Sorry

This feed does not validate.

In addition, interoperability with the widest range of feed readers could be improved by implementing the following recommendation.

Source: https://www.ssla.co.uk/artificial-neural-network/

  1. <br />
  2. <b>Notice</b>:  Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>affiliates-manager</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
  3. <br />
  4. <b>Notice</b>:  Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>it-l10n-ithemes-security-pro</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
  5. <br />
  6. <b>Notice</b>:  Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>it-l10n-ithemes-security-pro</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
  7. <br />
  8. <b>Notice</b>:  Function _load_textdomain_just_in_time was called <strong>incorrectly</strong>. Translation loading for the <code>woocommerce-gateway-paypal-express-checkout</code> domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the <code>init</code> action or later. Please see <a href="https://developer.wordpress.org/advanced-administration/debug/debug-wordpress/">Debugging in WordPress</a> for more information. (This message was added in version 6.7.0.) in <b>/home/u139529998/domains/ssla.co.uk/public_html/wp-includes/functions.php</b> on line <b>6121</b><br />
  9. <!DOCTYPE html><html lang="en-US" class="lt-ie10 lt-ie9 no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
  10. <![endif]--><!--[if IE 9]><html lang="en-US" class="lt-ie10 no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
  11. <![endif]--><!--[if gt IE 9]><!--><html lang="en-US" class="no-js" prefix="og: https://ogp.me/ns#" lang="en-us">
  12. <!--<![endif]--><head><meta charset="utf-8"><link rel="preconnect" href="https://fonts.gstatic.com/" crossorigin /><script src="data:text/javascript;base64,V2ViRm9udENvbmZpZz17Z29vZ2xlOntmYW1pbGllczpbIkxpYnJlIEZyYW5rbGluOjMwMCwzMDBpLDQwMCw0MDBpLDYwMCw2MDBpLDgwMCw4MDBpOmxhdGluLGxhdGluLWV4dCJdfX07aWYodHlwZW9mIFdlYkZvbnQ9PT0ib2JqZWN0IiYmdHlwZW9mIFdlYkZvbnQubG9hZD09PSJmdW5jdGlvbiIpe1dlYkZvbnQubG9hZChXZWJGb250Q29uZmlnKX0=" defer></script><script data-optimized="1" src="https://www.ssla.co.uk/wp-content/plugins/litespeed-cache/assets/js/webfontloader.min.js" defer></script><link data-optimized="2" rel="stylesheet" href="https://www.ssla.co.uk/wp-content/litespeed/css/5a6793ecf7db821bc387411782f5131a.css?ver=34820" /><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><meta name="viewport" content="width=device-width,initial-scale=1"><meta name="msapplication-tap-highlight" content="no"><meta name="generator" content="Webnode 2"><meta name="apple-mobile-web-app-capable" content="yes"><meta name="apple-mobile-web-app-status-bar-style" content="black"><meta name="format-detection" content="telephone=no"><meta name="google-site-verification" content="PMYbq1w5vSmZYbanaTzAGAULVY13Mn9rWvoNe6oeb1A" /><meta property="og:url" content="https://www.ssla.co.uk/"><meta property="og:title" content="ssla-co-uk"><meta property="og:type" content="article"><meta property="og:description" content="High performance data acquisition"><meta property="og:site_name" content="ssla-co-uk"><meta property="og:image" content="https://ssla.co.uk/_files/200000001-807d78177b/700/default.png"><meta property="og:article:published_time" content="2018-06-19T00:00:00+0200"><link rel="canonical" href="https://www.ssla.co.uk/"><link rel="icon" href="https://www.ssla.co.uk/wp-content/themes/ssla/favicon.png" type="image/png" sizes="16x16">
  13. <script src="data:text/javascript;base64,KGZ1bmN0aW9uKGkscyxvLGcscixhLG0pe2kuR29vZ2xlQW5hbHl0aWNzT2JqZWN0PXI7aVtyXT1pW3JdfHxmdW5jdGlvbigpeyhpW3JdLnE9aVtyXS5xfHxbXSkucHVzaChhcmd1bWVudHMpfSxpW3JdLmw9MSpuZXcgRGF0ZSgpO2E9cy5jcmVhdGVFbGVtZW50KG8pLG09cy5nZXRFbGVtZW50c0J5VGFnTmFtZShvKVswXTthLmFzeW5jPTE7YS5zcmM9ZzttLnBhcmVudE5vZGUuaW5zZXJ0QmVmb3JlKGEsbSl9KSh3aW5kb3csZG9jdW1lbnQsJ3NjcmlwdCcsJy8vd3d3Lmdvb2dsZS1hbmFseXRpY3MuY29tL2FuYWx5dGljcy5qcycsJ2dhJyk7Z2EoJ2NyZWF0ZScsJ1VBLTc5NzcwNS02JywnYXV0bycseyJuYW1lIjoid25kX2hlYWRlciJ9KTtnYSgnd25kX2hlYWRlci5zZXQnLCdkaW1lbnNpb24xJywnVzInKTtnYSgnd25kX2hlYWRlci5zZXQnLCdhbm9ueW1pemVJcCcsITApO2dhKCd3bmRfaGVhZGVyLnNlbmQnLCdwYWdldmlldycp" defer></script>  <script src="https://www.googletagmanager.com/gtag/js?id=UA-122251477-1" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ1VBLTEyMjI1MTQ3Ny0xJyk=" defer></script> <meta name='robots' content='index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1' /><title>what is artificial neural network? And what are its advantages. | ssla.co.uk</title><meta name="description" content="Find the right artificial neural network for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?" /><link rel="canonical" href="https://www.ssla.co.uk/artificial-neural-network/" /><meta property="og:locale" content="en_US" /><meta property="og:type" content="article" /><meta property="og:title" content="what is artificial neural network? And what are its advantages. | ssla.co.uk" /><meta property="og:description" content="Find the right artificial neural network for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?" /><meta property="og:url" content="https://www.ssla.co.uk/artificial-neural-network/" /><meta property="og:site_name" content="ssla.co.uk" /><meta property="article:publisher" content="http://www.facebook.com/ssla.rein.design" /><meta property="article:modified_time" content="2020-08-17T12:56:28+00:00" /><meta property="og:image" content="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-300x143.png" /><meta name="twitter:card" content="summary_large_image" /><meta name="twitter:site" content="@ssla_embedded" /><meta name="twitter:label1" content="Est. reading time" /><meta name="twitter:data1" content="6 minutes" /> <script type="application/ld+json" class="yoast-schema-graph">{"@context":"https://schema.org","@graph":[{"@type":"WebPage","@id":"https://www.ssla.co.uk/artificial-neural-network/","url":"https://www.ssla.co.uk/artificial-neural-network/","name":"what is artificial neural network? And what are its advantages. | ssla.co.uk","isPartOf":{"@id":"https://www.ssla.co.uk/#website"},"primaryImageOfPage":{"@id":"https://www.ssla.co.uk/artificial-neural-network/#primaryimage"},"image":{"@id":"https://www.ssla.co.uk/artificial-neural-network/#primaryimage"},"thumbnailUrl":"https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-300x143.png","datePublished":"2020-07-28T17:00:35+00:00","dateModified":"2020-08-17T12:56:28+00:00","description":"Find the right artificial neural network for your project. We provide evaluation hardware software for ARM, RISC-V and x86 ISA boards ?","breadcrumb":{"@id":"https://www.ssla.co.uk/artificial-neural-network/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://www.ssla.co.uk/artificial-neural-network/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.ssla.co.uk/artificial-neural-network/#primaryimage","url":"https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1.png","contentUrl":"https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1.png","width":850,"height":406,"caption":"artificial neural network"},{"@type":"BreadcrumbList","@id":"https://www.ssla.co.uk/artificial-neural-network/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://www.ssla.co.uk/"},{"@type":"ListItem","position":2,"name":"artificial neural network"}]},{"@type":"WebSite","@id":"https://www.ssla.co.uk/#website","url":"https://www.ssla.co.uk/","name":"ssla.co.uk","description":"Embedded Linux hardware and software solution","publisher":{"@id":"https://www.ssla.co.uk/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://www.ssla.co.uk/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https://www.ssla.co.uk/#organization","name":"www.ssla.co.uk","url":"https://www.ssla.co.uk/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://www.ssla.co.uk/#/schema/logo/image/","url":"https://www.ssla.co.uk/wp-content/uploads/2019/01/ssla_logo.gif","contentUrl":"https://www.ssla.co.uk/wp-content/uploads/2019/01/ssla_logo.gif","width":306,"height":72,"caption":"www.ssla.co.uk"},"image":{"@id":"https://www.ssla.co.uk/#/schema/logo/image/"},"sameAs":["http://www.facebook.com/ssla.rein.design","https://x.com/ssla_embedded","https://www.linkedin.com/company/ssla-co-uk/","https://www.pinterest.at/scadadevice/","https://www.youtube.com/watch?v=k9OrY2iSQ68&amp;amp;amp;t=2s"]}]}</script> <link rel='dns-prefetch' href='//stats.wp.com' /><link rel='dns-prefetch' href='//fonts.googleapis.com' /><link rel='dns-prefetch' href='//www.youtube.com' /><link href='https://fonts.gstatic.com' crossorigin rel='preconnect' /><link rel="alternate" type="application/rss+xml" title="ssla.co.uk &raquo; Feed" href="https://www.ssla.co.uk/feed/" /><link rel="alternate" type="application/rss+xml" title="ssla.co.uk &raquo; Comments Feed" href="https://www.ssla.co.uk/comments/feed/" /><!--[if lt IE 9]><link rel='stylesheet' id='twentyseventeen-ie8-css' href='https://www.ssla.co.uk/wp-content/themes/ssla/assets/css/ie8.css' type='text/css' media='all' />
  14. <![endif]--> <script type="text/javascript" src="https://www.ssla.co.uk/wp-includes/js/jquery/jquery.min.js" id="jquery-core-js"></script> <!--[if lt IE 9]> <script type="text/javascript" src="https://www.ssla.co.uk/wp-content/themes/ssla/assets/js/html5.js" id="html5-js"></script> <![endif]--> <script type="text/javascript" src="https://stats.wp.com/s-202519.js" id="woocommerce-analytics-js" defer="defer" data-wp-strategy="defer"></script> <link rel="https://api.w.org/" href="https://www.ssla.co.uk/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://www.ssla.co.uk/wp-json/wp/v2/pages/7045" /><meta name="generator" content="WordPress 6.8.1" /><meta name="generator" content="WooCommerce 9.8.4" /><link rel='shortlink' href='https://www.ssla.co.uk/?p=7045' /><link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://www.ssla.co.uk/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.ssla.co.uk%2Fartificial-neural-network%2F" /><link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://www.ssla.co.uk/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fwww.ssla.co.uk%2Fartificial-neural-network%2F&#038;format=xml" /> <script src="https://www.googletagmanager.com/gtag/js?id=AW-472720427" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ0FXLTQ3MjcyMDQyNycp" defer></script>  <script src="https://www.googletagmanager.com/gtag/js?id=AW-800223711" defer data-deferred="1"></script> <script src="data:text/javascript;base64,d2luZG93LmRhdGFMYXllcj13aW5kb3cuZGF0YUxheWVyfHxbXTtmdW5jdGlvbiBndGFnKCl7ZGF0YUxheWVyLnB1c2goYXJndW1lbnRzKX0KZ3RhZygnanMnLG5ldyBEYXRlKCkpO2d0YWcoJ2NvbmZpZycsJ0FXLTgwMDIyMzcxMScp" defer></script> <noscript><style>.woocommerce-product-gallery{ opacity: 1 !important; }</style></noscript><meta name="generator" content="Powered by WPBakery Page Builder - drag and drop page builder for WordPress."/>
  15. <!--[if lte IE 9]><link rel="stylesheet" type="text/css" href="https://www.ssla.co.uk/wp-content/plugins/js_composer/assets/css/vc_lte_ie9.min.css" media="screen"><![endif]-->
  16. <noscript><style type="text/css">.wpb_animate_when_almost_visible { opacity: 1; }</style></noscript>
  17. <script src="data:text/javascript;base64,KGZ1bmN0aW9uKHcsZCxzLGwsaSl7d1tsXT13W2xdfHxbXTt3W2xdLnB1c2goeydndG0uc3RhcnQnOm5ldyBEYXRlKCkuZ2V0VGltZSgpLGV2ZW50OidndG0uanMnfSk7dmFyIGY9ZC5nZXRFbGVtZW50c0J5VGFnTmFtZShzKVswXSxqPWQuY3JlYXRlRWxlbWVudChzKSxkbD1sIT0nZGF0YUxheWVyJz8nJmw9JytsOicnO2ouYXN5bmM9ITA7ai5zcmM9J2h0dHBzOi8vd3d3Lmdvb2dsZXRhZ21hbmFnZXIuY29tL2d0bS5qcz9pZD0nK2krZGw7Zi5wYXJlbnROb2RlLmluc2VydEJlZm9yZShqLGYpfSkod2luZG93LGRvY3VtZW50LCdzY3JpcHQnLCdkYXRhTGF5ZXInLCdHVE0tUDczSzdTUycp" defer></script> </head><body class="wp-singular page-template-default page page-id-7045 wp-theme-ssla theme-ssla woocommerce-no-js has-header-image page-one-column colors-light wpb-js-composer js-comp-ver-5.5.2 vc_responsive"><div id="page" class="wnd-page color-none"><div id="wrapper"><header id="header"><div class="container"><div class="row"><div id="layout-section" class="section header header-01 claim-section cf design-03 wsection-black"><div class="section-fixed"><div class="section-inner"><div class="nav-line initial-state cf"><div class="logo logo-default brandon-grotesque wnd-logo-with-text wnd-image-vector"><div class="logo-content">
  18. <a href="https://www.ssla.co.uk"><div class="embed-content"><div class="embed-content-cell">
  19. <embed id="wnd_LogoBlock_87881_img" type="image/svg+xml" data-src="https://d1di2lzuh97fh2.cloudfront.net/files/3x/3x1/3x1agp.svg?ph=15d144db8f"></div></div><div class="text-content-outer">
  20. <span class="text-content">SSLA</span></div>
  21. </a></div></div><nav id="menu" role="navigation" aria-label="Top Menu"><div class="menu-main-container"><ul id="top-menu" class="level-1"><li id="menu-item-1970" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-1970"><a href="https://www.ssla.co.uk/">Home</a></li><li id="menu-item-42" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-42"><a href="https://www.ssla.co.uk/about-us/">About Us</a></li><li id="menu-item-263" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-263"><a href="https://www.ssla.co.uk/knowledgebase/">Knowledgebase</a></li><li id="menu-item-40" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-40"><a href="https://www.ssla.co.uk/download/">Download</a></li><li id="menu-item-490" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-490"><a href="https://www.ssla.co.uk/buy/">Store</a></li><li id="menu-item-583" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-583"><a href="https://www.ssla.co.uk/faq/">FAQ</a></li><li id="menu-item-619" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-619"><a href="https://www.ssla.co.uk/careers/">Careers</a></li><li id="menu-item-39" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-39"><a href="https://www.ssla.co.uk/contact-us/">Contact Us</a></li></ul></div></nav> <script type="application/javascript">var el=document.getElementById("menu");"undefined"!=typeof el&&(el.style.display="none")</script> <div id="menu-mobile" class="hidden">
  22. <a href="#" id="menu-submit"><span></span>Menu</a></div></div></div></div></div></div></div></header><main id="main" role="main"><div class="section-wrapper cf"><div class="section-wrapper-content cf"><section class="section default-01 design-01 wsection-white"><div class="section-bg"><div class="section-bg-layer"></div><div class="section-bg-layer section-bg-overlay"></div></div><div class="section-inner"><div class="content cf wnd-no-cols"><div><div class="text cf design-01"><div class="container"><div class="vc_row vc_row-fluid boxed"><div class="wpb_column vc_column_container vc_col-sm-12"><div class="vc_column-inner "><div class="wpb_wrapper"><div class="wpb_text_column wpb_content_element " ><div class="wpb_wrapper"><h1 style="text-align: center;"><span style="font-weight: 400; color: #ff0000;">Artificial Neural Network</span></h1><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">What is an Artificial Neural Network?</span></h3><p><span style="font-weight: 400;">Artificial Neural Network or ANN is a </span><a href="https://www.ssla.co.uk/about-us/"><b>computational model</b></a><span style="font-weight: 400;"> that processes information and allows the system to </span><b>learn</b><span style="font-weight: 400;"> or do things without being </span><b>explicitly programmed</b><span style="font-weight: 400;"> for a task. </span></p><p><span style="font-weight: 400;">The 21</span><span style="font-weight: 400;">st</span><span style="font-weight: 400;"> century has brought a lot of drastic changes to humanity, and AI is one of them. AI has taken over many of the industries, and </span><b>deep learning</b><span style="font-weight: 400;"> has played a very vital role in this evolution. Artificial Neural <a href="https://www.ssla.co.uk/buy">Networks</a> are the building blocks for deep learning; they try to mimic the human brain and help the computer system to </span><b>learn by examples</b><span style="font-weight: 400;">. These trained systems have now attained </span><b>accuracy </b><span style="font-weight: 400;">never seen before even surpassing humans. These models are trained by </span><b>huge data sets</b><span style="font-weight: 400;"> that are fed into the neural network architecture consisting of many layers.</span></p><p><span style="font-weight: 400;">The structure of an ANN is inspired by the </span><b>biological neural system</b><span style="font-weight: 400;"> that exists in a human brain. It consists of thousands of small computational units (perceptrons) interlinked together. </span></p><p><span style="font-weight: 400;">These networks are very useful in solving problems that don’t have a defined solution. For example, a well-known use of these networks is to identify the handwritten number. In this case, there are a lot of possibilities, and there is no obvious way to define the handwritten numbers to a computer. Like all the numbers shown below, denote three, but the structure varies for each writing style.</span></p><p><img data-lazyloaded="1" src="" decoding="async" class="alignnone size-medium wp-image-7046" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-300x143.png" alt="artificial neural network" width="300" height="143" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-300x143.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-768x367.png 768w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-600x287.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1.png 850w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img decoding="async" class="alignnone size-medium wp-image-7046" src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-300x143.png" alt="artificial neural network" width="300" height="143" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-300x143.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-768x367.png 768w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1-600x287.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-1.png 850w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></p><p><span style="font-weight: 400;">It is mind-blowing how our brains can identify these numbers so effortlessly, but in order to make a computer do this, you need a lot of complex <a href="https://www.ssla.co.uk/referral">programming</a>.</span></p><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">How does it work?</span></h3><p><span style="font-weight: 400;">Artificial Neural Network is not a black box in which you feed information to get the desired results. It is more of a mathematical model whose values are adjusted based on given training data. It consists of many small components that build up to become a complex neural architecture.</span></p><p><span style="font-weight: 400;">The fundamental component of this <a href="https://en.wikipedia.org/wiki/Artificial_neural_network">neural</a> architecture is the </span><b>perceptron</b><span style="font-weight: 400;">. Perceptron is the small computational units that are linked with one another using the </span><b>weights</b><span style="font-weight: 400;">. The weights determine the strength of the link between two perceptrons. Each perceptron has a </span><b>bias</b><span style="font-weight: 400;"> that is used to adjust the threshold at which the perceptron will fire/activate.</span></p><p><span style="font-weight: 400;">These perceptrons combine to form </span><b>layers</b><span style="font-weight: 400;">. In simple cases, the inputs are multiplied with the weights, and bias is added to them. After that, the result is fed into the </span><b>activation function,</b><span style="font-weight: 400;"> which generates the final output of the perceptron. </span></p><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">Basic Math behind ANN</span></h3><p><span style="font-weight: 400;">Now let’s discuss the basic <a href="https://www.ssla.co.uk/">computations</a> that are performed in the perceptron. Let us consider a single perceptron that has some inputs, weights, and biases attached to it as shown in the figure below to the right</span></p><p><span style="font-weight: 400;"><img data-lazyloaded="1" src="" decoding="async" class="alignnone size-medium wp-image-7054" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-300x127.png" alt="Artificial Neural Network" width="300" height="127" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-300x127.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-768x325.png 768w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-600x254.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6.png 798w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img decoding="async" class="alignnone size-medium wp-image-7054" src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-300x127.png" alt="Artificial Neural Network" width="300" height="127" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-300x127.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-768x325.png 768w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6-600x254.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-6.png 798w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></span></p><p><span style="font-weight: 400;">The figure above shows the basic working of the perceptron. X, Y, and Z are the inputs, and W1, W2, and W3 denote the weights. These weights are multiplied by the inputs which give us</span></p><p><span style="font-weight: 400;">z*w1</span><span style="font-weight: 400;">+</span><span style="font-weight: 400;">y*w2</span><span style="font-weight: 400;">+(x*w3)</span></p><p><span style="font-weight: 400;">After that, the bias is added to the equation, and the equation turns into </span></p><p><span style="font-weight: 400;">b+</span><span style="font-weight: 400;">z*w1</span><span style="font-weight: 400;">+</span><span style="font-weight: 400;">y*w2</span><span style="font-weight: 400;">+(x*w3) </span></p><p><span style="font-weight: 400;">This equation is then fed into the activation function, which will generate the output.</span></p><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">Activation Functions and their Types</span></h3><p><span style="font-weight: 400;">Activation functions decide the </span><b>activation state</b><span style="font-weight: 400;"> of the perceptron. The output of the perceptron is always a linear function, and after passing it through the activation function, the element of </span><b>non-linearity</b><span style="font-weight: 400;"> is introduced. This non-linearity allows the network to represent any kind of </span><b>complex function</b><span style="font-weight: 400;"> that would not have been possible otherwise. Generally, the activation function of the output layer is different from the one that we use in the hidden layers. </span></p><p><span style="font-weight: 400;">There are mainly three activation functions used in an Artificial Neural Network </span></p><ul><li><b>Binary Step Function</b></li></ul><p><span style="font-weight: 400;">This is a threshold-based activation function that gives output in two states, i.e., 0 or 1. The threshold of this function can be adjusted using the bias of the perceptron. The output of this activation function is used as the input for the next layer. </span></p><p><span style="font-weight: 400;"><img data-lazyloaded="1" src="" decoding="async" class="alignnone wp-image-7525 size-medium" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-threshold-300x148.png" alt="threshold" width="300" height="148" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-threshold-300x148.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-threshold.png 480w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img decoding="async" class="alignnone wp-image-7525 size-medium" src="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-threshold-300x148.png" alt="threshold" width="300" height="148" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-threshold-300x148.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-threshold.png 480w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></span></p><p><span style="font-weight: 400;">This function is a binary classifier, i.e., it outputs 0 or 1. So, when the number of classes increases i.e., we want output</span><b> between</b><span style="font-weight: 400;"> 0 and 1, this function becomes less effective.</span></p><ul><li><b>Sigmoid Activation Function</b></li></ul><p><span style="font-weight: 400;">The sigmoid function is also a mathematical function that limits the output between 0 and 1. Below is the equation for the sigmoid function</span></p><p><span style="font-weight: 400;">f</span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">=</span><span style="font-weight: 400;">1</span><span style="font-weight: 400;">1+</span><span style="font-weight: 400;">e</span><span style="font-weight: 400;">-x</span></p><p><span style="font-weight: 400;">The curve of this function is shown bellow</span></p><p><span style="font-weight: 400;"><img data-lazyloaded="1" src="" decoding="async" class="alignnone wp-image-7047 size-medium" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2-300x200.png" alt="waveform" width="300" height="200" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2-300x200.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2-600x399.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2.png 697w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img decoding="async" class="alignnone wp-image-7047 size-medium" src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2-300x200.png" alt="waveform" width="300" height="200" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2-300x200.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2-600x399.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-2.png 697w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></span></p><p><span style="font-weight: 400;">Unlike the binary step function, the output is between 0 and 1, which helps us to predict probability as an output. When a strong negative input is given to this function, it may get stuck, which is the only drawback of this activation function. Other than that, it slows the ANN a bit because the function is a bit complex than other activation functions. And when it is computed thousands of times, a lot of computing power and time is consumed.</span></p><ul><li><b>RELU</b></li></ul><p><span style="font-weight: 400;">RELU stands for </span><b>rectified linear unit,</b><span style="font-weight: 400;"> and the mathematical representation of the function is as follows</span></p><p><span style="font-weight: 400;">f</span><span style="font-weight: 400;">x</span><span style="font-weight: 400;">=</span><span style="font-weight: 400;">{</span><span style="font-weight: 400;">x          for x&gt;0</span> <span style="font-weight: 400;"> </span><span style="font-weight: 400;"> </span><span style="font-weight: 400;">0          for x&lt;0</span></p><p><span style="font-weight: 400;">The curve of RELU is as follows</span></p><p><span style="font-weight: 400;"><img data-lazyloaded="1" src="" decoding="async" class="alignnone wp-image-7526 size-medium" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-graphical-300x169.png" alt="input output" width="300" height="169" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-graphical-300x169.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-graphical.png 600w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img decoding="async" class="alignnone wp-image-7526 size-medium" src="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-graphical-300x169.png" alt="input output" width="300" height="169" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-graphical-300x169.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/08/artificial-neural-network-graphical.png 600w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></span></p><p><span style="font-weight: 400;">It is the most popular and recommended activation function for ANN. It is non-linear in nature and can be combined to approximate any other non-linear function. </span></p><h3 style="text-align: left;"><span style="font-weight: 400; color: #000000;">How artificial neural network learns?</span></h3><p><span style="font-weight: 400;">Multiple layers combine together to form a neural network. There is one input layer, and one output layer, all other layers in between are known as </span><b>hidden layers</b><span style="font-weight: 400;">. A neural network requires a lot of training data to learn. At first, the data is passed through the input layer, and an output is generated with random weights and biases; this process is known as the </span><b>forward propagation</b><span style="font-weight: 400;">. </span></p><p><span style="font-weight: 400;">The output of the data is then compared with the actual output, and an error is computed. This error is used to calculate the error function or otherwise known as </span><b>cost function</b><span style="font-weight: 400;">. This cost function is then analyzed, after which the weights and biases of each layer are adjusted starting from the output layer. This process is known as </span><b>backward propagation</b><span style="font-weight: 400;">.</span></p><p><span style="font-weight: 400;"><img data-lazyloaded="1" src="" decoding="async" class="alignnone wp-image-7048 size-medium" data-src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-300x197.png" alt="Flow diagram" width="300" height="197" data-srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-300x197.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-768x506.png 768w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-600x395.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3.png 878w" data-sizes="(max-width: 300px) 100vw, 300px" /><noscript><img decoding="async" class="alignnone wp-image-7048 size-medium" src="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-300x197.png" alt="Flow diagram" width="300" height="197" srcset="https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-300x197.png 300w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-768x506.png 768w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3-600x395.png 600w, https://www.ssla.co.uk/wp-content/uploads/2020/07/artificial-neural-network-3.png 878w" sizes="(max-width: 300px) 100vw, 300px" /></noscript></span></p><p><span style="font-weight: 400;">The figure above shows the whole working of the neural network. Remember that making the neural network learns refers to minimizing the cost function by adjusting the weights and biases. In mathematical terms, it refers to finding the minima of the cost function, which can be done through many methods. </span><b>Batch-Gradient descent</b><span style="font-weight: 400;"> and </span><b>Stochastic-Gradient Descent</b><span style="font-weight: 400;"> are the two of the most famous methods used for finding the minima of the cost function. </span></p></div></div><div class="vc_btn3-container  red-button vc_btn3-inline" >
  23. <a class="vc_general vc_btn3 vc_btn3-size-md vc_btn3-shape-rounded vc_btn3-style-modern vc_btn3-color-danger" href="https://www.ssla.co.uk/contact/" title="">Contact Us</a></div></div></div></div></div></div><div class="container"><div class="vc_row vc_row-fluid boxed"><div class="wpb_column vc_column_container vc_col-sm-12"><div class="vc_column-inner "><div class="wpb_wrapper"></div></div></div></div></div></div></div></div></div></section></div></div></main><div id="contact_footer"><div><h2>Refer our IoT solution and Earn with us</h2><p>Contact us and one of our specialist will call you back</p>
  24. <a href="http://www.ssla.co.uk/referral/" class="button1r">Refer us</a>
  25. <a href="https://www.ssla.co.uk/buy/" class="button3r">IoT Store</a>
  26. <a href="https://www.ssla.co.uk/affiliate-home/affiliate-register/" class="button4r">Affiliate Program</a></div></div><footer id="footer" role="contentinfo"><div class="section-wrapper cf"><div class="section-wrapper-content cf"><div wn-border="top" wn-border-element="footer-line" class="section footer-01 design-01 wsection-gray"><div class="section-bg"><div class="section-bg-layer"></div><div class="section-bg-layer section-bg-overlay"></div></div><div class="section-inner"><div class="footer-line"><div class="footer-texts"><div class="copyright cf"><ul class="socials-footer"><li>
  27. <a href="https://www.facebook.com/ssla.co.uk/" target="_blank"><i class="fa fa-facebook" aria-hidden="true"></i></a></li><li>
  28. <a href="https://www.youtube.com/watch?v=k9OrY2iSQ68&t=2s" target="_blank"><i class="fa fa-youtube-play" aria-hidden="true"></i></a></li><li>
  29. <a href="https://www.linkedin.com/company/ssla-co-uk" target="_blank"><i class="fa fa-linkedin" aria-hidden="true"></i></a></li><li>
  30. <a href="https://twitter.com/ssla_embedded" target="_blank"><i class="fa fa-twitter" aria-hidden="true"></i></a></li><li>
  31. <a href="https://www.quora.com/profile/Nicholas-Lenig" target="_blank"><i class="fa fa-quora" aria-hidden="true"></i></a></li><li>
  32. <a href="https://www.reddit.com/user/nickolas_kd" target="_blank"><i class="fa fa-reddit" aria-hidden="true"></i></a></li></ul><span class="inline-text">
  33. <span>
  34. SSLA, VAT 172825594, Unit 24 Wilford Industrial Estate,Ruddington Lane Nottingham, UK, +447438823590                                          </span>
  35. <span>
  36. Sierra Software GmbH, Technologieservice für Hard-
  37. und Software Unternehmen,Vorarlberg, Austria, +436765386877                                          </span>
  38. </span></div><div class="system-footer cf"><div class="sf"></div></div></div><div class="lang-select cf"></div></div></div></div></div></div></footer></div></div><div id="fe_footer"><p style="text-align: center; margin: 0px; padding-top: 20px; color: white;">
  39. &copy; 2013 SSLA, An Engineering solutions company | All rights reserved | sales@ssla.co.uk    | <a class="cookielink" href="https://www.ssla.co.uk/cookie-policy/">Cookie Policy</a></p></div> <script type="application/javascript">!function () {
  40.        if (0 == document.getElementsByClassName("wnd-cms").length) for (var e = document.getElementsByClassName("column-content"), t = 0; t < e.length; t++) {
  41.            var s = e[t].querySelector("div"), n = s.getElementsByClassName("text-content");
  42.            void 0 != n[0] && s.firstChild == s.lastChild && "" === n[0].innerText && (e[t].classList ? e[t].classList.add("column-empty") : (e[t].classList ? e[t].classList.contains("column-empty") : new RegExp("\\bcolumn-empty\\b").test(e[t].className)) && (e[t].className += " column-empty"))
  43.        }
  44.    }()</script>  <script type="speculationrules">{"prefetch":[{"source":"document","where":{"and":[{"href_matches":"\/*"},{"not":{"href_matches":["\/wp-*.php","\/wp-admin\/*","\/wp-content\/uploads\/*","\/wp-content\/*","\/wp-content\/plugins\/*","\/wp-content\/themes\/ssla\/*","\/*\\?(.+)"]}},{"not":{"selector_matches":"a[rel~=\"nofollow\"]"}},{"not":{"selector_matches":".no-prefetch, .no-prefetch a"}}]},"eagerness":"conservative"}]}</script> <button type="button"  aria-controls="rmp-container-8664" aria-label="Menu Trigger" id="rmp_menu_trigger-8664"  class="rmp_menu_trigger rmp-menu-trigger-boring">
  45. <span class="rmp-trigger-box">
  46. <span class="responsive-menu-pro-inner"></span>
  47. </span>
  48. </button><div id="rmp-container-8664" class="rmp-container rmp-container rmp-slide-left"><div id="rmp-menu-title-8664" class="rmp-menu-title">
  49. <span class="rmp-menu-title-link">
  50. <span></span> </span></div><div id="rmp-menu-wrap-8664" class="rmp-menu-wrap"><ul id="rmp-menu-8664" class="rmp-menu" role="menubar" aria-label="Default Menu"><li id="rmp-menu-item-1970" class=" menu-item menu-item-type-post_type menu-item-object-page menu-item-home rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/"  class="rmp-menu-item-link"  role="menuitem"  >Home</a></li><li id="rmp-menu-item-42" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/about-us/"  class="rmp-menu-item-link"  role="menuitem"  >About Us</a></li><li id="rmp-menu-item-263" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/knowledgebase/"  class="rmp-menu-item-link"  role="menuitem"  >Knowledgebase</a></li><li id="rmp-menu-item-40" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/download/"  class="rmp-menu-item-link"  role="menuitem"  >Download</a></li><li id="rmp-menu-item-490" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/buy/"  class="rmp-menu-item-link"  role="menuitem"  >Store</a></li><li id="rmp-menu-item-583" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/faq/"  class="rmp-menu-item-link"  role="menuitem"  >FAQ</a></li><li id="rmp-menu-item-619" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/careers/"  class="rmp-menu-item-link"  role="menuitem"  >Careers</a></li><li id="rmp-menu-item-39" class=" menu-item menu-item-type-post_type menu-item-object-page rmp-menu-item rmp-menu-top-level-item" role="none"><a  href="https://www.ssla.co.uk/contact-us/"  class="rmp-menu-item-link"  role="menuitem"  >Contact Us</a></li></ul></div><div id="rmp-search-box-8664" class="rmp-search-box"><form action="https://www.ssla.co.uk/" class="rmp-search-form" role="search">
  51. <input type="search" name="s" title="Search" placeholder="Search" class="rmp-search-box"></form></div><div id="rmp-menu-additional-content-8664" class="rmp-menu-additional-content"></div></div> <script type="text/javascript" src="https://www.ssla.co.uk/wp-content/plugins/litespeed-cache/assets/js/instant_click.min.js" id="litespeed-cache-js"></script> <svg style="position: absolute; width: 0; height: 0; overflow: hidden;" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
  52. <defs>
  53. <symbol id="icon-behance" viewBox="0 0 37 32">
  54. <path class="path1" d="M33 6.054h-9.125v2.214h9.125v-2.214zM28.5 13.661q-1.607 0-2.607 0.938t-1.107 2.545h7.286q-0.321-3.482-3.571-3.482zM28.786 24.107q1.125 0 2.179-0.571t1.357-1.554h3.946q-1.786 5.482-7.625 5.482-3.821 0-6.080-2.357t-2.259-6.196q0-3.714 2.33-6.17t6.009-2.455q2.464 0 4.295 1.214t2.732 3.196 0.902 4.429q0 0.304-0.036 0.839h-11.75q0 1.982 1.027 3.063t2.973 1.080zM4.946 23.214h5.286q3.661 0 3.661-2.982 0-3.214-3.554-3.214h-5.393v6.196zM4.946 13.625h5.018q1.393 0 2.205-0.652t0.813-2.027q0-2.571-3.393-2.571h-4.643v5.25zM0 4.536h10.607q1.554 0 2.768 0.25t2.259 0.848 1.607 1.723 0.563 2.75q0 3.232-3.071 4.696 2.036 0.571 3.071 2.054t1.036 3.643q0 1.339-0.438 2.438t-1.179 1.848-1.759 1.268-2.161 0.75-2.393 0.232h-10.911v-22.5z"></path>
  55. </symbol>
  56. <symbol id="icon-deviantart" viewBox="0 0 18 32">
  57. <path class="path1" d="M18.286 5.411l-5.411 10.393 0.429 0.554h4.982v7.411h-9.054l-0.786 0.536-2.536 4.875-0.536 0.536h-5.375v-5.411l5.411-10.411-0.429-0.536h-4.982v-7.411h9.054l0.786-0.536 2.536-4.875 0.536-0.536h5.375v5.411z"></path>
  58. </symbol>
  59. <symbol id="icon-medium" viewBox="0 0 32 32">
  60. <path class="path1" d="M10.661 7.518v20.946q0 0.446-0.223 0.759t-0.652 0.313q-0.304 0-0.589-0.143l-8.304-4.161q-0.375-0.179-0.634-0.598t-0.259-0.83v-20.357q0-0.357 0.179-0.607t0.518-0.25q0.25 0 0.786 0.268l9.125 4.571q0.054 0.054 0.054 0.089zM11.804 9.321l9.536 15.464-9.536-4.75v-10.714zM32 9.643v18.821q0 0.446-0.25 0.723t-0.679 0.277-0.839-0.232l-7.875-3.929zM31.946 7.5q0 0.054-4.58 7.491t-5.366 8.705l-6.964-11.321 5.786-9.411q0.304-0.5 0.929-0.5 0.25 0 0.464 0.107l9.661 4.821q0.071 0.036 0.071 0.107z"></path>
  61. </symbol>
  62. <symbol id="icon-slideshare" viewBox="0 0 32 32">
  63. <path class="path1" d="M15.589 13.214q0 1.482-1.134 2.545t-2.723 1.063-2.723-1.063-1.134-2.545q0-1.5 1.134-2.554t2.723-1.054 2.723 1.054 1.134 2.554zM24.554 13.214q0 1.482-1.125 2.545t-2.732 1.063q-1.589 0-2.723-1.063t-1.134-2.545q0-1.5 1.134-2.554t2.723-1.054q1.607 0 2.732 1.054t1.125 2.554zM28.571 16.429v-11.911q0-1.554-0.571-2.205t-1.982-0.652h-19.857q-1.482 0-2.009 0.607t-0.527 2.25v12.018q0.768 0.411 1.58 0.714t1.446 0.5 1.446 0.33 1.268 0.196 1.25 0.071 1.045 0.009 1.009-0.036 0.795-0.036q1.214-0.018 1.696 0.482 0.107 0.107 0.179 0.161 0.464 0.446 1.089 0.911 0.125-1.625 2.107-1.554 0.089 0 0.652 0.027t0.768 0.036 0.813 0.018 0.946-0.018 0.973-0.080 1.089-0.152 1.107-0.241 1.196-0.348 1.205-0.482 1.286-0.616zM31.482 16.339q-2.161 2.661-6.643 4.5 1.5 5.089-0.411 8.304-1.179 2.018-3.268 2.643-1.857 0.571-3.25-0.268-1.536-0.911-1.464-2.929l-0.018-5.821v-0.018q-0.143-0.036-0.438-0.107t-0.42-0.089l-0.018 6.036q0.071 2.036-1.482 2.929-1.411 0.839-3.268 0.268-2.089-0.643-3.25-2.679-1.875-3.214-0.393-8.268-4.482-1.839-6.643-4.5-0.446-0.661-0.071-1.125t1.071 0.018q0.054 0.036 0.196 0.125t0.196 0.143v-12.393q0-1.286 0.839-2.196t2.036-0.911h22.446q1.196 0 2.036 0.911t0.839 2.196v12.393l0.375-0.268q0.696-0.482 1.071-0.018t-0.071 1.125z"></path>
  64. </symbol>
  65. <symbol id="icon-snapchat-ghost" viewBox="0 0 30 32">
  66. <path class="path1" d="M15.143 2.286q2.393-0.018 4.295 1.223t2.92 3.438q0.482 1.036 0.482 3.196 0 0.839-0.161 3.411 0.25 0.125 0.5 0.125 0.321 0 0.911-0.241t0.911-0.241q0.518 0 1 0.321t0.482 0.821q0 0.571-0.563 0.964t-1.232 0.563-1.232 0.518-0.563 0.848q0 0.268 0.214 0.768 0.661 1.464 1.83 2.679t2.58 1.804q0.5 0.214 1.429 0.411 0.5 0.107 0.5 0.625 0 1.25-3.911 1.839-0.125 0.196-0.196 0.696t-0.25 0.83-0.589 0.33q-0.357 0-1.107-0.116t-1.143-0.116q-0.661 0-1.107 0.089-0.571 0.089-1.125 0.402t-1.036 0.679-1.036 0.723-1.357 0.598-1.768 0.241q-0.929 0-1.723-0.241t-1.339-0.598-1.027-0.723-1.036-0.679-1.107-0.402q-0.464-0.089-1.125-0.089-0.429 0-1.17 0.134t-1.045 0.134q-0.446 0-0.625-0.33t-0.25-0.848-0.196-0.714q-3.911-0.589-3.911-1.839 0-0.518 0.5-0.625 0.929-0.196 1.429-0.411 1.393-0.571 2.58-1.804t1.83-2.679q0.214-0.5 0.214-0.768 0-0.5-0.563-0.848t-1.241-0.527-1.241-0.563-0.563-0.938q0-0.482 0.464-0.813t0.982-0.33q0.268 0 0.857 0.232t0.946 0.232q0.321 0 0.571-0.125-0.161-2.536-0.161-3.393 0-2.179 0.482-3.214 1.143-2.446 3.071-3.536t4.714-1.125z"></path>
  67. </symbol>
  68. <symbol id="icon-yelp" viewBox="0 0 27 32">
  69. <path class="path1" d="M13.804 23.554v2.268q-0.018 5.214-0.107 5.446-0.214 0.571-0.911 0.714-0.964 0.161-3.241-0.679t-2.902-1.589q-0.232-0.268-0.304-0.643-0.018-0.214 0.071-0.464 0.071-0.179 0.607-0.839t3.232-3.857q0.018 0 1.071-1.25 0.268-0.339 0.705-0.438t0.884 0.063q0.429 0.179 0.67 0.518t0.223 0.75zM11.143 19.071q-0.054 0.982-0.929 1.25l-2.143 0.696q-4.911 1.571-5.214 1.571-0.625-0.036-0.964-0.643-0.214-0.446-0.304-1.339-0.143-1.357 0.018-2.973t0.536-2.223 1-0.571q0.232 0 3.607 1.375 1.25 0.518 2.054 0.839l1.5 0.607q0.411 0.161 0.634 0.545t0.205 0.866zM25.893 24.375q-0.125 0.964-1.634 2.875t-2.42 2.268q-0.661 0.25-1.125-0.125-0.25-0.179-3.286-5.125l-0.839-1.375q-0.25-0.375-0.205-0.821t0.348-0.821q0.625-0.768 1.482-0.464 0.018 0.018 2.125 0.714 3.625 1.179 4.321 1.42t0.839 0.366q0.5 0.393 0.393 1.089zM13.893 13.089q0.089 1.821-0.964 2.179-1.036 0.304-2.036-1.268l-6.75-10.679q-0.143-0.625 0.339-1.107 0.732-0.768 3.705-1.598t4.009-0.563q0.714 0.179 0.875 0.804 0.054 0.321 0.393 5.455t0.429 6.777zM25.714 15.018q0.054 0.696-0.464 1.054-0.268 0.179-5.875 1.536-1.196 0.268-1.625 0.411l0.018-0.036q-0.411 0.107-0.821-0.071t-0.661-0.571q-0.536-0.839 0-1.554 0.018-0.018 1.339-1.821 2.232-3.054 2.679-3.643t0.607-0.696q0.5-0.339 1.161-0.036 0.857 0.411 2.196 2.384t1.446 2.991v0.054z"></path>
  70. </symbol>
  71. <symbol id="icon-vine" viewBox="0 0 27 32">
  72. <path class="path1" d="M26.732 14.768v3.536q-1.804 0.411-3.536 0.411-1.161 2.429-2.955 4.839t-3.241 3.848-2.286 1.902q-1.429 0.804-2.893-0.054-0.5-0.304-1.080-0.777t-1.518-1.491-1.83-2.295-1.92-3.286-1.884-4.357-1.634-5.616-1.259-6.964h5.054q0.464 3.893 1.25 7.116t1.866 5.661 2.17 4.205 2.5 3.482q3.018-3.018 5.125-7.25-2.536-1.286-3.982-3.929t-1.446-5.946q0-3.429 1.857-5.616t5.071-2.188q3.179 0 4.875 1.884t1.696 5.313q0 2.839-1.036 5.107-0.125 0.018-0.348 0.054t-0.821 0.036-1.125-0.107-1.107-0.455-0.902-0.92q0.554-1.839 0.554-3.286 0-1.554-0.518-2.357t-1.411-0.804q-0.946 0-1.518 0.884t-0.571 2.509q0 3.321 1.875 5.241t4.768 1.92q1.107 0 2.161-0.25z"></path>
  73. </symbol>
  74. <symbol id="icon-vk" viewBox="0 0 35 32">
  75. <path class="path1" d="M34.232 9.286q0.411 1.143-2.679 5.25-0.429 0.571-1.161 1.518-1.393 1.786-1.607 2.339-0.304 0.732 0.25 1.446 0.304 0.375 1.446 1.464h0.018l0.071 0.071q2.518 2.339 3.411 3.946 0.054 0.089 0.116 0.223t0.125 0.473-0.009 0.607-0.446 0.491-1.054 0.223l-4.571 0.071q-0.429 0.089-1-0.089t-0.929-0.393l-0.357-0.214q-0.536-0.375-1.25-1.143t-1.223-1.384-1.089-1.036-1.009-0.277q-0.054 0.018-0.143 0.063t-0.304 0.259-0.384 0.527-0.304 0.929-0.116 1.384q0 0.268-0.063 0.491t-0.134 0.33l-0.071 0.089q-0.321 0.339-0.946 0.393h-2.054q-1.268 0.071-2.607-0.295t-2.348-0.946-1.839-1.179-1.259-1.027l-0.446-0.429q-0.179-0.179-0.491-0.536t-1.277-1.625-1.893-2.696-2.188-3.768-2.33-4.857q-0.107-0.286-0.107-0.482t0.054-0.286l0.071-0.107q0.268-0.339 1.018-0.339l4.893-0.036q0.214 0.036 0.411 0.116t0.286 0.152l0.089 0.054q0.286 0.196 0.429 0.571 0.357 0.893 0.821 1.848t0.732 1.455l0.286 0.518q0.518 1.071 1 1.857t0.866 1.223 0.741 0.688 0.607 0.25 0.482-0.089q0.036-0.018 0.089-0.089t0.214-0.393 0.241-0.839 0.17-1.446 0-2.232q-0.036-0.714-0.161-1.304t-0.25-0.821l-0.107-0.214q-0.446-0.607-1.518-0.768-0.232-0.036 0.089-0.429 0.304-0.339 0.679-0.536 0.946-0.464 4.268-0.429 1.464 0.018 2.411 0.232 0.357 0.089 0.598 0.241t0.366 0.429 0.188 0.571 0.063 0.813-0.018 0.982-0.045 1.259-0.027 1.473q0 0.196-0.018 0.75t-0.009 0.857 0.063 0.723 0.205 0.696 0.402 0.438q0.143 0.036 0.304 0.071t0.464-0.196 0.679-0.616 0.929-1.196 1.214-1.92q1.071-1.857 1.911-4.018 0.071-0.179 0.179-0.313t0.196-0.188l0.071-0.054 0.089-0.045t0.232-0.054 0.357-0.009l5.143-0.036q0.696-0.089 1.143 0.045t0.554 0.295z"></path>
  76. </symbol>
  77. <symbol id="icon-search" viewBox="0 0 30 32">
  78. <path class="path1" d="M20.571 14.857q0-3.304-2.348-5.652t-5.652-2.348-5.652 2.348-2.348 5.652 2.348 5.652 5.652 2.348 5.652-2.348 2.348-5.652zM29.714 29.714q0 0.929-0.679 1.607t-1.607 0.679q-0.964 0-1.607-0.679l-6.125-6.107q-3.196 2.214-7.125 2.214-2.554 0-4.884-0.991t-4.018-2.679-2.679-4.018-0.991-4.884 0.991-4.884 2.679-4.018 4.018-2.679 4.884-0.991 4.884 0.991 4.018 2.679 2.679 4.018 0.991 4.884q0 3.929-2.214 7.125l6.125 6.125q0.661 0.661 0.661 1.607z"></path>
  79. </symbol>
  80. <symbol id="icon-envelope-o" viewBox="0 0 32 32">
  81. <path class="path1" d="M29.714 26.857v-13.714q-0.571 0.643-1.232 1.179-4.786 3.679-7.607 6.036-0.911 0.768-1.482 1.196t-1.545 0.866-1.83 0.438h-0.036q-0.857 0-1.83-0.438t-1.545-0.866-1.482-1.196q-2.821-2.357-7.607-6.036-0.661-0.536-1.232-1.179v13.714q0 0.232 0.17 0.402t0.402 0.17h26.286q0.232 0 0.402-0.17t0.17-0.402zM29.714 8.089v-0.438t-0.009-0.232-0.054-0.223-0.098-0.161-0.161-0.134-0.25-0.045h-26.286q-0.232 0-0.402 0.17t-0.17 0.402q0 3 2.625 5.071 3.446 2.714 7.161 5.661 0.107 0.089 0.625 0.527t0.821 0.67 0.795 0.563 0.902 0.491 0.768 0.161h0.036q0.357 0 0.768-0.161t0.902-0.491 0.795-0.563 0.821-0.67 0.625-0.527q3.714-2.946 7.161-5.661 0.964-0.768 1.795-2.063t0.83-2.348zM32 7.429v19.429q0 1.179-0.839 2.018t-2.018 0.839h-26.286q-1.179 0-2.018-0.839t-0.839-2.018v-19.429q0-1.179 0.839-2.018t2.018-0.839h26.286q1.179 0 2.018 0.839t0.839 2.018z"></path>
  82. </symbol>
  83. <symbol id="icon-close" viewBox="0 0 25 32">
  84. <path class="path1" d="M23.179 23.607q0 0.714-0.5 1.214l-2.429 2.429q-0.5 0.5-1.214 0.5t-1.214-0.5l-5.25-5.25-5.25 5.25q-0.5 0.5-1.214 0.5t-1.214-0.5l-2.429-2.429q-0.5-0.5-0.5-1.214t0.5-1.214l5.25-5.25-5.25-5.25q-0.5-0.5-0.5-1.214t0.5-1.214l2.429-2.429q0.5-0.5 1.214-0.5t1.214 0.5l5.25 5.25 5.25-5.25q0.5-0.5 1.214-0.5t1.214 0.5l2.429 2.429q0.5 0.5 0.5 1.214t-0.5 1.214l-5.25 5.25 5.25 5.25q0.5 0.5 0.5 1.214z"></path>
  85. </symbol>
  86. <symbol id="icon-angle-down" viewBox="0 0 21 32">
  87. <path class="path1" d="M19.196 13.143q0 0.232-0.179 0.411l-8.321 8.321q-0.179 0.179-0.411 0.179t-0.411-0.179l-8.321-8.321q-0.179-0.179-0.179-0.411t0.179-0.411l0.893-0.893q0.179-0.179 0.411-0.179t0.411 0.179l7.018 7.018 7.018-7.018q0.179-0.179 0.411-0.179t0.411 0.179l0.893 0.893q0.179 0.179 0.179 0.411z"></path>
  88. </symbol>
  89. <symbol id="icon-folder-open" viewBox="0 0 34 32">
  90. <path class="path1" d="M33.554 17q0 0.554-0.554 1.179l-6 7.071q-0.768 0.911-2.152 1.545t-2.563 0.634h-19.429q-0.607 0-1.080-0.232t-0.473-0.768q0-0.554 0.554-1.179l6-7.071q0.768-0.911 2.152-1.545t2.563-0.634h19.429q0.607 0 1.080 0.232t0.473 0.768zM27.429 10.857v2.857h-14.857q-1.679 0-3.518 0.848t-2.929 2.134l-6.107 7.179q0-0.071-0.009-0.223t-0.009-0.223v-17.143q0-1.643 1.179-2.821t2.821-1.179h5.714q1.643 0 2.821 1.179t1.179 2.821v0.571h9.714q1.643 0 2.821 1.179t1.179 2.821z"></path>
  91. </symbol>
  92. <symbol id="icon-twitter" viewBox="0 0 30 32">
  93. <path class="path1" d="M28.929 7.286q-1.196 1.75-2.893 2.982 0.018 0.25 0.018 0.75 0 2.321-0.679 4.634t-2.063 4.437-3.295 3.759-4.607 2.607-5.768 0.973q-4.839 0-8.857-2.589 0.625 0.071 1.393 0.071 4.018 0 7.161-2.464-1.875-0.036-3.357-1.152t-2.036-2.848q0.589 0.089 1.089 0.089 0.768 0 1.518-0.196-2-0.411-3.313-1.991t-1.313-3.67v-0.071q1.214 0.679 2.607 0.732-1.179-0.786-1.875-2.054t-0.696-2.75q0-1.571 0.786-2.911 2.161 2.661 5.259 4.259t6.634 1.777q-0.143-0.679-0.143-1.321 0-2.393 1.688-4.080t4.080-1.688q2.5 0 4.214 1.821 1.946-0.375 3.661-1.393-0.661 2.054-2.536 3.179 1.661-0.179 3.321-0.893z"></path>
  94. </symbol>
  95. <symbol id="icon-facebook" viewBox="0 0 19 32">
  96. <path class="path1" d="M17.125 0.214v4.714h-2.804q-1.536 0-2.071 0.643t-0.536 1.929v3.375h5.232l-0.696 5.286h-4.536v13.554h-5.464v-13.554h-4.554v-5.286h4.554v-3.893q0-3.321 1.857-5.152t4.946-1.83q2.625 0 4.071 0.214z"></path>
  97. </symbol>
  98. <symbol id="icon-github" viewBox="0 0 27 32">
  99. <path class="path1" d="M13.714 2.286q3.732 0 6.884 1.839t4.991 4.991 1.839 6.884q0 4.482-2.616 8.063t-6.759 4.955q-0.482 0.089-0.714-0.125t-0.232-0.536q0-0.054 0.009-1.366t0.009-2.402q0-1.732-0.929-2.536 1.018-0.107 1.83-0.321t1.679-0.696 1.446-1.188 0.946-1.875 0.366-2.688q0-2.125-1.411-3.679 0.661-1.625-0.143-3.643-0.5-0.161-1.446 0.196t-1.643 0.786l-0.679 0.429q-1.661-0.464-3.429-0.464t-3.429 0.464q-0.286-0.196-0.759-0.482t-1.491-0.688-1.518-0.241q-0.804 2.018-0.143 3.643-1.411 1.554-1.411 3.679 0 1.518 0.366 2.679t0.938 1.875 1.438 1.196 1.679 0.696 1.83 0.321q-0.696 0.643-0.875 1.839-0.375 0.179-0.804 0.268t-1.018 0.089-1.17-0.384-0.991-1.116q-0.339-0.571-0.866-0.929t-0.884-0.429l-0.357-0.054q-0.375 0-0.518 0.080t-0.089 0.205 0.161 0.25 0.232 0.214l0.125 0.089q0.393 0.179 0.777 0.679t0.563 0.911l0.179 0.411q0.232 0.679 0.786 1.098t1.196 0.536 1.241 0.125 0.991-0.063l0.411-0.071q0 0.679 0.009 1.58t0.009 0.973q0 0.321-0.232 0.536t-0.714 0.125q-4.143-1.375-6.759-4.955t-2.616-8.063q0-3.732 1.839-6.884t4.991-4.991 6.884-1.839zM5.196 21.982q0.054-0.125-0.125-0.214-0.179-0.054-0.232 0.036-0.054 0.125 0.125 0.214 0.161 0.107 0.232-0.036zM5.75 22.589q0.125-0.089-0.036-0.286-0.179-0.161-0.286-0.054-0.125 0.089 0.036 0.286 0.179 0.179 0.286 0.054zM6.286 23.393q0.161-0.125 0-0.339-0.143-0.232-0.304-0.107-0.161 0.089 0 0.321t0.304 0.125zM7.036 24.143q0.143-0.143-0.071-0.339-0.214-0.214-0.357-0.054-0.161 0.143 0.071 0.339 0.214 0.214 0.357 0.054zM8.054 24.589q0.054-0.196-0.232-0.286-0.268-0.071-0.339 0.125t0.232 0.268q0.268 0.107 0.339-0.107zM9.179 24.679q0-0.232-0.304-0.196-0.286 0-0.286 0.196 0 0.232 0.304 0.196 0.286 0 0.286-0.196zM10.214 24.5q-0.036-0.196-0.321-0.161-0.286 0.054-0.25 0.268t0.321 0.143 0.25-0.25z"></path>
  100. </symbol>
  101. <symbol id="icon-bars" viewBox="0 0 27 32">
  102. <path class="path1" d="M27.429 24v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804zM27.429 14.857v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804zM27.429 5.714v2.286q0 0.464-0.339 0.804t-0.804 0.339h-25.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h25.143q0.464 0 0.804 0.339t0.339 0.804z"></path>
  103. </symbol>
  104. <symbol id="icon-google-plus" viewBox="0 0 41 32">
  105. <path class="path1" d="M25.661 16.304q0 3.714-1.554 6.616t-4.429 4.536-6.589 1.634q-2.661 0-5.089-1.036t-4.179-2.786-2.786-4.179-1.036-5.089 1.036-5.089 2.786-4.179 4.179-2.786 5.089-1.036q5.107 0 8.768 3.429l-3.554 3.411q-2.089-2.018-5.214-2.018-2.196 0-4.063 1.107t-2.955 3.009-1.089 4.152 1.089 4.152 2.955 3.009 4.063 1.107q1.482 0 2.723-0.411t2.045-1.027 1.402-1.402 0.875-1.482 0.384-1.321h-7.429v-4.5h12.357q0.214 1.125 0.214 2.179zM41.143 14.125v3.75h-3.732v3.732h-3.75v-3.732h-3.732v-3.75h3.732v-3.732h3.75v3.732h3.732z"></path>
  106. </symbol>
  107. <symbol id="icon-linkedin" viewBox="0 0 27 32">
  108. <path class="path1" d="M6.232 11.161v17.696h-5.893v-17.696h5.893zM6.607 5.696q0.018 1.304-0.902 2.179t-2.42 0.875h-0.036q-1.464 0-2.357-0.875t-0.893-2.179q0-1.321 0.92-2.188t2.402-0.866 2.375 0.866 0.911 2.188zM27.429 18.714v10.143h-5.875v-9.464q0-1.875-0.723-2.938t-2.259-1.063q-1.125 0-1.884 0.616t-1.134 1.527q-0.196 0.536-0.196 1.446v9.875h-5.875q0.036-7.125 0.036-11.554t-0.018-5.286l-0.018-0.857h5.875v2.571h-0.036q0.357-0.571 0.732-1t1.009-0.929 1.554-0.777 2.045-0.277q3.054 0 4.911 2.027t1.857 5.938z"></path>
  109. </symbol>
  110. <symbol id="icon-quote-right" viewBox="0 0 30 32">
  111. <path class="path1" d="M13.714 5.714v12.571q0 1.857-0.723 3.545t-1.955 2.92-2.92 1.955-3.545 0.723h-1.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h1.143q1.893 0 3.232-1.339t1.339-3.232v-0.571q0-0.714-0.5-1.214t-1.214-0.5h-4q-1.429 0-2.429-1t-1-2.429v-6.857q0-1.429 1-2.429t2.429-1h6.857q1.429 0 2.429 1t1 2.429zM29.714 5.714v12.571q0 1.857-0.723 3.545t-1.955 2.92-2.92 1.955-3.545 0.723h-1.143q-0.464 0-0.804-0.339t-0.339-0.804v-2.286q0-0.464 0.339-0.804t0.804-0.339h1.143q1.893 0 3.232-1.339t1.339-3.232v-0.571q0-0.714-0.5-1.214t-1.214-0.5h-4q-1.429 0-2.429-1t-1-2.429v-6.857q0-1.429 1-2.429t2.429-1h6.857q1.429 0 2.429 1t1 2.429z"></path>
  112. </symbol>
  113. <symbol id="icon-mail-reply" viewBox="0 0 32 32">
  114. <path class="path1" d="M32 20q0 2.964-2.268 8.054-0.054 0.125-0.188 0.429t-0.241 0.536-0.232 0.393q-0.214 0.304-0.5 0.304-0.268 0-0.42-0.179t-0.152-0.446q0-0.161 0.045-0.473t0.045-0.42q0.089-1.214 0.089-2.196 0-1.804-0.313-3.232t-0.866-2.473-1.429-1.804-1.884-1.241-2.375-0.759-2.75-0.384-3.134-0.107h-4v4.571q0 0.464-0.339 0.804t-0.804 0.339-0.804-0.339l-9.143-9.143q-0.339-0.339-0.339-0.804t0.339-0.804l9.143-9.143q0.339-0.339 0.804-0.339t0.804 0.339 0.339 0.804v4.571h4q12.732 0 15.625 7.196 0.946 2.393 0.946 5.946z"></path>
  115. </symbol>
  116. <symbol id="icon-youtube" viewBox="0 0 27 32">
  117. <path class="path1" d="M17.339 22.214v3.768q0 1.196-0.696 1.196-0.411 0-0.804-0.393v-5.375q0.393-0.393 0.804-0.393 0.696 0 0.696 1.196zM23.375 22.232v0.821h-1.607v-0.821q0-1.214 0.804-1.214t0.804 1.214zM6.125 18.339h1.911v-1.679h-5.571v1.679h1.875v10.161h1.786v-10.161zM11.268 28.5h1.589v-8.821h-1.589v6.75q-0.536 0.75-1.018 0.75-0.321 0-0.375-0.375-0.018-0.054-0.018-0.625v-6.5h-1.589v6.982q0 0.875 0.143 1.304 0.214 0.661 1.036 0.661 0.857 0 1.821-1.089v0.964zM18.929 25.857v-3.518q0-1.304-0.161-1.768-0.304-1-1.268-1-0.893 0-1.661 0.964v-3.875h-1.589v11.839h1.589v-0.857q0.804 0.982 1.661 0.982 0.964 0 1.268-0.982 0.161-0.482 0.161-1.786zM24.964 25.679v-0.232h-1.625q0 0.911-0.036 1.089-0.125 0.643-0.714 0.643-0.821 0-0.821-1.232v-1.554h3.196v-1.839q0-1.411-0.482-2.071-0.696-0.911-1.893-0.911-1.214 0-1.911 0.911-0.5 0.661-0.5 2.071v3.089q0 1.411 0.518 2.071 0.696 0.911 1.929 0.911 1.286 0 1.929-0.946 0.321-0.482 0.375-0.964 0.036-0.161 0.036-1.036zM14.107 9.375v-3.75q0-1.232-0.768-1.232t-0.768 1.232v3.75q0 1.25 0.768 1.25t0.768-1.25zM26.946 22.786q0 4.179-0.464 6.25-0.25 1.054-1.036 1.768t-1.821 0.821q-3.286 0.375-9.911 0.375t-9.911-0.375q-1.036-0.107-1.83-0.821t-1.027-1.768q-0.464-2-0.464-6.25 0-4.179 0.464-6.25 0.25-1.054 1.036-1.768t1.839-0.839q3.268-0.357 9.893-0.357t9.911 0.357q1.036 0.125 1.83 0.839t1.027 1.768q0.464 2 0.464 6.25zM9.125 0h1.821l-2.161 7.125v4.839h-1.786v-4.839q-0.25-1.321-1.089-3.786-0.661-1.839-1.161-3.339h1.893l1.268 4.696zM15.732 5.946v3.125q0 1.446-0.5 2.107-0.661 0.911-1.893 0.911-1.196 0-1.875-0.911-0.5-0.679-0.5-2.107v-3.125q0-1.429 0.5-2.089 0.679-0.911 1.875-0.911 1.232 0 1.893 0.911 0.5 0.661 0.5 2.089zM21.714 3.054v8.911h-1.625v-0.982q-0.946 1.107-1.839 1.107-0.821 0-1.054-0.661-0.143-0.429-0.143-1.339v-7.036h1.625v6.554q0 0.589 0.018 0.625 0.054 0.393 0.375 0.393 0.482 0 1.018-0.768v-6.804h1.625z"></path>
  118. </symbol>
  119. <symbol id="icon-dropbox" viewBox="0 0 32 32">
  120. <path class="path1" d="M7.179 12.625l8.821 5.446-6.107 5.089-8.75-5.696zM24.786 22.536v1.929l-8.75 5.232v0.018l-0.018-0.018-0.018 0.018v-0.018l-8.732-5.232v-1.929l2.625 1.714 6.107-5.071v-0.036l0.018 0.018 0.018-0.018v0.036l6.125 5.071zM9.893 2.107l6.107 5.089-8.821 5.429-6.036-4.821zM24.821 12.625l6.036 4.839-8.732 5.696-6.125-5.089zM22.125 2.107l8.732 5.696-6.036 4.821-8.821-5.429z"></path>
  121. </symbol>
  122. <symbol id="icon-instagram" viewBox="0 0 27 32">
  123. <path class="path1" d="M18.286 16q0-1.893-1.339-3.232t-3.232-1.339-3.232 1.339-1.339 3.232 1.339 3.232 3.232 1.339 3.232-1.339 1.339-3.232zM20.75 16q0 2.929-2.054 4.982t-4.982 2.054-4.982-2.054-2.054-4.982 2.054-4.982 4.982-2.054 4.982 2.054 2.054 4.982zM22.679 8.679q0 0.679-0.482 1.161t-1.161 0.482-1.161-0.482-0.482-1.161 0.482-1.161 1.161-0.482 1.161 0.482 0.482 1.161zM13.714 4.75q-0.125 0-1.366-0.009t-1.884 0-1.723 0.054-1.839 0.179-1.277 0.33q-0.893 0.357-1.571 1.036t-1.036 1.571q-0.196 0.518-0.33 1.277t-0.179 1.839-0.054 1.723 0 1.884 0.009 1.366-0.009 1.366 0 1.884 0.054 1.723 0.179 1.839 0.33 1.277q0.357 0.893 1.036 1.571t1.571 1.036q0.518 0.196 1.277 0.33t1.839 0.179 1.723 0.054 1.884 0 1.366-0.009 1.366 0.009 1.884 0 1.723-0.054 1.839-0.179 1.277-0.33q0.893-0.357 1.571-1.036t1.036-1.571q0.196-0.518 0.33-1.277t0.179-1.839 0.054-1.723 0-1.884-0.009-1.366 0.009-1.366 0-1.884-0.054-1.723-0.179-1.839-0.33-1.277q-0.357-0.893-1.036-1.571t-1.571-1.036q-0.518-0.196-1.277-0.33t-1.839-0.179-1.723-0.054-1.884 0-1.366 0.009zM27.429 16q0 4.089-0.089 5.661-0.179 3.714-2.214 5.75t-5.75 2.214q-1.571 0.089-5.661 0.089t-5.661-0.089q-3.714-0.179-5.75-2.214t-2.214-5.75q-0.089-1.571-0.089-5.661t0.089-5.661q0.179-3.714 2.214-5.75t5.75-2.214q1.571-0.089 5.661-0.089t5.661 0.089q3.714 0.179 5.75 2.214t2.214 5.75q0.089 1.571 0.089 5.661z"></path>
  124. </symbol>
  125. <symbol id="icon-flickr" viewBox="0 0 27 32">
  126. <path class="path1" d="M22.286 2.286q2.125 0 3.634 1.509t1.509 3.634v17.143q0 2.125-1.509 3.634t-3.634 1.509h-17.143q-2.125 0-3.634-1.509t-1.509-3.634v-17.143q0-2.125 1.509-3.634t3.634-1.509h17.143zM12.464 16q0-1.571-1.107-2.679t-2.679-1.107-2.679 1.107-1.107 2.679 1.107 2.679 2.679 1.107 2.679-1.107 1.107-2.679zM22.536 16q0-1.571-1.107-2.679t-2.679-1.107-2.679 1.107-1.107 2.679 1.107 2.679 2.679 1.107 2.679-1.107 1.107-2.679z"></path>
  127. </symbol>
  128. <symbol id="icon-tumblr" viewBox="0 0 19 32">
  129. <path class="path1" d="M16.857 23.732l1.429 4.232q-0.411 0.625-1.982 1.179t-3.161 0.571q-1.857 0.036-3.402-0.464t-2.545-1.321-1.696-1.893-0.991-2.143-0.295-2.107v-9.714h-3v-3.839q1.286-0.464 2.304-1.241t1.625-1.607 1.036-1.821 0.607-1.768 0.268-1.58q0.018-0.089 0.080-0.152t0.134-0.063h4.357v7.571h5.946v4.5h-5.964v9.25q0 0.536 0.116 1t0.402 0.938 0.884 0.741 1.455 0.25q1.393-0.036 2.393-0.518z"></path>
  130. </symbol>
  131. <symbol id="icon-dockerhub" viewBox="0 0 24 28">
  132. <path class="path1" d="M1.597 10.257h2.911v2.83H1.597v-2.83zm3.573 0h2.91v2.83H5.17v-2.83zm0-3.627h2.91v2.829H5.17V6.63zm3.57 3.627h2.912v2.83H8.74v-2.83zm0-3.627h2.912v2.829H8.74V6.63zm3.573 3.627h2.911v2.83h-2.911v-2.83zm0-3.627h2.911v2.829h-2.911V6.63zm3.572 3.627h2.911v2.83h-2.911v-2.83zM12.313 3h2.911v2.83h-2.911V3zm-6.65 14.173c-.449 0-.812.354-.812.788 0 .435.364.788.812.788.447 0 .811-.353.811-.788 0-.434-.363-.788-.811-.788"></path>
  133. <path class="path2" d="M28.172 11.721c-.978-.549-2.278-.624-3.388-.306-.136-1.146-.91-2.149-1.83-2.869l-.366-.286-.307.345c-.618.692-.8 1.845-.718 2.73.063.651.273 1.312.685 1.834-.313.183-.668.328-.985.434-.646.212-1.347.33-2.028.33H.083l-.042.429c-.137 1.432.065 2.866.674 4.173l.262.519.03.048c1.8 2.973 4.963 4.225 8.41 4.225 6.672 0 12.174-2.896 14.702-9.015 1.689.085 3.417-.4 4.243-1.968l.211-.4-.401-.223zM5.664 19.458c-.85 0-1.542-.671-1.542-1.497 0-.825.691-1.498 1.541-1.498.849 0 1.54.672 1.54 1.497s-.69 1.498-1.539 1.498z"></path>
  134. </symbol>
  135. <symbol id="icon-dribbble" viewBox="0 0 27 32">
  136. <path class="path1" d="M18.286 26.786q-0.75-4.304-2.5-8.893h-0.036l-0.036 0.018q-0.286 0.107-0.768 0.295t-1.804 0.875-2.446 1.464-2.339 2.045-1.839 2.643l-0.268-0.196q3.286 2.679 7.464 2.679 2.357 0 4.571-0.929zM14.982 15.946q-0.375-0.875-0.946-1.982-5.554 1.661-12.018 1.661-0.018 0.125-0.018 0.375 0 2.214 0.786 4.223t2.214 3.598q0.893-1.589 2.205-2.973t2.545-2.223 2.33-1.446 1.777-0.857l0.661-0.232q0.071-0.018 0.232-0.063t0.232-0.080zM13.071 12.161q-2.143-3.804-4.357-6.75-2.464 1.161-4.179 3.321t-2.286 4.857q5.393 0 10.821-1.429zM25.286 17.857q-3.75-1.071-7.304-0.518 1.554 4.268 2.286 8.375 1.982-1.339 3.304-3.384t1.714-4.473zM10.911 4.625q-0.018 0-0.036 0.018 0.018-0.018 0.036-0.018zM21.446 7.214q-3.304-2.929-7.732-2.929-1.357 0-2.768 0.339 2.339 3.036 4.393 6.821 1.232-0.464 2.321-1.080t1.723-1.098 1.17-1.018 0.67-0.723zM25.429 15.875q-0.054-4.143-2.661-7.321l-0.018 0.018q-0.161 0.214-0.339 0.438t-0.777 0.795-1.268 1.080-1.786 1.161-2.348 1.152q0.446 0.946 0.786 1.696 0.036 0.107 0.116 0.313t0.134 0.295q0.643-0.089 1.33-0.125t1.313-0.036 1.232 0.027 1.143 0.071 1.009 0.098 0.857 0.116 0.652 0.107 0.446 0.080zM27.429 16q0 3.732-1.839 6.884t-4.991 4.991-6.884 1.839-6.884-1.839-4.991-4.991-1.839-6.884 1.839-6.884 4.991-4.991 6.884-1.839 6.884 1.839 4.991 4.991 1.839 6.884z"></path>
  137. </symbol>
  138. <symbol id="icon-skype" viewBox="0 0 27 32">
  139. <path class="path1" d="M20.946 18.982q0-0.893-0.348-1.634t-0.866-1.223-1.304-0.875-1.473-0.607-1.563-0.411l-1.857-0.429q-0.536-0.125-0.786-0.188t-0.625-0.205-0.536-0.286-0.295-0.375-0.134-0.536q0-1.375 2.571-1.375 0.768 0 1.375 0.214t0.964 0.509 0.679 0.598 0.714 0.518 0.857 0.214q0.839 0 1.348-0.571t0.509-1.375q0-0.982-1-1.777t-2.536-1.205-3.25-0.411q-1.214 0-2.357 0.277t-2.134 0.839-1.589 1.554-0.598 2.295q0 1.089 0.339 1.902t1 1.348 1.429 0.866 1.839 0.58l2.607 0.643q1.607 0.393 2 0.643 0.571 0.357 0.571 1.071 0 0.696-0.714 1.152t-1.875 0.455q-0.911 0-1.634-0.286t-1.161-0.688-0.813-0.804-0.821-0.688-0.964-0.286q-0.893 0-1.348 0.536t-0.455 1.339q0 1.643 2.179 2.813t5.196 1.17q1.304 0 2.5-0.33t2.188-0.955 1.58-1.67 0.589-2.348zM27.429 22.857q0 2.839-2.009 4.848t-4.848 2.009q-2.321 0-4.179-1.429-1.375 0.286-2.679 0.286-2.554 0-4.884-0.991t-4.018-2.679-2.679-4.018-0.991-4.884q0-1.304 0.286-2.679-1.429-1.857-1.429-4.179 0-2.839 2.009-4.848t4.848-2.009q2.321 0 4.179 1.429 1.375-0.286 2.679-0.286 2.554 0 4.884 0.991t4.018 2.679 2.679 4.018 0.991 4.884q0 1.304-0.286 2.679 1.429 1.857 1.429 4.179z"></path>
  140. </symbol>
  141. <symbol id="icon-foursquare" viewBox="0 0 23 32">
  142. <path class="path1" d="M17.857 7.75l0.661-3.464q0.089-0.411-0.161-0.714t-0.625-0.304h-12.714q-0.411 0-0.688 0.304t-0.277 0.661v19.661q0 0.125 0.107 0.018l5.196-6.286q0.411-0.464 0.679-0.598t0.857-0.134h4.268q0.393 0 0.661-0.259t0.321-0.527q0.429-2.321 0.661-3.411 0.071-0.375-0.205-0.714t-0.652-0.339h-5.25q-0.518 0-0.857-0.339t-0.339-0.857v-0.75q0-0.518 0.339-0.848t0.857-0.33h6.179q0.321 0 0.625-0.241t0.357-0.527zM21.911 3.786q-0.268 1.304-0.955 4.759t-1.241 6.25-0.625 3.098q-0.107 0.393-0.161 0.58t-0.25 0.58-0.438 0.589-0.688 0.375-1.036 0.179h-4.839q-0.232 0-0.393 0.179-0.143 0.161-7.607 8.821-0.393 0.446-1.045 0.509t-0.866-0.098q-0.982-0.393-0.982-1.75v-25.179q0-0.982 0.679-1.83t2.143-0.848h15.857q1.696 0 2.268 0.946t0.179 2.839zM21.911 3.786l-2.821 14.107q0.071-0.304 0.625-3.098t1.241-6.25 0.955-4.759z"></path>
  143. </symbol>
  144. <symbol id="icon-wordpress" viewBox="0 0 32 32">
  145. <path class="path1" d="M2.268 16q0-2.911 1.196-5.589l6.554 17.946q-3.5-1.696-5.625-5.018t-2.125-7.339zM25.268 15.304q0 0.339-0.045 0.688t-0.179 0.884-0.205 0.786-0.313 1.054-0.313 1.036l-1.357 4.571-4.964-14.75q0.821-0.054 1.571-0.143 0.339-0.036 0.464-0.33t-0.045-0.554-0.509-0.241l-3.661 0.179q-1.339-0.018-3.607-0.179-0.214-0.018-0.366 0.089t-0.205 0.268-0.027 0.33 0.161 0.295 0.348 0.143l1.429 0.143 2.143 5.857-3 9-5-14.857q0.821-0.054 1.571-0.143 0.339-0.036 0.464-0.33t-0.045-0.554-0.509-0.241l-3.661 0.179q-0.125 0-0.411-0.009t-0.464-0.009q1.875-2.857 4.902-4.527t6.563-1.67q2.625 0 5.009 0.946t4.259 2.661h-0.179q-0.982 0-1.643 0.723t-0.661 1.705q0 0.214 0.036 0.429t0.071 0.384 0.143 0.411 0.161 0.375 0.214 0.402 0.223 0.375 0.259 0.429 0.25 0.411q1.125 1.911 1.125 3.786zM16.232 17.196l4.232 11.554q0.018 0.107 0.089 0.196-2.25 0.786-4.554 0.786-2 0-3.875-0.571zM28.036 9.411q1.696 3.107 1.696 6.589 0 3.732-1.857 6.884t-4.982 4.973l4.196-12.107q1.054-3.018 1.054-4.929 0-0.75-0.107-1.411zM16 0q3.25 0 6.214 1.268t5.107 3.411 3.411 5.107 1.268 6.214-1.268 6.214-3.411 5.107-5.107 3.411-6.214 1.268-6.214-1.268-5.107-3.411-3.411-5.107-1.268-6.214 1.268-6.214 3.411-5.107 5.107-3.411 6.214-1.268zM16 31.268q3.089 0 5.92-1.214t4.875-3.259 3.259-4.875 1.214-5.92-1.214-5.92-3.259-4.875-4.875-3.259-5.92-1.214-5.92 1.214-4.875 3.259-3.259 4.875-1.214 5.92 1.214 5.92 3.259 4.875 4.875 3.259 5.92 1.214z"></path>
  146. </symbol>
  147. <symbol id="icon-stumbleupon" viewBox="0 0 34 32">
  148. <path class="path1" d="M18.964 12.714v-2.107q0-0.75-0.536-1.286t-1.286-0.536-1.286 0.536-0.536 1.286v10.929q0 3.125-2.25 5.339t-5.411 2.214q-3.179 0-5.42-2.241t-2.241-5.42v-4.75h5.857v4.679q0 0.768 0.536 1.295t1.286 0.527 1.286-0.527 0.536-1.295v-11.071q0-3.054 2.259-5.214t5.384-2.161q3.143 0 5.393 2.179t2.25 5.25v2.429l-3.482 1.036zM28.429 16.679h5.857v4.75q0 3.179-2.241 5.42t-5.42 2.241q-3.161 0-5.411-2.223t-2.25-5.366v-4.786l2.339 1.089 3.482-1.036v4.821q0 0.75 0.536 1.277t1.286 0.527 1.286-0.527 0.536-1.277v-4.911z"></path>
  149. </symbol>
  150. <symbol id="icon-digg" viewBox="0 0 37 32">
  151. <path class="path1" d="M5.857 5.036h3.643v17.554h-9.5v-12.446h5.857v-5.107zM5.857 19.661v-6.589h-2.196v6.589h2.196zM10.964 10.143v12.446h3.661v-12.446h-3.661zM10.964 5.036v3.643h3.661v-3.643h-3.661zM16.089 10.143h9.518v16.821h-9.518v-2.911h5.857v-1.464h-5.857v-12.446zM21.946 19.661v-6.589h-2.196v6.589h2.196zM27.071 10.143h9.5v16.821h-9.5v-2.911h5.839v-1.464h-5.839v-12.446zM32.911 19.661v-6.589h-2.196v6.589h2.196z"></path>
  152. </symbol>
  153. <symbol id="icon-spotify" viewBox="0 0 27 32">
  154. <path class="path1" d="M20.125 21.607q0-0.571-0.536-0.911-3.446-2.054-7.982-2.054-2.375 0-5.125 0.607-0.75 0.161-0.75 0.929 0 0.357 0.241 0.616t0.634 0.259q0.089 0 0.661-0.143 2.357-0.482 4.339-0.482 4.036 0 7.089 1.839 0.339 0.196 0.589 0.196 0.339 0 0.589-0.241t0.25-0.616zM21.839 17.768q0-0.714-0.625-1.089-4.232-2.518-9.786-2.518-2.732 0-5.411 0.75-0.857 0.232-0.857 1.143 0 0.446 0.313 0.759t0.759 0.313q0.125 0 0.661-0.143 2.179-0.589 4.482-0.589 4.982 0 8.714 2.214 0.429 0.232 0.679 0.232 0.446 0 0.759-0.313t0.313-0.759zM23.768 13.339q0-0.839-0.714-1.25-2.25-1.304-5.232-1.973t-6.125-0.67q-3.643 0-6.5 0.839-0.411 0.125-0.688 0.455t-0.277 0.866q0 0.554 0.366 0.929t0.92 0.375q0.196 0 0.714-0.143 2.375-0.661 5.482-0.661 2.839 0 5.527 0.607t4.527 1.696q0.375 0.214 0.714 0.214 0.518 0 0.902-0.366t0.384-0.92zM27.429 16q0 3.732-1.839 6.884t-4.991 4.991-6.884 1.839-6.884-1.839-4.991-4.991-1.839-6.884 1.839-6.884 4.991-4.991 6.884-1.839 6.884 1.839 4.991 4.991 1.839 6.884z"></path>
  155. </symbol>
  156. <symbol id="icon-soundcloud" viewBox="0 0 41 32">
  157. <path class="path1" d="M14 24.5l0.286-4.304-0.286-9.339q-0.018-0.179-0.134-0.304t-0.295-0.125q-0.161 0-0.286 0.125t-0.125 0.304l-0.25 9.339 0.25 4.304q0.018 0.179 0.134 0.295t0.277 0.116q0.393 0 0.429-0.411zM19.286 23.982l0.196-3.768-0.214-10.464q0-0.286-0.232-0.429-0.143-0.089-0.286-0.089t-0.286 0.089q-0.232 0.143-0.232 0.429l-0.018 0.107-0.179 10.339q0 0.018 0.196 4.214v0.018q0 0.179 0.107 0.304 0.161 0.196 0.411 0.196 0.196 0 0.357-0.161 0.161-0.125 0.161-0.357zM0.625 17.911l0.357 2.286-0.357 2.25q-0.036 0.161-0.161 0.161t-0.161-0.161l-0.304-2.25 0.304-2.286q0.036-0.161 0.161-0.161t0.161 0.161zM2.161 16.5l0.464 3.696-0.464 3.625q-0.036 0.161-0.179 0.161-0.161 0-0.161-0.179l-0.411-3.607 0.411-3.696q0-0.161 0.161-0.161 0.143 0 0.179 0.161zM3.804 15.821l0.446 4.375-0.446 4.232q0 0.196-0.196 0.196-0.179 0-0.214-0.196l-0.375-4.232 0.375-4.375q0.036-0.214 0.214-0.214 0.196 0 0.196 0.214zM5.482 15.696l0.411 4.5-0.411 4.357q-0.036 0.232-0.25 0.232-0.232 0-0.232-0.232l-0.375-4.357 0.375-4.5q0-0.232 0.232-0.232 0.214 0 0.25 0.232zM7.161 16.018l0.375 4.179-0.375 4.393q-0.036 0.286-0.286 0.286-0.107 0-0.188-0.080t-0.080-0.205l-0.357-4.393 0.357-4.179q0-0.107 0.080-0.188t0.188-0.080q0.25 0 0.286 0.268zM8.839 13.411l0.375 6.786-0.375 4.393q0 0.125-0.089 0.223t-0.214 0.098q-0.286 0-0.321-0.321l-0.321-4.393 0.321-6.786q0.036-0.321 0.321-0.321 0.125 0 0.214 0.098t0.089 0.223zM10.518 11.875l0.339 8.357-0.339 4.357q0 0.143-0.098 0.241t-0.241 0.098q-0.321 0-0.357-0.339l-0.286-4.357 0.286-8.357q0.036-0.339 0.357-0.339 0.143 0 0.241 0.098t0.098 0.241zM12.268 11.161l0.321 9.036-0.321 4.321q-0.036 0.375-0.393 0.375-0.339 0-0.375-0.375l-0.286-4.321 0.286-9.036q0-0.161 0.116-0.277t0.259-0.116q0.161 0 0.268 0.116t0.125 0.277zM19.268 24.411v0 0zM15.732 11.089l0.268 9.107-0.268 4.268q0 0.179-0.134 0.313t-0.313 0.134-0.304-0.125-0.143-0.321l-0.25-4.268 0.25-9.107q0-0.196 0.134-0.321t0.313-0.125 0.313 0.125 0.134 0.321zM17.5 11.429l0.25 8.786-0.25 4.214q0 0.196-0.143 0.339t-0.339 0.143-0.339-0.143-0.161-0.339l-0.214-4.214 0.214-8.786q0.018-0.214 0.161-0.357t0.339-0.143 0.33 0.143 0.152 0.357zM21.286 20.214l-0.25 4.125q0 0.232-0.161 0.393t-0.393 0.161-0.393-0.161-0.179-0.393l-0.107-2.036-0.107-2.089 0.214-11.357v-0.054q0.036-0.268 0.214-0.429 0.161-0.125 0.357-0.125 0.143 0 0.268 0.089 0.25 0.143 0.286 0.464zM41.143 19.875q0 2.089-1.482 3.563t-3.571 1.473h-14.036q-0.232-0.036-0.393-0.196t-0.161-0.393v-16.054q0-0.411 0.5-0.589 1.518-0.607 3.232-0.607 3.482 0 6.036 2.348t2.857 5.777q0.946-0.393 1.964-0.393 2.089 0 3.571 1.482t1.482 3.589z"></path>
  158. </symbol>
  159. <symbol id="icon-codepen" viewBox="0 0 32 32">
  160. <path class="path1" d="M3.857 20.875l10.768 7.179v-6.411l-5.964-3.982zM2.75 18.304l3.446-2.304-3.446-2.304v4.607zM17.375 28.054l10.768-7.179-4.804-3.214-5.964 3.982v6.411zM16 19.25l4.857-3.25-4.857-3.25-4.857 3.25zM8.661 14.339l5.964-3.982v-6.411l-10.768 7.179zM25.804 16l3.446 2.304v-4.607zM23.339 14.339l4.804-3.214-10.768-7.179v6.411zM32 11.125v9.75q0 0.732-0.607 1.143l-14.625 9.75q-0.375 0.232-0.768 0.232t-0.768-0.232l-14.625-9.75q-0.607-0.411-0.607-1.143v-9.75q0-0.732 0.607-1.143l14.625-9.75q0.375-0.232 0.768-0.232t0.768 0.232l14.625 9.75q0.607 0.411 0.607 1.143z"></path>
  161. </symbol>
  162. <symbol id="icon-twitch" viewBox="0 0 32 32">
  163. <path class="path1" d="M16 7.75v7.75h-2.589v-7.75h2.589zM23.107 7.75v7.75h-2.589v-7.75h2.589zM23.107 21.321l4.518-4.536v-14.196h-21.321v18.732h5.821v3.875l3.875-3.875h7.107zM30.214 0v18.089l-7.75 7.75h-5.821l-3.875 3.875h-3.875v-3.875h-7.107v-20.679l1.946-5.161h26.482z"></path>
  164. </symbol>
  165. <symbol id="icon-meanpath" viewBox="0 0 27 32">
  166. <path class="path1" d="M23.411 15.036v2.036q0 0.429-0.241 0.679t-0.67 0.25h-3.607q-0.429 0-0.679-0.25t-0.25-0.679v-2.036q0-0.429 0.25-0.679t0.679-0.25h3.607q0.429 0 0.67 0.25t0.241 0.679zM14.661 19.143v-4.464q0-0.946-0.58-1.527t-1.527-0.58h-2.375q-1.214 0-1.714 0.929-0.5-0.929-1.714-0.929h-2.321q-0.946 0-1.527 0.58t-0.58 1.527v4.464q0 0.393 0.375 0.393h0.982q0.393 0 0.393-0.393v-4.107q0-0.429 0.241-0.679t0.688-0.25h1.679q0.429 0 0.679 0.25t0.25 0.679v4.107q0 0.393 0.375 0.393h0.964q0.393 0 0.393-0.393v-4.107q0-0.429 0.25-0.679t0.679-0.25h1.732q0.429 0 0.67 0.25t0.241 0.679v4.107q0 0.393 0.393 0.393h0.982q0.375 0 0.375-0.393zM25.179 17.429v-2.75q0-0.946-0.589-1.527t-1.536-0.58h-4.714q-0.946 0-1.536 0.58t-0.589 1.527v7.321q0 0.375 0.393 0.375h0.982q0.375 0 0.375-0.375v-3.214q0.554 0.75 1.679 0.75h3.411q0.946 0 1.536-0.58t0.589-1.527zM27.429 6.429v19.143q0 1.714-1.214 2.929t-2.929 1.214h-19.143q-1.714 0-2.929-1.214t-1.214-2.929v-19.143q0-1.714 1.214-2.929t2.929-1.214h19.143q1.714 0 2.929 1.214t1.214 2.929z"></path>
  167. </symbol>
  168. <symbol id="icon-pinterest-p" viewBox="0 0 23 32">
  169. <path class="path1" d="M0 10.661q0-1.929 0.67-3.634t1.848-2.973 2.714-2.196 3.304-1.393 3.607-0.464q2.821 0 5.25 1.188t3.946 3.455 1.518 5.125q0 1.714-0.339 3.357t-1.071 3.161-1.786 2.67-2.589 1.839-3.375 0.688q-1.214 0-2.411-0.571t-1.714-1.571q-0.179 0.696-0.5 2.009t-0.42 1.696-0.366 1.268-0.464 1.268-0.571 1.116-0.821 1.384-1.107 1.545l-0.25 0.089-0.161-0.179q-0.268-2.804-0.268-3.357 0-1.643 0.384-3.688t1.188-5.134 0.929-3.625q-0.571-1.161-0.571-3.018 0-1.482 0.929-2.786t2.357-1.304q1.089 0 1.696 0.723t0.607 1.83q0 1.179-0.786 3.411t-0.786 3.339q0 1.125 0.804 1.866t1.946 0.741q0.982 0 1.821-0.446t1.402-1.214 1-1.696 0.679-1.973 0.357-1.982 0.116-1.777q0-3.089-1.955-4.813t-5.098-1.723q-3.571 0-5.964 2.313t-2.393 5.866q0 0.786 0.223 1.518t0.482 1.161 0.482 0.813 0.223 0.545q0 0.5-0.268 1.304t-0.661 0.804q-0.036 0-0.304-0.054-0.911-0.268-1.616-1t-1.089-1.688-0.58-1.929-0.196-1.902z"></path>
  170. </symbol>
  171. <symbol id="icon-periscope" viewBox="0 0 24 28">
  172. <path class="path1" d="M12.285,1C6.696,1,2.277,5.643,2.277,11.243c0,5.851,7.77,14.578,10.007,14.578c1.959,0,9.729-8.728,9.729-14.578 C22.015,5.643,17.596,1,12.285,1z M12.317,16.551c-3.473,0-6.152-2.611-6.152-5.664c0-1.292,0.39-2.472,1.065-3.438 c0.206,1.084,1.18,1.906,2.352,1.906c1.322,0,2.393-1.043,2.393-2.333c0-0.832-0.447-1.561-1.119-1.975 c0.467-0.105,0.955-0.161,1.46-0.161c3.133,0,5.81,2.611,5.81,5.998C18.126,13.94,15.449,16.551,12.317,16.551z"></path>
  173. </symbol>
  174. <symbol id="icon-get-pocket" viewBox="0 0 31 32">
  175. <path class="path1" d="M27.946 2.286q1.161 0 1.964 0.813t0.804 1.973v9.268q0 3.143-1.214 6t-3.259 4.911-4.893 3.259-5.973 1.205q-3.143 0-5.991-1.205t-4.902-3.259-3.268-4.911-1.214-6v-9.268q0-1.143 0.821-1.964t1.964-0.821h25.161zM15.375 21.286q0.839 0 1.464-0.589l7.214-6.929q0.661-0.625 0.661-1.518 0-0.875-0.616-1.491t-1.491-0.616q-0.839 0-1.464 0.589l-5.768 5.536-5.768-5.536q-0.625-0.589-1.446-0.589-0.875 0-1.491 0.616t-0.616 1.491q0 0.911 0.643 1.518l7.232 6.929q0.589 0.589 1.446 0.589z"></path>
  176. </symbol>
  177. <symbol id="icon-vimeo" viewBox="0 0 32 32">
  178. <path class="path1" d="M30.518 9.25q-0.179 4.214-5.929 11.625-5.946 7.696-10.036 7.696-2.536 0-4.286-4.696-0.786-2.857-2.357-8.607-1.286-4.679-2.804-4.679-0.321 0-2.268 1.357l-1.375-1.75q0.429-0.375 1.929-1.723t2.321-2.063q2.786-2.464 4.304-2.607 1.696-0.161 2.732 0.991t1.446 3.634q0.786 5.125 1.179 6.661 0.982 4.446 2.143 4.446 0.911 0 2.75-2.875 1.804-2.875 1.946-4.393 0.232-2.482-1.946-2.482-1.018 0-2.161 0.464 2.143-7.018 8.196-6.821 4.482 0.143 4.214 5.821z"></path>
  179. </symbol>
  180. <symbol id="icon-reddit-alien" viewBox="0 0 32 32">
  181. <path class="path1" d="M32 15.107q0 1.036-0.527 1.884t-1.42 1.295q0.214 0.821 0.214 1.714 0 2.768-1.902 5.125t-5.188 3.723-7.143 1.366-7.134-1.366-5.179-3.723-1.902-5.125q0-0.839 0.196-1.679-0.911-0.446-1.464-1.313t-0.554-1.902q0-1.464 1.036-2.509t2.518-1.045q1.518 0 2.589 1.125 3.893-2.714 9.196-2.893l2.071-9.304q0.054-0.232 0.268-0.375t0.464-0.089l6.589 1.446q0.321-0.661 0.964-1.063t1.411-0.402q1.107 0 1.893 0.777t0.786 1.884-0.786 1.893-1.893 0.786-1.884-0.777-0.777-1.884l-5.964-1.321-1.857 8.429q5.357 0.161 9.268 2.857 1.036-1.089 2.554-1.089 1.482 0 2.518 1.045t1.036 2.509zM7.464 18.661q0 1.107 0.777 1.893t1.884 0.786 1.893-0.786 0.786-1.893-0.786-1.884-1.893-0.777q-1.089 0-1.875 0.786t-0.786 1.875zM21.929 25q0.196-0.196 0.196-0.464t-0.196-0.464q-0.179-0.179-0.446-0.179t-0.464 0.179q-0.732 0.75-2.161 1.107t-2.857 0.357-2.857-0.357-2.161-1.107q-0.196-0.179-0.464-0.179t-0.446 0.179q-0.196 0.179-0.196 0.455t0.196 0.473q0.768 0.768 2.116 1.214t2.188 0.527 1.625 0.080 1.625-0.080 2.188-0.527 2.116-1.214zM21.875 21.339q1.107 0 1.884-0.786t0.777-1.893q0-1.089-0.786-1.875t-1.875-0.786q-1.107 0-1.893 0.777t-0.786 1.884 0.786 1.893 1.893 0.786z"></path>
  182. </symbol>
  183. <symbol id="icon-hashtag" viewBox="0 0 32 32">
  184. <path class="path1" d="M17.696 18.286l1.143-4.571h-4.536l-1.143 4.571h4.536zM31.411 9.286l-1 4q-0.125 0.429-0.554 0.429h-5.839l-1.143 4.571h5.554q0.268 0 0.446 0.214 0.179 0.25 0.107 0.5l-1 4q-0.089 0.429-0.554 0.429h-5.839l-1.446 5.857q-0.125 0.429-0.554 0.429h-4q-0.286 0-0.464-0.214-0.161-0.214-0.107-0.5l1.393-5.571h-4.536l-1.446 5.857q-0.125 0.429-0.554 0.429h-4.018q-0.268 0-0.446-0.214-0.161-0.214-0.107-0.5l1.393-5.571h-5.554q-0.268 0-0.446-0.214-0.161-0.214-0.107-0.5l1-4q0.125-0.429 0.554-0.429h5.839l1.143-4.571h-5.554q-0.268 0-0.446-0.214-0.179-0.25-0.107-0.5l1-4q0.089-0.429 0.554-0.429h5.839l1.446-5.857q0.125-0.429 0.571-0.429h4q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5l-1.393 5.571h4.536l1.446-5.857q0.125-0.429 0.571-0.429h4q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5l-1.393 5.571h5.554q0.268 0 0.446 0.214 0.161 0.214 0.107 0.5z"></path>
  185. </symbol>
  186. <symbol id="icon-chain" viewBox="0 0 30 32">
  187. <path class="path1" d="M26 21.714q0-0.714-0.5-1.214l-3.714-3.714q-0.5-0.5-1.214-0.5-0.75 0-1.286 0.571 0.054 0.054 0.339 0.33t0.384 0.384 0.268 0.339 0.232 0.455 0.063 0.491q0 0.714-0.5 1.214t-1.214 0.5q-0.268 0-0.491-0.063t-0.455-0.232-0.339-0.268-0.384-0.384-0.33-0.339q-0.589 0.554-0.589 1.304 0 0.714 0.5 1.214l3.679 3.696q0.482 0.482 1.214 0.482 0.714 0 1.214-0.464l2.625-2.607q0.5-0.5 0.5-1.196zM13.446 9.125q0-0.714-0.5-1.214l-3.679-3.696q-0.5-0.5-1.214-0.5-0.696 0-1.214 0.482l-2.625 2.607q-0.5 0.5-0.5 1.196 0 0.714 0.5 1.214l3.714 3.714q0.482 0.482 1.214 0.482 0.75 0 1.286-0.554-0.054-0.054-0.339-0.33t-0.384-0.384-0.268-0.339-0.232-0.455-0.063-0.491q0-0.714 0.5-1.214t1.214-0.5q0.268 0 0.491 0.063t0.455 0.232 0.339 0.268 0.384 0.384 0.33 0.339q0.589-0.554 0.589-1.304zM29.429 21.714q0 2.143-1.518 3.625l-2.625 2.607q-1.482 1.482-3.625 1.482-2.161 0-3.643-1.518l-3.679-3.696q-1.482-1.482-1.482-3.625 0-2.196 1.571-3.732l-1.571-1.571q-1.536 1.571-3.714 1.571-2.143 0-3.643-1.5l-3.714-3.714q-1.5-1.5-1.5-3.643t1.518-3.625l2.625-2.607q1.482-1.482 3.625-1.482 2.161 0 3.643 1.518l3.679 3.696q1.482 1.482 1.482 3.625 0 2.196-1.571 3.732l1.571 1.571q1.536-1.571 3.714-1.571 2.143 0 3.643 1.5l3.714 3.714q1.5 1.5 1.5 3.643z"></path>
  188. </symbol>
  189. <symbol id="icon-thumb-tack" viewBox="0 0 21 32">
  190. <path class="path1" d="M8.571 15.429v-8q0-0.25-0.161-0.411t-0.411-0.161-0.411 0.161-0.161 0.411v8q0 0.25 0.161 0.411t0.411 0.161 0.411-0.161 0.161-0.411zM20.571 21.714q0 0.464-0.339 0.804t-0.804 0.339h-7.661l-0.911 8.625q-0.036 0.214-0.188 0.366t-0.366 0.152h-0.018q-0.482 0-0.571-0.482l-1.357-8.661h-7.214q-0.464 0-0.804-0.339t-0.339-0.804q0-2.196 1.402-3.955t3.17-1.759v-9.143q-0.929 0-1.607-0.679t-0.679-1.607 0.679-1.607 1.607-0.679h11.429q0.929 0 1.607 0.679t0.679 1.607-0.679 1.607-1.607 0.679v9.143q1.768 0 3.17 1.759t1.402 3.955z"></path>
  191. </symbol>
  192. <symbol id="icon-arrow-left" viewBox="0 0 43 32">
  193. <path class="path1" d="M42.311 14.044c-0.178-0.178-0.533-0.356-0.711-0.356h-33.778l10.311-10.489c0.178-0.178 0.356-0.533 0.356-0.711 0-0.356-0.178-0.533-0.356-0.711l-1.6-1.422c-0.356-0.178-0.533-0.356-0.889-0.356s-0.533 0.178-0.711 0.356l-14.578 14.933c-0.178 0.178-0.356 0.533-0.356 0.711s0.178 0.533 0.356 0.711l14.756 14.933c0 0.178 0.356 0.356 0.533 0.356s0.533-0.178 0.711-0.356l1.6-1.6c0.178-0.178 0.356-0.533 0.356-0.711s-0.178-0.533-0.356-0.711l-10.311-10.489h33.778c0.178 0 0.533-0.178 0.711-0.356 0.356-0.178 0.533-0.356 0.533-0.711v-2.133c0-0.356-0.178-0.711-0.356-0.889z"></path>
  194. </symbol>
  195. <symbol id="icon-arrow-right" viewBox="0 0 43 32">
  196. <path class="path1" d="M0.356 17.956c0.178 0.178 0.533 0.356 0.711 0.356h33.778l-10.311 10.489c-0.178 0.178-0.356 0.533-0.356 0.711 0 0.356 0.178 0.533 0.356 0.711l1.6 1.6c0.178 0.178 0.533 0.356 0.711 0.356s0.533-0.178 0.711-0.356l14.756-14.933c0.178-0.356 0.356-0.711 0.356-0.889s-0.178-0.533-0.356-0.711l-14.756-14.933c0-0.178-0.356-0.356-0.533-0.356s-0.533 0.178-0.711 0.356l-1.6 1.6c-0.178 0.178-0.356 0.533-0.356 0.711s0.178 0.533 0.356 0.711l10.311 10.489h-33.778c-0.178 0-0.533 0.178-0.711 0.356-0.356 0.178-0.533 0.356-0.533 0.711v2.311c0 0.178 0.178 0.533 0.356 0.711z"></path>
  197. </symbol>
  198. <symbol id="icon-play" viewBox="0 0 22 28">
  199. <path d="M21.625 14.484l-20.75 11.531c-0.484 0.266-0.875 0.031-0.875-0.516v-23c0-0.547 0.391-0.781 0.875-0.516l20.75 11.531c0.484 0.266 0.484 0.703 0 0.969z"></path>
  200. </symbol>
  201. <symbol id="icon-pause" viewBox="0 0 24 28">
  202. <path d="M24 3v22c0 0.547-0.453 1-1 1h-8c-0.547 0-1-0.453-1-1v-22c0-0.547 0.453-1 1-1h8c0.547 0 1 0.453 1 1zM10 3v22c0 0.547-0.453 1-1 1h-8c-0.547 0-1-0.453-1-1v-22c0-0.547 0.453-1 1-1h8c0.547 0 1 0.453 1 1z"></path>
  203. </symbol>
  204. </defs>
  205. </svg> <script data-no-optimize="1">!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?module.exports=e():"function"==typeof define&&define.amd?define(e):(t="undefined"!=typeof globalThis?globalThis:t||self).LazyLoad=e()}(this,function(){"use strict";function e(){return(e=Object.assign||function(t){for(var e=1;e<arguments.length;e++){var n,a=arguments[e];for(n in a)Object.prototype.hasOwnProperty.call(a,n)&&(t[n]=a[n])}return t}).apply(this,arguments)}function i(t){return e({},it,t)}function o(t,e){var n,a="LazyLoad::Initialized",i=new t(e);try{n=new CustomEvent(a,{detail:{instance:i}})}catch(t){(n=document.createEvent("CustomEvent")).initCustomEvent(a,!1,!1,{instance:i})}window.dispatchEvent(n)}function l(t,e){return t.getAttribute(gt+e)}function c(t){return l(t,bt)}function s(t,e){return function(t,e,n){e=gt+e;null!==n?t.setAttribute(e,n):t.removeAttribute(e)}(t,bt,e)}function r(t){return s(t,null),0}function u(t){return null===c(t)}function d(t){return c(t)===vt}function f(t,e,n,a){t&&(void 0===a?void 0===n?t(e):t(e,n):t(e,n,a))}function _(t,e){nt?t.classList.add(e):t.className+=(t.className?" ":"")+e}function v(t,e){nt?t.classList.remove(e):t.className=t.className.replace(new RegExp("(^|\\s+)"+e+"(\\s+|$)")," ").replace(/^\s+/,"").replace(/\s+$/,"")}function g(t){return t.llTempImage}function b(t,e){!e||(e=e._observer)&&e.unobserve(t)}function p(t,e){t&&(t.loadingCount+=e)}function h(t,e){t&&(t.toLoadCount=e)}function n(t){for(var e,n=[],a=0;e=t.children[a];a+=1)"SOURCE"===e.tagName&&n.push(e);return n}function m(t,e){(t=t.parentNode)&&"PICTURE"===t.tagName&&n(t).forEach(e)}function a(t,e){n(t).forEach(e)}function E(t){return!!t[st]}function I(t){return t[st]}function y(t){return delete t[st]}function A(e,t){var n;E(e)||(n={},t.forEach(function(t){n[t]=e.getAttribute(t)}),e[st]=n)}function k(a,t){var i;E(a)&&(i=I(a),t.forEach(function(t){var e,n;e=a,(t=i[n=t])?e.setAttribute(n,t):e.removeAttribute(n)}))}function L(t,e,n){_(t,e.class_loading),s(t,ut),n&&(p(n,1),f(e.callback_loading,t,n))}function w(t,e,n){n&&t.setAttribute(e,n)}function x(t,e){w(t,ct,l(t,e.data_sizes)),w(t,rt,l(t,e.data_srcset)),w(t,ot,l(t,e.data_src))}function O(t,e,n){var a=l(t,e.data_bg_multi),i=l(t,e.data_bg_multi_hidpi);(a=at&&i?i:a)&&(t.style.backgroundImage=a,n=n,_(t=t,(e=e).class_applied),s(t,ft),n&&(e.unobserve_completed&&b(t,e),f(e.callback_applied,t,n)))}function N(t,e){!e||0<e.loadingCount||0<e.toLoadCount||f(t.callback_finish,e)}function C(t,e,n){t.addEventListener(e,n),t.llEvLisnrs[e]=n}function M(t){return!!t.llEvLisnrs}function z(t){if(M(t)){var e,n,a=t.llEvLisnrs;for(e in a){var i=a[e];n=e,i=i,t.removeEventListener(n,i)}delete t.llEvLisnrs}}function R(t,e,n){var a;delete t.llTempImage,p(n,-1),(a=n)&&--a.toLoadCount,v(t,e.class_loading),e.unobserve_completed&&b(t,n)}function T(o,r,c){var l=g(o)||o;M(l)||function(t,e,n){M(t)||(t.llEvLisnrs={});var a="VIDEO"===t.tagName?"loadeddata":"load";C(t,a,e),C(t,"error",n)}(l,function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_loaded),s(e,dt),f(n.callback_loaded,e,a),i||N(n,a),z(l)},function(t){var e,n,a,i;n=r,a=c,i=d(e=o),R(e,n,a),_(e,n.class_error),s(e,_t),f(n.callback_error,e,a),i||N(n,a),z(l)})}function G(t,e,n){var a,i,o,r,c;t.llTempImage=document.createElement("IMG"),T(t,e,n),E(c=t)||(c[st]={backgroundImage:c.style.backgroundImage}),o=n,r=l(a=t,(i=e).data_bg),c=l(a,i.data_bg_hidpi),(r=at&&c?c:r)&&(a.style.backgroundImage='url("'.concat(r,'")'),g(a).setAttribute(ot,r),L(a,i,o)),O(t,e,n)}function D(t,e,n){var a;T(t,e,n),a=e,e=n,(t=It[(n=t).tagName])&&(t(n,a),L(n,a,e))}function V(t,e,n){var a;a=t,(-1<yt.indexOf(a.tagName)?D:G)(t,e,n)}function F(t,e,n){var a;t.setAttribute("loading","lazy"),T(t,e,n),a=e,(e=It[(n=t).tagName])&&e(n,a),s(t,vt)}function j(t){t.removeAttribute(ot),t.removeAttribute(rt),t.removeAttribute(ct)}function P(t){m(t,function(t){k(t,Et)}),k(t,Et)}function S(t){var e;(e=At[t.tagName])?e(t):E(e=t)&&(t=I(e),e.style.backgroundImage=t.backgroundImage)}function U(t,e){var n;S(t),n=e,u(e=t)||d(e)||(v(e,n.class_entered),v(e,n.class_exited),v(e,n.class_applied),v(e,n.class_loading),v(e,n.class_loaded),v(e,n.class_error)),r(t),y(t)}function $(t,e,n,a){var i;n.cancel_on_exit&&(c(t)!==ut||"IMG"===t.tagName&&(z(t),m(i=t,function(t){j(t)}),j(i),P(t),v(t,n.class_loading),p(a,-1),r(t),f(n.callback_cancel,t,e,a)))}function q(t,e,n,a){var i,o,r=(o=t,0<=pt.indexOf(c(o)));s(t,"entered"),_(t,n.class_entered),v(t,n.class_exited),i=t,o=a,n.unobserve_entered&&b(i,o),f(n.callback_enter,t,e,a),r||V(t,n,a)}function H(t){return t.use_native&&"loading"in HTMLImageElement.prototype}function B(t,i,o){t.forEach(function(t){return(a=t).isIntersecting||0<a.intersectionRatio?q(t.target,t,i,o):(e=t.target,n=t,a=i,t=o,void(u(e)||(_(e,a.class_exited),$(e,n,a,t),f(a.callback_exit,e,n,t))));var e,n,a})}function J(e,n){var t;et&&!H(e)&&(n._observer=new IntersectionObserver(function(t){B(t,e,n)},{root:(t=e).container===document?null:t.container,rootMargin:t.thresholds||t.threshold+"px"}))}function K(t){return Array.prototype.slice.call(t)}function Q(t){return t.container.querySelectorAll(t.elements_selector)}function W(t){return c(t)===_t}function X(t,e){return e=t||Q(e),K(e).filter(u)}function Y(e,t){var n;(n=Q(e),K(n).filter(W)).forEach(function(t){v(t,e.class_error),r(t)}),t.update()}function t(t,e){var n,a,t=i(t);this._settings=t,this.loadingCount=0,J(t,this),n=t,a=this,Z&&window.addEventListener("online",function(){Y(n,a)}),this.update(e)}var Z="undefined"!=typeof window,tt=Z&&!("onscroll"in window)||"undefined"!=typeof navigator&&/(gle|ing|ro)bot|crawl|spider/i.test(navigator.userAgent),et=Z&&"IntersectionObserver"in window,nt=Z&&"classList"in document.createElement("p"),at=Z&&1<window.devicePixelRatio,it={elements_selector:".lazy",container:tt||Z?document:null,threshold:300,thresholds:null,data_src:"src",data_srcset:"srcset",data_sizes:"sizes",data_bg:"bg",data_bg_hidpi:"bg-hidpi",data_bg_multi:"bg-multi",data_bg_multi_hidpi:"bg-multi-hidpi",data_poster:"poster",class_applied:"applied",class_loading:"litespeed-loading",class_loaded:"litespeed-loaded",class_error:"error",class_entered:"entered",class_exited:"exited",unobserve_completed:!0,unobserve_entered:!1,cancel_on_exit:!0,callback_enter:null,callback_exit:null,callback_applied:null,callback_loading:null,callback_loaded:null,callback_error:null,callback_finish:null,callback_cancel:null,use_native:!1},ot="src",rt="srcset",ct="sizes",lt="poster",st="llOriginalAttrs",ut="loading",dt="loaded",ft="applied",_t="error",vt="native",gt="data-",bt="ll-status",pt=[ut,dt,ft,_t],ht=[ot],mt=[ot,lt],Et=[ot,rt,ct],It={IMG:function(t,e){m(t,function(t){A(t,Et),x(t,e)}),A(t,Et),x(t,e)},IFRAME:function(t,e){A(t,ht),w(t,ot,l(t,e.data_src))},VIDEO:function(t,e){a(t,function(t){A(t,ht),w(t,ot,l(t,e.data_src))}),A(t,mt),w(t,lt,l(t,e.data_poster)),w(t,ot,l(t,e.data_src)),t.load()}},yt=["IMG","IFRAME","VIDEO"],At={IMG:P,IFRAME:function(t){k(t,ht)},VIDEO:function(t){a(t,function(t){k(t,ht)}),k(t,mt),t.load()}},kt=["IMG","IFRAME","VIDEO"];return t.prototype={update:function(t){var e,n,a,i=this._settings,o=X(t,i);{if(h(this,o.length),!tt&&et)return H(i)?(e=i,n=this,o.forEach(function(t){-1!==kt.indexOf(t.tagName)&&F(t,e,n)}),void h(n,0)):(t=this._observer,i=o,t.disconnect(),a=t,void i.forEach(function(t){a.observe(t)}));this.loadAll(o)}},destroy:function(){this._observer&&this._observer.disconnect(),Q(this._settings).forEach(function(t){y(t)}),delete this._observer,delete this._settings,delete this.loadingCount,delete this.toLoadCount},loadAll:function(t){var e=this,n=this._settings;X(t,n).forEach(function(t){b(t,e),V(t,n,e)})},restoreAll:function(){var e=this._settings;Q(e).forEach(function(t){U(t,e)})}},t.load=function(t,e){e=i(e);V(t,e)},t.resetStatus=function(t){r(t)},Z&&function(t,e){if(e)if(e.length)for(var n,a=0;n=e[a];a+=1)o(t,n);else o(t,e)}(t,window.lazyLoadOptions),t});!function(e,t){"use strict";function a(){t.body.classList.add("litespeed_lazyloaded")}function n(){console.log("[LiteSpeed] Start Lazy Load Images"),d=new LazyLoad({elements_selector:"[data-lazyloaded]",callback_finish:a}),o=function(){d.update()},e.MutationObserver&&new MutationObserver(o).observe(t.documentElement,{childList:!0,subtree:!0,attributes:!0})}var d,o;e.addEventListener?e.addEventListener("load",n,!1):e.attachEvent("onload",n)}(window,document);</script><script data-optimized="1" src="https://www.ssla.co.uk/wp-content/litespeed/js/3c964979c72c543a0d2eb2ab24ba2419.js?ver=34820" defer></script></body></html>
  206. <!-- Page optimized by LiteSpeed Cache @2025-05-09 23:22:02 -->
  207.  
  208. <!-- Page cached by LiteSpeed Cache 7.1 on 2025-05-09 23:22:01 -->
Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda