://skepticalscience.com/ClimateAdam-is-china-finally-changing-its-climate-ways.html</guid>
  1150. <pubDate>Wed, 11 Jun 2025 12:02:09 EST</pubDate>
  1151. </item>  <item>
  1152. <title>The Trump EPA tried to bury some good news</title>
  1153. <description>&lt;p class="greenbox"&gt;This is a&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/06/the-trump-epa-tried-to-bury-some-good-news/"&gt;re-post from Yale Climate Connections&lt;/a&gt;&lt;/p&gt;
  1154. &lt;p class="has-drop-cap"&gt;The Trump administration has taken an ostrich-like approach to climate change.&amp;nbsp;&lt;/p&gt;
  1155. &lt;p&gt;The U.S. Environmental Protection Agency is required to publish a report about the country&amp;rsquo;s sources of climate-changing pollution each year by April 15. This year, that didn&amp;rsquo;t happen. But the completed report was recently made public as the result of a Freedom of Information Act&amp;nbsp;&lt;a href="https://www.edf.org/freedom-information-act-documents-epas-greenhouse-gas-inventory"&gt;request&lt;/a&gt;&amp;nbsp;submitted by the Environmental Defense Fund.&lt;/p&gt;
  1156. &lt;p&gt;This latest U.S. Greenhouse Gas Inventory Report provides granular detail on U.S. emissions in 2023. It&amp;rsquo;s unclear why the administration withheld this report, which had been completed, and thus its suppression offered no budgetary benefit. But suppressing the report lines up with the Trump Administration&amp;rsquo;s general attack on climate action.&amp;nbsp;&lt;/p&gt;
  1157. &lt;p&gt;Among his Day One executive orders, the president&amp;nbsp;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/01/putting-america-first-in-international-environmental-agreements/"&gt;announced America&amp;rsquo;s withdrawal&lt;/a&gt;&amp;nbsp;from the Paris Climate Agreement and&amp;nbsp;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/01/declaring-a-national-energy-emergency/"&gt;declared &amp;ldquo;a national energy emergency&amp;rdquo;&lt;/a&gt;&amp;nbsp;that focused primarily on expanding fossil fuel production while&amp;nbsp;&lt;a href="https://www.whitehouse.gov/presidential-actions/2025/01/temporary-withdrawal-of-all-areas-on-the-outer-continental-shelf-from-offshore-wind-leasing-and-review-of-the-federal-governments-leasing-and-permitting-practices-for-wind-projects/"&gt;largely halting low-carbon wind power development&lt;/a&gt;. His administration&amp;nbsp;&lt;a href="https://www.nytimes.com/2025/05/19/climate/trump-climate-denial.html"&gt;subsequently began&lt;/a&gt;&amp;nbsp;purging the phrases &amp;ldquo;climate crisis&amp;rdquo; and &amp;ldquo;climate science&amp;rdquo; from government websites,&amp;nbsp;&lt;a href="https://bsky.app/profile/bobkopp.net/post/3lolekcamok2r"&gt;dismantling&lt;/a&gt;&amp;nbsp;climate and weather research,&amp;nbsp;&lt;a href="https://www.nytimes.com/2025/02/27/climate/noaa-layoffs-trump.html"&gt;firing climate scientists&lt;/a&gt;&amp;nbsp;at federal agencies, and even&amp;nbsp;&lt;a href="https://news.agu.org/press-release/agu-and-ams-join-forces-on-special-collection-to-maintain-momentum-of-research-supporting-the-u-s-national-climate-assessment"&gt;attempting to cancel&lt;/a&gt;&amp;nbsp;the next National Climate Assessment Report.&lt;/p&gt;
  1158. &lt;p&gt;The EPA report itself offers some good news regarding modest reductions in U.S. climate pollution through 2023. But it&amp;rsquo;s a trend that may not continue, let alone accelerate as needed to meet climate targets, if the administration and Congress are successful in implementing proposed rollbacks of pollution regulations and clean energy policies.&lt;/p&gt;
  1159. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;U.S. coal consumption and climate pollution declined in 2023&lt;/span&gt;&lt;/h4&gt;
  1160. &lt;p&gt;The EPA report documents that in 2023,&amp;nbsp;U.S. climate pollution fell by 2.3%. That&amp;rsquo;s about 147 million metric tons, or MMT, of reduced carbon dioxide-equivalent greenhouse gases.&lt;/p&gt;
  1161. &lt;p&gt;2023 was the first full year after President Biden signed the Inflation Reduction Act, the Democrats&amp;rsquo; signature climate law that committed hundreds of billions of dollars to reducing climate pollution.&amp;nbsp;&lt;/p&gt;
  1162. &lt;p&gt;The continued long-term decline in U.S. coal consumption accounted for the bulk of the reduction in emissions in 2023. In fact, an 18% decline in carbon pollution from coal accounted for 164 MMT in reduced emissions, which is more than the nation&amp;rsquo;s overall emissions reduction for the year. Higher carbon emissions from natural gas offset some of that coal decline, increasing by 1%, or a bit under 18 MMT.&lt;/p&gt;
  1163. &lt;p&gt;&lt;img src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXenofPldc86teS-UHHOz2jJLlwbl1Cd--tJiI0xg4vxUVAeV6nk-uxsKfiT4QvecU-LdfzRnMjRtBsY6ooENBhiEuJ2VjxGgyubDVsS8n2EXJjJU8EoWe5TXSlyxGdwMMz2NGvN4g?key=R8Ue0wNxCokfNzlBi5f19Q" alt="" width="550" height="359" /&gt;&lt;/p&gt;
  1164. &lt;p&gt;&lt;em&gt;Annual U.S. electric power generation (colored bars; billion kilowatt-hours) and associated greenhouse gas emissions (blue line; million metric tons of carbon dioxide equivalents). Source: Figure 2-8 from the EPA Greenhouse Gas Emissions Inventory Report.&lt;/em&gt;&lt;/p&gt;
  1165. &lt;div id="id_102797" class="newspack-popup-container newspack-popup newspack-inline-popup" data-segments="14345" data-frequency="0,0,0,month"&gt;&lt;!--more--&gt;
  1166. &lt;p&gt;&lt;a href="https://www.epa.gov/ghgemissions/industry-sector-emissions"&gt;Climate pollution from the U.S. industrial sector has also modestly declined&lt;/a&gt;&amp;nbsp;over time, due in part to improved efficiency and a shift to cleaner technologies, and to the use of increasingly low-carbon electricity. Emissions from most other sectors of the economy have remained relatively stagnant. Transportation has become the country&amp;rsquo;s largest source of climate pollution, as electric vehicles haven&amp;rsquo;t yet made much of a dent in the number of polluting cars on the nation&amp;rsquo;s roads.&lt;/p&gt;
  1167. &lt;p&gt;&lt;img src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXfoCEgAQBIc4DBinGIOejWYQhdcpddUv6fz0v15ijCd19sl-5M7Q8kPDGBRW8UtLSf2Q3MLCRuwMGs8IyeGnuXMfhLZnGgh5tBy09HpMTAfaQPiLNKCOl6Nyqy90zLjse3Y-mdPfA?key=R8Ue0wNxCokfNzlBi5f19Q" alt="" width="550" height="253" /&gt;&lt;/p&gt;
  1168. &lt;/div&gt;
  1169. &lt;p&gt;&lt;em&gt;U.S. greenhouse gas emissions by economic sector. Source: Figure 2-13 from the EPA Greenhouse Gas Emissions Inventory Report.&lt;/em&gt;&lt;/p&gt;
  1170. &lt;p&gt;In total, the U.S. released 6,197 MMT of climate pollution in 2023. The country&amp;rsquo;s natural carbon sinks, like trees that pull carbon out of the air through the process of photosynthesis, removed about 940 MMT.&amp;nbsp;&lt;/p&gt;
  1171. &lt;p&gt;Combining those sources and sinks, U.S. net emissions of 5,257 MMT in 2023 were about 20% below the country&amp;rsquo;s highest annual level in 2005. For perspective, under the Paris Agreement,&amp;nbsp;&lt;a href="https://unfccc.int/sites/default/files/NDC/2022-06/United%20States%20NDC%20April%2021%202021%20Final.pdf"&gt;the U.S. committed&lt;/a&gt;&amp;nbsp;to reducing its climate pollution by at least 50-52% below 2005 levels by 2030.&lt;/p&gt;
  1172. &lt;p&gt;&lt;img src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXcfhHBpIYzDMCfivbIoN6zcRGhcSM3QNiZW5OK9zwKDPdV7w2YxnnsfBwGz_BR_T26eD-LThtq1nVs8pX1vTQyKjq0TcCHAzKYWbhy254MqDUXSWA_ulmm22vUMDfJCSR0L3V5MIA?key=R8Ue0wNxCokfNzlBi5f19Q" alt="" width="550" height="316" /&gt;&lt;/p&gt;
  1173. &lt;p&gt;&lt;em&gt;U.S. annual greenhouse gas emissions and removals by sector. LULUCF stands for land use, land use change, and forestry. Source: Figure 2-4 from the EPA Greenhouse Gas Emissions Inventory Report.&lt;/em&gt;&lt;/p&gt;
  1174. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;What&amp;rsquo;s happening with U.S. forests and agriculture&lt;/span&gt;&lt;/h4&gt;
  1175. &lt;p&gt;About one-third of U.S. land area is covered by forests, and those trees absorb a significant amount of annual U.S. carbon pollution. The country&amp;rsquo;s natural carbon sinks absorbed just over 15% of U.S. greenhouse gas emissions in 2023. Nearly all of that work was done by trees growing in forests and in cities and by the planting of new trees to expand forests.&lt;/p&gt;
  1176. &lt;p&gt;&lt;img src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXd1iWLtjVKdmJtUFPcJSFCD6p_OPpFJvGp_4OG0z9fe_u2LF5UJlc2SYkhIfkYx3nnb_-99VLgkmjqxcaBSA3VxiBS81bLNh7ioGtTURvW2P-BdE4Yh91cKMtAZVEO0rOH_jGCSOQ?key=R8Ue0wNxCokfNzlBi5f19Q" alt="" width="550" height="392" /&gt;&lt;/p&gt;
  1177. &lt;p&gt;&lt;em&gt;The percentage of total carbon removal achieved by the main categories of U.S. natural carbon sinks in 2023. Created by Dana Nuccitelli with data from the EPA Greenhouse Gas Emissions Inventory Report.&lt;/em&gt;&lt;/p&gt;
  1178. &lt;p&gt;The amount of carbon absorbed by the country&amp;rsquo;s natural carbon sinks has remained relatively stable in recent years, although it&amp;rsquo;s become threatened by a combination of aging forests and climate-worsened wildfires.&amp;nbsp;&lt;a href="https://www.rff.org/news/press-releases/forests-will-sequester-less-carbon-in-the-coming-decades-afforestation-programs-could-change-that/"&gt;A 2023 report&lt;/a&gt;&amp;nbsp;by the think tank Resources for the Future concluded that avoiding a significant future reduction in the amount of carbon naturally absorbed by U.S. forests would require major sustained efforts to plant more trees and expand the nation&amp;rsquo;s forests.&lt;/p&gt;
  1179. &lt;p&gt;Agricultural activities were responsible for a little over 10% of U.S. greenhouse gas pollution in 2023. Close to half those emissions were associated with&amp;nbsp;&lt;a href="https://www.epa.gov/ghgemissions/nitrous-oxide-emissions"&gt;nitrous oxide from &amp;ldquo;soils management.&lt;/a&gt;&amp;rdquo; This term describes farming practices that are intended to increase crop yields, primarily the application of&amp;nbsp;&lt;a href="https://eos.com/blog/organic-vs-synthetic-fertilizers/"&gt;synthetic fertilizers&lt;/a&gt;&amp;nbsp;that are made with chemicals rather than natural sources. Nitrous oxide is a long-lived greenhouse gas that stays in the atmosphere for over a century and is 265 times more potent than carbon dioxide at trapping heat. It&amp;rsquo;s the third-largest contributor to U.S. greenhouse gas emissions, behind carbon dioxide and methane, accounting for 6% of the country&amp;rsquo;s total climate pollution. About three-quarters of the nation&amp;rsquo;s nitrous oxide emissions stem from synthetic nitrogen fertilizer applications.&lt;/p&gt;
  1180. &lt;p&gt;Most of the rest of U.S. agricultural emissions were associated with animal farming. The specific sources are &amp;ldquo;enteric fermentation,&amp;rdquo; which refers to the methane released by ruminant livestock like cattle, primarily in their burps, and manure management. Overall, greenhouse gas emissions from U.S. agriculture have remained relatively stable over the past several decades.&lt;/p&gt;
  1181. &lt;p&gt;&lt;img src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXfq-lfGbgaWXfhM4wSTPoxq983sUi1PJ9okSraxCzBUaspyVNEZl9Tfi7ay-lnY--T2cNVG1sqc9bCc8D0JI7uw_f33SK6AnLiayzr5Wr7pECqvSNwHGfcDmcjMzDfkoKkqTIc0?key=R8Ue0wNxCokfNzlBi5f19Q" alt="" width="550" height="342" /&gt;&lt;/p&gt;
  1182. &lt;p&gt;&lt;em&gt;Sources of U.S. agricultural greenhouse gas emissions. Source: Figure 2-10 from the EPA Greenhouse Gas Emissions Inventory Report.&lt;/em&gt;&lt;/p&gt;
  1183. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;What&amp;rsquo;s happening with methane&lt;/span&gt;&lt;/h4&gt;
  1184. &lt;p&gt;Carbon dioxide was responsible for nearly four-fifths of U.S. greenhouse gas emissions in 2023, but methane accounted for a further 11%. Methane is a potent greenhouse gas, especially over short timescales, but it breaks down in the atmosphere into less-potent carbon dioxide and water vapor over time. As a result, experts often identify reducing methane emissions as a way to significantly slow climate change in the short term.&amp;nbsp;&lt;/p&gt;
  1185. &lt;p&gt;Animal agriculture accounted for about one-third of U.S. methane emissions in 2023, primarily from cow burps, with leakage from natural gas systems causing another 22%, and landfills being the third-largest source at 17%. The EPA reports that U.S. methane emissions were 23% lower in 2023 than in 1990 due to the installation of landfill gas collection systems and reduced leakage from the distribution, transportation, and storage of natural gas.&lt;/p&gt;
  1186. &lt;div id="id_126912" class="newspack-popup-container newspack-popup newspack-inline-popup newspack-lightbox-no-border" data-segments="14345" data-frequency="0,0,0,month"&gt;
  1187. &lt;div class="wp-block-group is-style-border"&gt;
  1188. &lt;div class="wp-block-group__inner-container is-layout-constrained wp-block-group-is-layout-constrained"&gt;
  1189. &lt;p&gt;That trend in declining gas industry methane leakage was poised to accelerate with&amp;nbsp;&lt;a href="https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-operations/epas-final-rule-oil-and-natural-gas"&gt;new regulations from the EPA&lt;/a&gt;, combined with&amp;nbsp;&lt;a href="https://taxfoundation.org/blog/methane-fee-2024-carbon-price/"&gt;a fee&lt;/a&gt;&amp;nbsp;penalizing noncompliance, passed in the Inflation Reduction Act. But&amp;nbsp;&lt;a href="https://www.velaw.com/insights/congress-has-disapproved-the-epas-methane-tax-rule-what-happens-next/"&gt;Congress voted&lt;/a&gt;&amp;nbsp;in February to prohibit the EPA methane rule from taking effect and has proposed to freeze the methane fee in&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/05/one-big-beautiful-climate-killing-bill/"&gt;the so-called &amp;lsquo;one big beautiful&amp;rsquo; budget reconciliation package&lt;/a&gt;.&lt;/p&gt;
  1190. &lt;p&gt;&lt;img src="https://lh7-rt.googleusercontent.com/docsz/AD_4nXdwCjg2jhu6BGecxeFKrPcxcvVMmWFLegl8-qVkKgFgniuikOw5OdJAgpA7-Pai8hOTGJkXDCUHTF15N7LT61QWrrfI7FFkl2eRC5PWQywk4fgHIUCXOdWkD299y4PbgchHy-0Z2g?key=R8Ue0wNxCokfNzlBi5f19Q" alt="" width="550" height="273" /&gt;&lt;/p&gt;
  1191. &lt;/div&gt;
  1192. &lt;/div&gt;
  1193. &lt;/div&gt;
  1194. &lt;p&gt;&lt;em&gt;Sources of U.S. methane emissions in 2023. Source: Figure ES-8 from the EPA Greenhouse Gas Emissions Inventory Report.&lt;/em&gt;&lt;/p&gt;
  1195. &lt;h4 class="wp-block-heading"&gt;&lt;span&gt;The U.S. is making slow, steady progress at curbing its climate pollution&lt;/span&gt;&lt;/h4&gt;
  1196. &lt;p&gt;Over the past decade, U.S. climate pollution has declined at an average rate of 1-1.5% per year, mostly due to the replacement of coal power with cheaper and cleaner sources of electricity. A continuation of that trend would leave the U.S. about halfway short of its Paris commitment by 2030. U.S. emissions fell faster than the long-term average in 2023, but&amp;nbsp;&lt;a href="https://rhg.com/research/preliminary-us-greenhouse-gas-estimates-for-2024/"&gt;preliminary estimates suggest&lt;/a&gt;&amp;nbsp;that they didn&amp;rsquo;t budge very much in 2024.&lt;/p&gt;
  1197. &lt;p&gt;That&amp;rsquo;s in large part because American demand for power increased in 2024 &amp;ndash; a trend that is expected to continue in the foreseeable future due to expanding data centers, artificial intelligence, increased air conditioning use in a hotter climate, and electrification of vehicles and buildings. If Congress repeals most of the Inflation Reduction Act&amp;rsquo;s clean energy incentives,&amp;nbsp;&lt;a href="https://yaleclimateconnections.org/2025/05/one-big-beautiful-climate-killing-bill/"&gt;as proposed by the House of Representatives&lt;/a&gt;, fewer new low-carbon power would be deployed to meet that growing demand. That scenario would translate into higher emissions and household energy bills, combined with declining domestic manufacturing and economic activity, according to modeling by energy systems experts at&amp;nbsp;&lt;a href="https://zenodo.org/records/15490326"&gt;Princeton&lt;/a&gt;,&amp;nbsp;&lt;a href="https://energyinnovation.org/report/assessing-impacts-of-the-2025-reconciliation-bill-on-u-s-energy-costs-jobs-health-and-emissions/"&gt;Energy Innovation&lt;/a&gt;, and&amp;nbsp;&lt;a href="https://rhg.com/research/ways-and-means-brings-the-hammer-down-on-energy-credits/"&gt;Rhodium Group&lt;/a&gt;.&lt;/p&gt;
  1198. &lt;p&gt;The nation&amp;rsquo;s 2023 climate pollution reductions are a good news story that the Trump administration didn&amp;rsquo;t want to tell, but it&amp;rsquo;s a story that&amp;rsquo;s poised to sour in the future as administration officials&amp;nbsp;&lt;a href="https://www.nytimes.com/2025/05/24/climate/epa-power-plant-rules.html"&gt;roll back climate regulations&lt;/a&gt;&amp;nbsp;and Congress aims to slash the financial incentives that contributed to rapid deployment of clean energy resources in 2023.&lt;/p&gt;</description>
  1199. <link>https://skepticalscience.com/trump-epa-bury-good-news.html</link>
  1200. <guid>https://skepticalscience.com/trump-epa-bury-good-news.html</guid>
  1201. <pubDate>Mon, 9 Jun 2025 14:41:21 EST</pubDate>
  1202. </item>  <item>
  1203. <title>Rebutting 33 False Claims About Solar, Wind, and Electric Vehicles - Recap</title>
  1204. <description>&lt;p&gt;A week ago today,&amp;nbsp;&lt;a href="https://skepticalscience.com/sabin33-33-what-is-the-effect-of-hot-or-cold-weather-on-ev.html" target="_blank"&gt;we published a blog post&lt;/a&gt; highlighting &lt;strong&gt;Sabin Rebuttal #33&lt;/strong&gt;, which answers the question "&lt;a href="https://sks.to/evweather" target="_blank"&gt;What is the effect of hot or cold weather on EVs?"&lt;/a&gt;. With that blog post, this phase of our effort to turn&amp;nbsp;the report "&lt;a href="https://scholarship.law.columbia.edu/sabin_climate_change/217/" target="_blank"&gt;Rebutting 33 False Claims About Solar, Wind, and Electric Vehicles&lt;/a&gt;"&amp;nbsp;into individual rebuttals was done and dusted. In this recap we summarize the happenings and provide some behind-the-scenes glimpses into the tasks needed to pull this off.&amp;nbsp;The report was written by Matthew Eisenson, Jacob Elkin, Andy Fitch, Matthew Ard, Kaya Sittinger &amp;amp; Samuel Lavine and published by the&amp;nbsp;&lt;a href="https://climate.law.columbia.edu/content/about-us" target="_blank"&gt;&lt;span&gt;Sabin Center for &lt;span id="skstip1" class="skstip beginner disabled"&gt;Climate Change&lt;/span&gt; Law&lt;/span&gt;&lt;/a&gt; at Columbia Law School in 2024.&lt;/p&gt;
  1205. &lt;p&gt;&lt;a href="https://skepticalscience.com/Sabin33-ShareGraphic-Composite-1000px.png" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/Sabin33-ShareGraphic-Composite-570px.png" alt="" width="570" height="331" /&gt;&lt;/a&gt;&lt;/p&gt;
  1206. &lt;!--more--&gt;
  1207. &lt;h3&gt;Creating the rebuttals&amp;nbsp;&lt;/h3&gt;
  1208. &lt;p&gt;When we first spotted&amp;nbsp;&lt;a href="https://scholarship.law.columbia.edu/sabin_climate_change/217/" target="_blank"&gt;Sabin's report&lt;/a&gt; it looked like a fairly straightforward copy &amp;amp; paste job to turn their PDF into individual rebuttals. But, as often happens, the devil is in the details and in this case it proved to be the many references to published papers, government resources and other publications or websites. All told, there were more than 460 references mentioned via superscripts in the text, many of which went to the same publication which was cited in full just once in the report's footnotes of the page it made its first appearance on. Later mentions then referred back to that first reference.&lt;/p&gt;
  1209. &lt;p&gt;For our purposes, we however wanted to include the relevant list of references in each rebuttal and also add peer reviewed papers to our glossary so that we could mention those within the texts via author name(s) and year of publication as we usually do. First order of the day was therefore to create a big spreadsheet, listing all the references mentioned in the report and adding cross-references where needed to then hopefully make the rebuttal creation at least somewhat easier.&lt;/p&gt;
  1210. &lt;p&gt;&lt;a href="https://skepticalscience.com/pics/BlogPost-Sabin33-Recap-References-1400px.png" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/BlogPost-Sabin33-Recap-References-570px.png" alt="References" width="570" height="332" /&gt;&lt;/a&gt;&lt;/p&gt;
  1211. &lt;p&gt;Setting up the rebuttals then went fairly smoothly and we did it in two steps: we first created the rebuttals with title, fact- and myth-statement as well as the text. In a second step, we added the references based on the content prepared in the spreadsheet. By November 1, 2024 all 33 rebuttals had been fully created and published and we went live with &lt;a href="https://skepticalscience.com/rebutting-33-false-claims-about-solar-wind-ev.html" target="_blank"&gt;our blog post announcing their availability&lt;/a&gt;. We also created a page with a &lt;a href="https://sks.to/sabin33-rebuttals" target="_blank"&gt;list of all rebuttals&lt;/a&gt;&amp;nbsp;for easy reference.&lt;/p&gt;
  1212. &lt;h3&gt;Preparing the weekly blog posts and sharing on social media&lt;/h3&gt;
  1213. &lt;p&gt;Starting on November 8, 2024 we highlighted one of the rebuttals each Tuesday with the publication of a blog post. 33 weeks and rebuttals later, this series came to an end last week. And even though the creation of the blog posts was mostly a copy and paste job from the rebuttals, some manual activity was still needed to make them look somewhat like a rebuttal by adding a screenshot of the fact-myth-statements taken from the top of each rebuttal. These screenshots include the short URLs for easy access to the full rebuttals.&lt;/p&gt;
  1214. &lt;p&gt;In parallel to the blog post publications we also shared the rebuttals on social media, like Facebook, Linkedin, Bluesky and Mastodon. Some of these happened in weekly installments (Facebook) while others were more random with sometimes a group of four or five rebuttals getting highlighted together (LinkedIn) as time allowed.&lt;/p&gt;
  1215. &lt;p&gt;&lt;a href="https://skepticalscience.com/pics/ShareGraphic-Sabin33-17-23-1000px.png" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/ShareGraphic-Sabin33-17-23-570px.png" alt="Share Graphic" width="570" height="327" /&gt;&lt;/a&gt;&lt;/p&gt;
  1216. &lt;h3&gt;German translations&lt;/h3&gt;
  1217. &lt;p&gt;In summer 2024 we were approached by the &lt;a href="https://www.uni-heidelberg.de/fakultaeten/neuphil/iask/sued/index.html" target="_blank"&gt;Institute for translations at the University Heidelberg&lt;/a&gt;. They were looking for suitable texts their students could translate into German as course work during the autumn/winter semester. After translating&amp;nbsp;&lt;a href="https://sks.to/gfb-de" target="_blank"&gt;20 of the short fact briefs created with Gigafact&lt;/a&gt;&amp;nbsp;the students tackled the 33 rebuttals based on the report published by the Sabin Center for Climate Change Law. In February 2025 we received these translations and have &lt;a href="https://sks.to/sabin33-rebuttals-de" target="_blank"&gt;published all of them in the meantime&lt;/a&gt;. These translations were only possible thanks to the work of students Julia Hellwig, Damianus Pawlak, Isabel Schmitt, Yasmin Speltz, Andrei Sumcov and Ulrike Weber under the guidance of Simona F&amp;uuml;ger snd Nicole Keller. They made an appearance in&amp;nbsp;&lt;a href="https://skepticalscience.com/egu25-presentation-about-collaborations.html" target="_blank"&gt;a presentation about our various collaborations at the European Geosciences Union General Assembly in Vienna&lt;/a&gt;.&lt;/p&gt;
  1218. &lt;p&gt;&lt;a href="https://skepticalscience.com/pics/EGU25-Collaborations-Slide11.JPG" target="_blank"&gt;&lt;img src="https://skepticalscience.com/pics/EGU25-Collaborations-Slide11-570px.JPG" alt="IUD" width="570" height="321" /&gt;&lt;/a&gt;&lt;/p&gt;
  1219. &lt;h3&gt;What next?&lt;/h3&gt;
  1220. &lt;p&gt;Since their creation, some of the rebuttals have already seen minor updates for example due to feedback provided in comments on Skeptical Science or sent directly to the Sabin team. We expect this to continue as work on these kind of rebuttals is never really finished. Another set of changes was provided by Matthew Eisenson from Sabin: he had gone through all the references in the report and updated the ones leading to US-government sources with permanently archived ones to ensure that the information stays available and cannot be spirited away. 66 links were impacted and it took 2 to 3 hours to identify and update them on our end.&lt;/p&gt;
  1221. &lt;p&gt;We are of course interested to add more rebuttals about renewable energy and electric vehicle myths to our list of arguments in the "It's too hard" category. So, please let us know in the comments or via&amp;nbsp;&lt;a href="https://sks.to/contact" target="_blank"&gt;our contact form&lt;/a&gt; if you know of other resources like Sabin's report which could be turned into rebuttals.&lt;/p&gt;
  1222. &lt;p&gt;As mentioned above, we have German translations for all 33 rebuttals provided by Sabin, but while their language is now German, the content in most cases is based on information related to the U.S.A. This is obviously okay for a direct translation but we could still add country specific information either directly in the rebuttal as another section or in a separate footnote. If you have any leads for that, please let us know as well.&lt;/p&gt;
  1223. &lt;p class="bluebox"&gt;&lt;a href="https://sks.to/welcome" target="_blank"&gt;Skeptical Science&lt;/a&gt;&amp;nbsp;is an all-volunteer organization but our work is not without financial costs.&amp;nbsp;&lt;a href="https://skepticalscience.com/support.php" target="_blank"&gt;Contributions&lt;/a&gt; supporting our publication mechanisms from our readers and users are a critical part of improving the general public's critical thinking skills about science and in particular climate science. Your contribution is a solid investment in making possible a better future thanks to improving our ability to think productively, leading to better decisions at all levels of our climate change challenge. Please visit our &lt;a href="https://sks.to/support_sks" target="_blank"&gt;support page to contribute&lt;/a&gt;.&lt;/p&gt;</description>
  1224. <link>https://skepticalscience.com/rebutting-33-false-claims-about-solar-wind-ev-recap.html</link>
  1225. <guid>https://skepticalscience.com/rebutting-33-false-claims-about-solar-wind-ev-recap.html</guid>
  1226. <pubDate>Tue, 24 Jun 2025 10:12:21 EST</pubDate>
  1227. </item> </channel> </rss>

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//www.skepticalscience.com/feed.xml

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda