Congratulations!

[Valid RSS] This is a valid RSS feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: https://www.soest.hawaii.edu/soestwp/feed/

  1. <?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
  2. xmlns:content="http://purl.org/rss/1.0/modules/content/"
  3. xmlns:wfw="http://wellformedweb.org/CommentAPI/"
  4. xmlns:dc="http://purl.org/dc/elements/1.1/"
  5. xmlns:atom="http://www.w3.org/2005/Atom"
  6. xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
  7. xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
  8. >
  9.  
  10. <channel>
  11. <title>SOEST</title>
  12. <atom:link href="https://www.soest.hawaii.edu/soestwp/feed/" rel="self" type="application/rss+xml" />
  13. <link>https://www.soest.hawaii.edu/soestwp</link>
  14. <description>School of Ocean and Earth Science and Technology</description>
  15. <lastBuildDate>Wed, 28 Feb 2024 01:45:06 +0000</lastBuildDate>
  16. <language>en-US</language>
  17. <sy:updatePeriod>
  18. hourly </sy:updatePeriod>
  19. <sy:updateFrequency>
  20. 1 </sy:updateFrequency>
  21. <generator>https://wordpress.org/?v=6.4.3</generator>
  22. <item>
  23. <title>More chances to win prizes by catching tagged pāpio</title>
  24. <link>https://www.soest.hawaii.edu/soestwp/announce/news/more-chances-prizes-catching-tagged-papio/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=more-chances-prizes-catching-tagged-papio</link>
  25. <dc:creator><![CDATA[Marcie Grabowski]]></dc:creator>
  26. <pubDate>Wed, 28 Feb 2024 01:41:18 +0000</pubDate>
  27. <category><![CDATA[News]]></category>
  28. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38390</guid>
  29.  
  30. <description><![CDATA[About 60 specially raised pāpio (juvenile ulua, or giant trevally) were tagged and released into Maui’s&#160;Maʻalaea&#160;Harbor by University of&#160;Hawaiʻi&#160;at Mānoa researchers in February. The scientists want to demonstrate that raising and releasing pāpio can offset fishing pressure and help rebalance the composition of the local reef fish populations. Putting more fish into the ocean also [&#8230;]]]></description>
  31. <content:encoded><![CDATA[
  32. <p>About 60 specially raised pāpio (juvenile ulua, or giant trevally) were tagged and released into Maui’s&nbsp;Maʻalaea&nbsp;Harbor by University of&nbsp;Hawaiʻi&nbsp;at Mānoa researchers in February. The scientists want to demonstrate that raising and releasing pāpio can offset fishing pressure and help rebalance the composition of the local reef fish populations. Putting more fish into the ocean also benefits communities by providing increased access to locally produced, sustainable seafood.</p>
  33.  
  34.  
  35.  
  36. <p>“Due to the great partnership between&nbsp;<a href="https://www.himb.hawaii.edu/">Hawaiʻi&nbsp;Institute of Marine Biology</a>&nbsp;(HIMB), Maui Ocean Center and Oceanic Institute, we had a very successful tag and release of pāpio on Maui. These collaborations are critical to grow aquaculture within&nbsp;Hawaiʻi&nbsp;for stock enhancement, food production and ecosystem restoration,” said&nbsp;HIMB&nbsp;Associate Research Professor Erik Franklin.</p>
  37.  
  38.  
  39.  
  40. <p>Each tag is labeled with a unique fish identification number and a note with instructions to call and report the date, length, weight, and general capture location of the fish (no need to reveal your secret spots!).</p>
  41.  
  42.  
  43.  
  44. <p>Nanko Fishing Supply is supporting the project with a raffle and prizes for participating fishermen at the end of the recapture period, approximately one year after the release date. The release was part of a research project for Spencer Davis, a PhD student at&nbsp;UH&nbsp;Mānoa’s&nbsp;HIMB.</p>
  45.  
  46.  
  47.  
  48. <h2 class="wp-block-heading">Oʻahu&nbsp;pāpio recaptured</h2>
  49.  
  50.  
  51.  
  52. <p>In an earlier phase of the project,&nbsp;<a href="https://www.hawaii.edu/news/2023/10/19/released-papio-himb/">about 150 tagged pāpio were released at four different locations around&nbsp;Oʻahu</a>&nbsp;in October: Waikīkī Aquarium,&nbsp;Kāneʻohe&nbsp;Bay, Pūpūkea Marine Life Conservation District and&nbsp;Pōkaʻī&nbsp;Bay. Davis received 21 voluntary recapture reports from fishers from October through December—about a 14% recapture rate. The recaptured fish were from all four&nbsp;Oʻahu&nbsp;release sites.</p>
  53.  
  54.  
  55.  
  56. <p>“One valuable insight we learned from this experience is that these fish almost immediately joined the fishery and became available for fishers to catch. Another valuable insight is that we found some of these fish had traveled as far as eight miles from the release point before being recaptured,” said Davis.</p>
  57.  
  58.  
  59.  
  60. <p>The pāpio released on Maui and&nbsp;Oʻahu&nbsp;were raised from eggs collected at the Maui Ocean Center. Franklin,&nbsp;HIMB&nbsp;Research Technician Meredith Pfennig, and&nbsp;UH&nbsp;Mānoa students Leon Tran and Maya Olin all worked on the project. The work was supported by the John and Susan Chun Fund on recreational fisheries research provided to Franklin at&nbsp;HIMB.</p>
  61.  
  62.  
  63.  
  64. <p>Davis said, “I personally am overjoyed that fishers are voluntarily reporting this recapture data, and that we’ve been successful in adding more fish to the fishery to end up on local dinner plates. All reports have said these fish taste great!”</p>
  65.  
  66.  
  67.  
  68. <p>If you support this initiative and want to see more similar projects, please contact Davis at <a href="mailto:sbdavis@hawaii.edu">sbdavis@hawaii.edu</a> or (808) 699-9991 to <a href="https://forms.gle/WijSDKs7dbtLAop16">receive a brief survey</a> to indicate your interest.</p>
  69.  
  70.  
  71.  
  72. <p>Read also on <a href="https://www.hawaii.edu/news/2024/02/27/more-chances-win-prizes-catch-papio/">UH News</a>.</p>
  73. ]]></content:encoded>
  74. </item>
  75. <item>
  76. <title>SOEST Student Academic Services Weekly Newsletter: February 27, 2024</title>
  77. <link>https://www.soest.hawaii.edu/soestwp/announce/announcements/soest-student-academic-services-weekly-newsletter-february-27-2024/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=soest-student-academic-services-weekly-newsletter-february-27-2024</link>
  78. <dc:creator><![CDATA[Marcie Grabowski]]></dc:creator>
  79. <pubDate>Wed, 28 Feb 2024 01:09:19 +0000</pubDate>
  80. <category><![CDATA[Announcement]]></category>
  81. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38388</guid>
  82.  
  83. <description><![CDATA[Announcements 2nd Annual Alice Ball Remembrance WalkRSVP here! SOEST Essentials Drive 2/12-3/1Have extra school supplies or toiletries? Drop them off at HIG 131B! Opportunities UH Mānoa Peer AdvisorsApply here by March 1st Undergraduate Research Opportunities ProgramLearn more about UROP as a resource here Obama Foundation: Voyage ScholarshipApply by March 27, 2024 Click here to see [&#8230;]]]></description>
  84. <content:encoded><![CDATA[
  85. <h2 class="wp-block-heading"><strong>Announcements</strong></h2>
  86.  
  87.  
  88.  
  89. <p><a href="https://www.instagram.com/p/C3q5SA8PfXH">2nd Annual Alice Ball Remembrance Walk</a><br>RSVP <a href="https://docs.google.com/forms/d/e/1FAIpQLSeNBTCngg2m2S3JKG1zCs4Gzhpj0TC7dbmsVy5DPo1l7hshyw/viewform">here</a>!</p>
  90.  
  91.  
  92.  
  93. <figure class="wp-block-image"><img decoding="async" src="https://lh7-us.googleusercontent.com/VniSHGlbOBQu88wJ3OME4PIn-1VKhOw-EhpFZZOEr3oD4JiU3zOdLvpwZFxUPyKkHrOC2i50jg_rI8vKsJPGI8nyoTduWc3Khphdx8tngLdB9Obi9ws5MywJB6Pu-ERS9obuFNamXkJhsLP3888h0_c" alt=""/></figure>
  94.  
  95.  
  96.  
  97. <p><a href="https://drive.google.com/file/d/1cc6RgFgVW7uUr109dVZAVNW0RTOa9-Qm/view?usp=sharing">SOEST Essentials Drive 2/12-3/1</a><br>Have extra school supplies or toiletries? Drop them off at HIG 131B!</p>
  98.  
  99.  
  100.  
  101. <figure class="wp-block-image"><img decoding="async" src="https://lh7-us.googleusercontent.com/C76Z7R8R8Af7z6CJOtmxl6g3Ot1-_FbtrKYQx3ZPVndj_N5p71HETpMyvcf3LqA7OdDG_8k1RnfXdM0VA8BssGZQh4oJDEISfmetKL9R3BLBkqVBXOrttKFp-aAXPSX2sZEbxzxoqvu5AlhFp2d5roM" alt=""/></figure>
  102.  
  103.  
  104.  
  105. <h2 class="wp-block-heading"><strong>Opportunities</strong></h2>
  106.  
  107.  
  108.  
  109. <p><a href="https://urldefense.com/v3/__https://www.youtube.com/watch?v=Mi4cz4GNjUg&amp;feature=emb_logo__;!!PvDODwlR4mBZyAb0!UlwVZZcMRfx3r2TD_hlJN-o36IZSzszHfZ_Al24H8ghodZqQ5aSql2I2_otjsPjG1UOOjKQ6o2GjPU1T6THn$">UH Mānoa Peer Advisors</a><br>Apply <a href="https://docs.google.com/forms/d/e/1FAIpQLSf8FMJ6kyi2f694eg4OWnFhyUiWwsDlPeqCy1ZhowjZUW-5xQ/viewform">here</a> by March 1st</p>
  110.  
  111.  
  112.  
  113. <figure class="wp-block-image"><img decoding="async" src="https://lh7-us.googleusercontent.com/v1fSMDA0FX6zqTtKVNX0tIkLvr3xMA2RZl5Rn4R9L6blM0Pysy_uvte5xJRxztLXO544DzOSamMppJWTn-w_NPjqtQmnPLKNnbBWSztpG8Oui6-l2PGunHyUbc24XU7a4JQoryGlxlxSF_-FI4a7UJA" alt=""/></figure>
  114.  
  115.  
  116.  
  117. <p><a href="https://manoa.hawaii.edu/undergrad/urop/">Undergraduate Research Opportunities Program</a><br>Learn more about UROP as a resource <a href="https://manoa.hawaii.edu/undergrad/urop/get-started-on-research-and-creative-works/programs-and-resources/">here</a></p>
  118.  
  119.  
  120.  
  121. <figure class="wp-block-image"><img decoding="async" src="https://lh7-us.googleusercontent.com/M6puevVs9ekUYuewrxuXs295-B3lxdPTtDVtxgrw9zy_HnOY_lz_9IqREPFQ3uwpczyNYU7mrCnyzSkkZY7w89NiPl7LJjN5eUIkK1VfvOMYlUKXaYoEC2HZKaG-jKHeWdOoze7SgmbowWxgkdH7xOw" alt=""/></figure>
  122.  
  123.  
  124.  
  125. <p><a href="https://www.obama.org/programs/voyager-scholarship/#how-to-apply">Obama Foundation: Voyage Scholarship</a><br>Apply by <strong>March 27, 2024</strong></p>
  126.  
  127.  
  128.  
  129. <figure class="wp-block-image"><img decoding="async" src="https://lh7-us.googleusercontent.com/wdADRubjUdasdduEucqpkfyZbhh5T9Tf-Q6DAMZ9PD_YCvdiG7l0zYtEX5wryNdvY3NRVkoUD2SvpaWuoaBrsuDn5eC83lIE_TGMZ3aGylNQIiJeALlrqNpUIN2hicx8uqH0zVPLSDNiYRh6Ap4dQFk" alt=""/></figure>
  130.  
  131.  
  132.  
  133. <p><a href="https://drive.google.com/drive/folders/1SwNimV44SynanOXZ7-5P_KIPbiWrgkI5?usp=sharing">Click here to see past SAS Weekly Emails!</a></p>
  134. ]]></content:encoded>
  135. </item>
  136. <item>
  137. <title>Oceanography Seminar</title>
  138. <link>https://www.soest.hawaii.edu/soestwp/announce/events/oceanography-seminar-147/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=oceanography-seminar-147</link>
  139. <dc:creator><![CDATA[May Izumi]]></dc:creator>
  140. <pubDate>Mon, 26 Feb 2024 17:05:00 +0000</pubDate>
  141. <category><![CDATA[Event]]></category>
  142. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38376</guid>
  143.  
  144. <description><![CDATA[Presenter:&#160;&#160;Shoichiro Kido, Researcher, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan Title: &#160;Multiyear Prediction of Ocean Mesoscale Eddy Activity in the Global Ocean with Eddy-Resolving Ocean General Circulation Models]]></description>
  145. <content:encoded><![CDATA[
  146. <p>Presenter:&nbsp;&nbsp;<strong>Shoichiro Kido</strong>, Researcher, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan</p>
  147.  
  148.  
  149.  
  150. <p>Title: &nbsp;<em>Multiyear Prediction of Ocean Mesoscale Eddy Activity in the Global Ocean with Eddy-Resolving Ocean General Circulation Models</em></p>
  151. ]]></content:encoded>
  152. </item>
  153. <item>
  154. <title>Ocean and Resources Engineering and Atmospheric Sciences Joint Seminar</title>
  155. <link>https://www.soest.hawaii.edu/soestwp/announce/events/ocean-and-resources-engineering-and-atmospheric-sciences-joint-seminar-2/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=ocean-and-resources-engineering-and-atmospheric-sciences-joint-seminar-2</link>
  156. <dc:creator><![CDATA[May Izumi]]></dc:creator>
  157. <pubDate>Mon, 26 Feb 2024 17:02:00 +0000</pubDate>
  158. <category><![CDATA[Event]]></category>
  159. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38374</guid>
  160.  
  161. <description><![CDATA[Presenter: &#160;Tianlu Wang, Asst. Professor, UHM Dept. of Mechanical Engineering Title: &#160;Miniature Soft Robotic Systems Towards Complex Fluidic Environments Zoom Link: https://hawaii.zoom.us/j/95081858686Meeting ID: 950 8185 8686Passcode: OREseminarSeminar Website Link: https://www.soest.hawaii.edu/ore/event/seminar_240228/]]></description>
  162. <content:encoded><![CDATA[
  163. <p>Presenter: &nbsp;<strong>Tianlu Wang</strong>, Asst. Professor, UHM Dept. of Mechanical Engineering</p>
  164.  
  165.  
  166.  
  167. <p>Title: &nbsp;<em>Miniature Soft Robotic Systems Towards Complex Fluidic Environments</em></p>
  168.  
  169.  
  170.  
  171. <p>Zoom Link: <a href="https://www.google.com/url?q=https://hawaii.zoom.us/j/95081858686&amp;sa=D&amp;source=calendar&amp;ust=1709061980070202&amp;usg=AOvVaw0j1YBSmdI_8v02zoLrwNag" target="_blank" rel="noreferrer noopener">https://hawaii.zoom.us/j/95081858686</a><br>Meeting ID: 950 8185 8686<br>Passcode: OREseminar<br>Seminar Website Link: <a href="https://www.google.com/url?q=https://www.soest.hawaii.edu/ore/event/seminar_240228/&amp;sa=D&amp;source=calendar&amp;ust=1709061980070202&amp;usg=AOvVaw1YXL-qGsNf035x-AdFQIZB" target="_blank" rel="noreferrer noopener">https://www.soest.hawaii.edu/ore/event/seminar_240228/</a></p>
  172. ]]></content:encoded>
  173. </item>
  174. <item>
  175. <title>Atmospheric Sciences Seminar</title>
  176. <link>https://www.soest.hawaii.edu/soestwp/announce/events/atmospheric-sciences-seminar-107/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=atmospheric-sciences-seminar-107</link>
  177. <dc:creator><![CDATA[May Izumi]]></dc:creator>
  178. <pubDate>Mon, 26 Feb 2024 17:00:00 +0000</pubDate>
  179. <category><![CDATA[Event]]></category>
  180. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38386</guid>
  181.  
  182. <description><![CDATA[Presenters are as follows.&#8211;Cameron Chuss, Graduate Student, UHM Dept. of Atmospheric Sciences, Analysis of Interseasonal Transitions Over Taiwan During PRECIP 2022&#8211;Dennis Trotter, Graduate Student, UHM Dept. of Atmospheric Sciences, Statistical Downscaling of Precipitation in Hawaii using Machine Learning Techniques—A Literature Review Zoom Invitation Link:&#160;https://hawaii.zoom.us/j/98919200762Meeting ID: 989 1920 0762Passcode: 201326]]></description>
  183. <content:encoded><![CDATA[
  184. <p>Presenters are as follows.<br>&#8211;<strong>Cameron Chuss</strong>, Graduate Student, UHM Dept. of Atmospheric Sciences, <em>Analysis of Interseasonal Transitions Over Taiwan During PRECIP 2022</em><br>&#8211;<strong>Dennis Trotter</strong>, Graduate Student, UHM Dept. of Atmospheric Sciences, <em>Statistical Downscaling of Precipitation in Hawaii using Machine Learning Techniques—A Literature Review</em></p>
  185.  
  186.  
  187.  
  188. <p>Zoom Invitation Link:&nbsp;<a href="https://urldefense.com/v3/__https:/hawaii.zoom.us/j/98919200762__;!!PvDODwlR4mBZyAb0!XtrqngP0KNwNLUwy7ebHEOB_-l1EMENdnyepht0hOekmUXl1CZn-RpCu3OiZrz_abKsbqTkL4v1pffxVdTQ$" target="_blank" rel="noreferrer noopener">https://hawaii.zoom.us/j/98919200762</a><br>Meeting ID: 989 1920 0762<br>Passcode: 201326</p>
  189. ]]></content:encoded>
  190. </item>
  191. <item>
  192. <title>SOEST Contribution List (as of February 22, 2024)</title>
  193. <link>https://www.soest.hawaii.edu/soestwp/announce/announcements/soest-contribution-list-as-of-february-22-2024/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=soest-contribution-list-as-of-february-22-2024</link>
  194. <dc:creator><![CDATA[May Izumi]]></dc:creator>
  195. <pubDate>Thu, 22 Feb 2024 22:58:50 +0000</pubDate>
  196. <category><![CDATA[Announcement]]></category>
  197. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38380</guid>
  198.  
  199. <description><![CDATA[11727 McClish, S., and S. Bushinsky, 2023, Majority of Southern Ocean seasonal sea ice zone bloom net community production precedes total ice retreat, Geophys. Res. Lett., 50(20), e2023GL103459, https://doi.org/10.1029/2023GL103459. 11728 Kelly, E. M., M. J. Egan, A. Colón, S. M. Angel, and S. K. Sharma, 2023, Single-grating monolithic spatial heterodyne Raman spectrometer: An investigation on [&#8230;]]]></description>
  200. <content:encoded><![CDATA[
  201. <p>11727 McClish, S., and S. Bushinsky, 2023, Majority of Southern Ocean seasonal sea ice zone bloom net community production precedes total ice retreat, <em>Geophys. Res. Lett</em>., 50(20), e2023GL103459, <a href="https://doi.org/10.1029/2023GL103459">https://doi.org/10.1029/2023GL103459</a>.</p>
  202.  
  203.  
  204.  
  205. <p>11728 Kelly, E. M., M. J. Egan, A. Colón, S. M. Angel, and S. K. Sharma, 2023, Single-grating monolithic spatial heterodyne Raman spectrometer: An investigation on the effects of detector selection, <em>Appl. Spectrosc</em>., 77(12), 1411-1423, HIGP-2481, doi: 10.1177/00037028231204894.</p>
  206.  
  207.  
  208.  
  209. <p>11729 Bhattacharya, T., et al. [S. Coats], 2023, California margin temperatures modulate regional circulation and extreme summer precipitation in the desert southwest, <em>Environ. Res. Lett.</em>, 18, 104048, https://doi.org/10.1088/1748-9326/acfd43.</p>
  210.  
  211.  
  212.  
  213. <p>11730 Shan, K., Y. Lin, P.-S. Chu, X. Yu, and F. Song, 2023, Seasonal advance of intense tropical cyclones in a warming climate, <em>Nature</em>, 623, 83-89, https://<a href="http://doi.org/10.1038/s41586-023-06544-0">doi.org/10.1038/s41586-023-06544-0</a>.</p>
  214.  
  215.  
  216.  
  217. <p>11731 Rivera Tello, G. A., K. Takahashi, and C. Karamperidou, 2023, Explained predictions of strong eastern Pacific El Niño events using deep learning, <em>Sci. Rep</em>., 13, 21150, https://doi.org/10.1038/s41598-023-45739-3.</p>
  218.  
  219.  
  220.  
  221. <p>11732 Burkhard, L. M. L., et al. [E. S. Costello, B. R. Smith-Konter], 2023, Uncovering Ganymede’s past: Tectonics at Nippur/Philus Sulci, <em>Icarus,</em> 408, 115823, HIGP-2482, <a href="https://doi.org/10.1016/j.icarus.2023.115823">https://doi.org/10.1016/j.icarus.2023.115823.</a></p>
  222.  
  223.  
  224.  
  225. <p>11733 Selig, G., J. C. Drazen, P. J. Auster, B. C. Mundy, and C. D. Kelley, 2023, Distribution and structure of deep-sea demersal fish assemblages across the central and western Pacific Ocean using data from undersea imagery, <em>Front. Mar. Sci.</em> 10, 1219368, doi: 10.3389/fmars.2023.1219368.</p>
  226.  
  227.  
  228.  
  229. <p>11734 Geng, X., M. C. Boufadel, and E. Lopez, 2023, Modeling impacts of river hydrodynamics on fate and transport of microplastics in riverine environments, <em>Mar. Pollut. Bull</em>., 196, 115602, https://doi.org/10.1016/j.marpolbul.2023.115602.</p>
  230.  
  231.  
  232.  
  233. <p>11735 Giachetti, T., et al. [T. Shea], 2021, The products of primary magma fragmentation finally revealed by pumice agglomerates, <em>Geology</em>, 49(11), 1307-1311, https://doi.org/10.1130/G48902.1.</p>
  234.  
  235.  
  236.  
  237. <p>11736 Lerner, A. H., et al. [T. Shea, A. Mourey], 2021, The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kīlauea, Hawaiʻi: melt concentrations, magma storage depths, and magma recycling, <em>Bull. Volcanol</em>., 83, 43, https://doi.org/10.1007/s00445-021-01459-y.</p>
  238.  
  239.  
  240.  
  241. <p>11737 Crozier, J., et al. [B. F. Houghton, T. Shea], 2022, Outgassing through magmatic fractures enables effusive eruption of silicic magma, <em>J. Volcanol. Geotherm. Res</em>., 430, 107617, https://doi.org/10.1016/j.jvolgeores.2022.107617.</p>
  242.  
  243.  
  244.  
  245. <p>11738 Mourey, A. J., et al. [T. Shea], 2022, Trace elements in olivine fingerprint the source of 2018 magmas and shed light on explosive-effusive eruption cycles at Kīlauea Volcano, <em>Earth Planet. Sci. Lett</em>., 595, 117769, https://doi.org/10.1016/j.epsl.2022.117769.</p>
  246.  
  247.  
  248.  
  249. <p>11739 Saalfeld, M. A., M. L. Myers, R. deGraffenried, T. Shea, and C. Walkens, 2022, On the rise: using reentrants to extract magma ascent rates in the Bandelier Tuff caldera complex, New Mexico, USA, <em>Bull. Volcanol</em>., 84(1), 4, https://doi.org/10.1007/s00445-021-01518-4.</p>
  250.  
  251.  
  252.  
  253. <p>11740 Shea, T., A. Matzen, and A. Mourey, 2022, Experimental study of Fe–Mg partitioning and zoning during rapid growth of olivine in Hawaiian tholeiites, <em>Contrib. Mineral. Petrol</em>., 177, 144, https://doi.org/10.1007/s00410-022-01969-8.</p>
  254.  
  255.  
  256.  
  257. <p>11741 Mourey, A., T. Shea, and J. Hammer, 2023, Preservation of magma recharge signatures in Kīlauea olivine during protracted storage, <em>J. Geophys. Res.-Solid Earth</em>, 128(1), e2022JB025523, https://doi.org/10.1029/2022JB025523.</p>
  258.  
  259.  
  260.  
  261. <p>11742 Mourey, A., T. Shea, F. Costa, B. Shiro, and R. Longman, 2023, Years of magma intrusion primed Kīlauea Volcano (Hawaiʻi) for the 2018 eruption: evidence from olivine diffusion chronometry and monitoring data, <em>Bull. Volcanol</em>., 85, 18, https://doi.org/10.1007/s00445-023-01633-4.</p>
  262.  
  263.  
  264.  
  265. <p>11743 Shea, T., et al. [K. Ohtaki, H. Ishii, J. Bradley], 2023, The presence of melt may enhance rates of cation diffusion in olivine, <em>Earth Planet. Sci. Lett</em>., 621, 118370, https://doi.10.1016/j.epsl.2023.118370.</p>
  266.  
  267.  
  268.  
  269. <p>11744 Anderson, K., et al. [T. Shea], 2024, The 2018 eruption of Kīlauea: Insights, puzzles, and opportunities for volcano science, <em>Ann. Rev. Earth Planet. Sci</em>., 52, https://doi.org/10.1146/annurev-earth-031621-075925 (publication date May 2024).</p>
  270.  
  271.  
  272.  
  273. <p>11745 Roncalli, V., L. Block, J. Niestroy, M. Cieslak, A. Castelfranco, D. Hartline, and P. Lentz, 2023, Experimental analysis of development, lipid accumulation and gene expression in a high-latitude marine copepod, <em>J. Plankton Res</em>., 45(6), 885-898, https://doi.org/10.1093/plankt/fbad045.</p>
  274.  
  275.  
  276.  
  277. <p>11746 Stuecker, M. F., 2023, The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle, <em>Geosci. Lett</em>., 10, 51, https://doi.org/10.1186/s40562-023-00305-7.</p>
  278.  
  279.  
  280.  
  281. <p>11747 Matsuda, S. B., M. L. Opalek, R. Ritson-Williams, R. D. Gates, and R. Cunning, 2023, Symbiont-mediated tradeoffs between growth and heat tolerance are modulated by light and temperature in the coral <em>Montipora capitata</em>, <em>Coral Reefs,</em> 42, 1385-1394, HIMB-1940, https://doi.org/10.1007/s00338-023-02441-0.</p>
  282.  
  283.  
  284.  
  285. <p>11748 Jaffe, M. D., J. L. Padilla-Gamiño, B. L. Nunn, and L. J. Rodrigues, 2023, Coral trophic pathways impact the allocation of carbon and nitrogen for egg development after bleaching, <em>Front. Ecol. Evol</em>., 11, 1251220, HIMB-1941, doi: 10.3389/fevo.2023.1251220.</p>
  286.  
  287.  
  288.  
  289. <p>11749 Jakubek, R. S., et al. [S. K. Sharma], 2024, Calibration of Raman bandwidths on the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) deep ultraviolet Raman and fluorescence instrument aboard the Perseverance rover, <em>Appl. Spectrosc</em>., HIGP-2483, doi: 10.1177/00037028231210885 (in press).</p>
  290.  
  291.  
  292.  
  293. <p>11750 Widiasih, E. R., A. Keane, and M. F. Stuecker, 2024, The Mid-Pleistocene transition from Budyko’s Energy Balance Model, <em>Physica D</em>, 458, 133991, https://doi.org/10.1016/j.physd.2023.133991.</p>
  294.  
  295.  
  296.  
  297. <p>11751 Brown, K., et al. [E. A. Lenz, R. McClintock, C. Drury, C. E. Nelson], 2023, Divergent recovery trajectories in reef-building corals following a decade of successive marine heatwaves, <em>Proc. Nat. Acad. Sci.</em>, 120(52), e2312104120, doi: 10.1073/pnas.2312104120.</p>
  298.  
  299.  
  300.  
  301. <p>11752 Rollins, R. L., M. C. I. Medeiros, and R. H. Cowie, 2023, Stressed snails release <em>Angiostrongylus cantonensis</em> (rat lungworm) larvae in their slime, <em>One Health</em>, 17, 100658, doi: 10.1016/j.onehlt.2023.100658.</p>
  302.  
  303.  
  304.  
  305. <p>11753 Taylor, B., and E. K. Benyshek, 2024, Oceanic plateau and spreading ridge subduction accompanying arc reversal in the Solomon Islands, <em>Geochem. Geophys. Geosyst</em>., 25(1), e2023GC011270, https://doi.org/10.1029/2023GC011270.</p>
  306.  
  307.  
  308.  
  309. <p>11754 Hauri, C., et al. [M. F. Stuecker], 2024, More than marine heatwaves: A new regime of heat, acidity, and low oxygen compound extreme events in the Gulf of Alaska, <em>AGU </em><em>Adv.</em>, 5(1), e2023AV001039, IPRC- 613, <a href="https://doi.org/10.1029/2023AV001039">https://doi.org/10.1029/2023AV001039</a>.</p>
  310.  
  311.  
  312.  
  313. <p>11755 Armour, K. C., et al. [M. F. Stuecker], 2024, Sea-surface temperature pattern effects have slowed global warming and biased warming-based constraints on climate sensitivity, <em>Proc. Natl. Acad. Sci. U.S.A.,</em> IPRC-614 (in press).</p>
  314.  
  315.  
  316.  
  317. <p>11756 Ryan, C., et al. [L. Bejder], 2024, Morphology of nares associated with stereo-olfaction in baleen whales, <em>Biol. Lett.</em>, 20(1), HIMB-1942, 20230479, http://doi.org/10.1098/rsbl.2023.0479.</p>
  318.  
  319.  
  320.  
  321. <p>11757 Cheeseman, T., et al. [L. Bejer], 2024, Bellwethers of change: population modeling of North Pacific humpback whales from 2002 through 2021 reveals shift from recovery to climate response, <em>Proc. Roy. Soc. B</em>, HIMB-1943 (accepted).</p>
  322.  
  323.  
  324.  
  325. <p>11758 Jin, C., B. Wang, T. F. Cheng, L. Dai, and T. Wang, 2024, How much we know about precipitation climatology over Tianshan Mountains––the Central Asian water tower, <em>npj </em><em>Clim. Atmos. Sci.</em>, 7, 21,&nbsp; https://doi.org/10.1038/s41612-024-00572-x.</p>
  326.  
  327.  
  328.  
  329. <p>11759 Wang, B., et al. [L. Dai, T. F. Cheng], 2024, Climatological Madden-Julian Oscillation during boreal spring leads to abrupt Australian monsoon retreat and Asian monsoon onsets, <em>npj Clim. Atmos. Sci</em>., 7, 40, https://doi.org/10.1038/s41612-024-00566-9.</p>
  330.  
  331.  
  332.  
  333. <p>11760 Ellison, L., and S. Coats, 2024, A framework for assessing the drivers and impacts of drought events: the contemporary drought in the western and central United States, <em>J. </em><em>Climate</em>, 37(5), 1667-1682, https://doi.org/10.1175/JCLI-D-23-0473.1.</p>
  334.  
  335.  
  336.  
  337. <p>11761 MacGregor, B. G., R. A. Dunn, A. B. Watts, C. Xu, and D. J. Shillington, 2024, A seismic tomography, gravity, and flexure study of the crust and upper mantle structure of the Hawaiian Ridge, Part 1, <em>J. Geophys. Res.-Solid Earth</em>, 128, e2023JB027218.&nbsp;&nbsp;&nbsp;&nbsp;</p>
  338.  
  339.  
  340.  
  341. <p>11762 Siljeström, S., et al. [S. K. Sharma], 2024, Evidence of sulfate-rich fluid alteration in Jezero Crater floor, Mars, <em>J. Geophys. Res.-Planets</em>, 129, e2023JE007989, HIGP-2484, doi:10.1029/2023JE007989.</p>
  342.  
  343.  
  344.  
  345. <p>11763 Friedrich, T., et al. [M. F. Stuecker], 2024, Submesoscale-permitting physical/biogeochemical future projections for the main Hawaiian Islands, <em>J. Adv. Model. Earth Syst</em>., 16(2), e2023MS003855, <a href="https://doi.org/10.1029/2023MS003855">https://doi.org/10.1029/2023MS003855</a>.</p>
  346.  
  347.  
  348.  
  349. <p>11764 Faghih, Z., et al. [A. Haroon], 2024, Characterizing offshore freshened groundwater salinity patterns using trans-dimensional Bayesian inversion of controlled source electromagnetic data: A case study from the Canterbury Bight, New Zealand, <em>Water Resour. Res</em>., HIGP-2485 (accepted).</p>
  350.  
  351.  
  352.  
  353. <p>11765 Yamazaki, Y., et al. [K. F. Cheung], 2024, A great tsunami earthquake component of the 1957 Aleutian Islands earthquake, <em>Earth Planet. Sci. Lett</em>. (accepted).&nbsp;</p>
  354.  
  355.  
  356.  
  357. <p>11766 Wessel, P., 2024, The origins of Generic Mapping Tools: From table tennis to geoscience, <em>Perspect. Earth Space Sci</em>. (in press).</p>
  358.  
  359.  
  360.  
  361. <p>11767 Kraft, D. W., et al. [R. J. Toonen, Z. Forsman, B. W. Bowen], 2024, Global stock structure of the Silky shark (<em>Carcharhinus falciformis</em>) resolved with high throughput DNA sequencing, <em>PeerJ</em>, HIMB-1944 (in press)<em>.</em></p>
  362.  
  363.  
  364.  
  365. <p>11768 Carvalho Pacheco, F., et al. [F. Santiago-Mandujano, J. Potemra], 2024, Hydrographic observations at the Woods Hole Oceanographic Institution, Hawaii Ocean Time-series Site: 2021-2022 Data Report #17, 129 pp.</p>
  366.  
  367.  
  368.  
  369. <p>11769 Dunn, R. A., A. B. Watts, C. Xu, and D. J. Shillington, 2024, A seismic tomography, gravity, and flexure study of the crust and upper mantle structure across the Hawaiian Ridge: 2. Ka‘ena, <em>J. Geophys. Res.-Solid Earth</em>, 129, e2023JB028118.</p>
  370.  
  371.  
  372.  
  373. <p>11770 Westbrook, C. E., J. Daly, B. Bowen, and M. Hagedorn, 2024, Cryopreservation of the collector urchin embryo, <em>Tripneustes gratilla</em>, <em>Cryobiol.</em>, 104865, HIMB-1945, https://doi.org/10.1016/j.cryobiol.2024.104865 (in press).</p>
  374.  
  375.  
  376.  
  377. <p>11771 Knor, L. A. C. M., M. Meléndez, C. L. Sabine, and A. J. Sutton, 2024, Drivers of CO2-carbonate system variability in the coastal ocean south of Honolulu, Hawai‘i. <em>Front. Mar. Sci.</em>, 11, 1335438, doi: 10.3389/fmars.2024.1335438.</p>
  378.  
  379.  
  380.  
  381. <p>11772 Timmers, A., et al. [R. J. Toonen, B. W. Bowen], 2024, Proteinase K is not essential for marine eDNA extractions, <em>Environ. DNA</em>, HIMB-1946 (in press).</p>
  382.  
  383.  
  384.  
  385. <p>11773 Thorhallsson, D., F. Martinez, R. Hey, and Á. Höskuldsson, 2024, Kinematics of the Reykjanes Ridge: Influence of the Iceland hotspot on plate boundary evolution, <em>J. Geophys. Res.-Solid Earth</em>, HIGP-2486 (in press).&nbsp;&nbsp;</p>
  386.  
  387.  
  388.  
  389. <p>11774 Versteegen, E., J. N. Macher, S. J. Rowley, and W. Renema, 2024, Changes in the microbial community associated with the large benthic foraminifera <em>Cycloclypeus carpenteri</em>, along a depth gradient, <em>J. Foram. Res</em>., 54 (1), 65-74, https://doi.org/10.2113/gsjfr.54.1.65.</p>
  390.  
  391.  
  392.  
  393. <p>11775 Madrigal, B. C., et al. [M. O. Lammers, A. F. Pacini], 2024, Comparing the underwater soundscape of the Hawaiian Islands Humpback Whale National Marine Sanctuary and potential influences of the COVID-19 pandemic, <em>Front. Mar. Sci</em>., HIMB-1947 (accepted).</p>
  394.  
  395.  
  396.  
  397. <p>11776 Parnell, K., et al. [Aude Pacini, Lars Bejder], 2024, Underwater soundscapes within critical habitats of the endangered Hawaiian monk seal: Implications for conservation, <em>Endanger. Species Res</em>. (accepted).</p>
  398. ]]></content:encoded>
  399. </item>
  400. <item>
  401. <title>SOEST Grants Received (as of February 22, 2024)</title>
  402. <link>https://www.soest.hawaii.edu/soestwp/announce/announcements/soest-grants-received-as-of-february-22-2024/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=soest-grants-received-as-of-february-22-2024</link>
  403. <dc:creator><![CDATA[May Izumi]]></dc:creator>
  404. <pubDate>Thu, 22 Feb 2024 22:57:17 +0000</pubDate>
  405. <category><![CDATA[Announcement]]></category>
  406. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38378</guid>
  407.  
  408. <description><![CDATA[P.I.:          Giuseppe TorriAgency:  NSFAmount:  $168,845Title:        RAPID: Drivers and Improving Forecasts of Subseasonal-to-Seasonal Wildfire Potential in Hawaii]]></description>
  409. <content:encoded><![CDATA[
  410. <p>P.I.:          <strong>Giuseppe Torri</strong><br>Agency:  NSF<br>Amount:  $168,845<br>Title:        RAPID: Drivers and Improving Forecasts of Subseasonal-to-Seasonal Wildfire Potential in Hawaii</p>
  411. ]]></content:encoded>
  412. </item>
  413. <item>
  414. <title>Marine Biology Graduate Program Seminar</title>
  415. <link>https://www.soest.hawaii.edu/soestwp/announce/events/marine-biology-graduate-program-seminar-11/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=marine-biology-graduate-program-seminar-11</link>
  416. <dc:creator><![CDATA[May Izumi]]></dc:creator>
  417. <pubDate>Thu, 22 Feb 2024 22:53:00 +0000</pubDate>
  418. <category><![CDATA[Event]]></category>
  419. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38382</guid>
  420.  
  421. <description><![CDATA[Presenter:&#160;&#160;Seth Borden, Director of the Microbiome Center, Professor of Biology and Entomology, University of Pennsylvania Title: The Hologenomic Origin of Species Zoom Link: https://hawaii.zoom.us/j/93835059245Passcode: MBGPS24]]></description>
  422. <content:encoded><![CDATA[
  423. <p>Presenter:&nbsp;&nbsp;<strong>Seth Borden</strong>, Director of the Microbiome Center, Professor of Biology and Entomology, University of Pennsylvania</p>
  424.  
  425.  
  426.  
  427. <p>Title:  <em>The Hologenomic Origin of Species</em></p>
  428.  
  429.  
  430.  
  431. <p>Zoom Link: <a href="https://hawaii.zoom.us/j/93835059245">https://hawaii.zoom.us/j/93835059245</a><br>Passcode: MBGPS24</p>
  432. ]]></content:encoded>
  433. </item>
  434. <item>
  435. <title>Pacific Biosciences Research Center Seminar</title>
  436. <link>https://www.soest.hawaii.edu/soestwp/announce/events/pacific-biosciences-research-center-seminar-39/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=pacific-biosciences-research-center-seminar-39</link>
  437. <dc:creator><![CDATA[May Izumi]]></dc:creator>
  438. <pubDate>Thu, 22 Feb 2024 22:51:30 +0000</pubDate>
  439. <category><![CDATA[Event]]></category>
  440. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38372</guid>
  441.  
  442. <description><![CDATA[Presenter: &#160;Zach Hallberg, Postdoctoral Researcher, Univ. of California, Berkeley Title: &#160;Dissecting Microbial Nutrient Responses Across scales: From Enzymes to Environments Dr. Hallberg is a candidate for the three microbiome R3 positions in PBRC.]]></description>
  443. <content:encoded><![CDATA[
  444. <p>Presenter: &nbsp;<strong>Zach Hallberg</strong>, Postdoctoral Researcher, Univ. of California, Berkeley</p>
  445.  
  446.  
  447.  
  448. <p>Title: &nbsp;<em>Dissecting Microbial Nutrient Responses Across scales: From Enzymes to Environments</em></p>
  449.  
  450.  
  451.  
  452. <p>Dr. Hallberg is a candidate for the three microbiome R3 positions in PBRC.</p>
  453. ]]></content:encoded>
  454. </item>
  455. <item>
  456. <title>Catalog of coral microbes, metabolites paves the way to monitor reef health</title>
  457. <link>https://www.soest.hawaii.edu/soestwp/announce/news/catalog-coral-reef-microbes-metabolites/?utm_source=rss&#038;utm_medium=rss&#038;utm_campaign=catalog-coral-reef-microbes-metabolites</link>
  458. <dc:creator><![CDATA[Marcie Grabowski]]></dc:creator>
  459. <pubDate>Tue, 20 Feb 2024 23:40:20 +0000</pubDate>
  460. <category><![CDATA[News]]></category>
  461. <guid isPermaLink="false">https://www.soest.hawaii.edu/soestwp/?p=38361</guid>
  462.  
  463. <description><![CDATA[A recently published study in Communications Biology co-led by a University of Hawai‘i (UH) at Mānoa doctoral student revealed that each type of coral and algae from a coral reef produced a unique suite of hundreds of chemical compounds. Many of these novel metabolites are previously uncharacterized, representing a repository of potentially valuable indicators of [&#8230;]]]></description>
  464. <content:encoded><![CDATA[
  465. <p>A recently published study in <a href="https://www.nature.com/articles/s42003-023-05230-1"><em>Communications Biology</em></a> co-led by a University of Hawai‘i (UH) at Mānoa doctoral student revealed that each type of coral and algae from a coral reef produced a unique suite of hundreds of chemical compounds. Many of these novel metabolites are previously uncharacterized, representing a repository of potentially valuable indicators of the health of these reef organisms. Moreover, some of the metabolites found were similar to fatty acids and lipids that are known to be involved in ancient immune response pathways, painting a new picture of partnership among organisms in the reefs around Hawai‘i.</p>
  466.  
  467.  
  468.  
  469. <p>“Together, microorganisms and organic chemicals in the ecosystem can tell us about coral reef health,” said Sean Swift, co-lead author of the study and marine biology doctoral candidate in the UH Mānoa <a href="http://www.soest.hawaii.edu">School of Ocean and Earth Science and Technology</a> (SOEST). “This provides a window into how primary producers react to disease or environmental stress, and how these organisms maintain a healthy microbiome in dynamic coral reef systems.”</p>
  470.  
  471.  
  472.  
  473. <p>In a coral reef ecosystem, macroalgae, also called limu, coral, and crustose coralline algae are the primary producers that act as the underwater equivalent of plants in a forest. These groups fuel the ecosystem by converting sunlight into energy and play a variety of other roles in the environment through the microorganisms they harbor and the different chemical compounds they produce.&nbsp;</p>
  474.  
  475.  
  476.  
  477. <p><strong><em>Assessing microbial diversity in the reef ecosystem</em></strong></p>
  478.  
  479.  
  480.  
  481. <p>As part of a broad microbial research effort in the watershed of Waimea on the north shore of O‘ahu, organized through the UH Mānoa <a href="https://www.c-maiki.org/">Center for Microbiome Analysis through Island Knowledge and Investigation</a>, Swift and a team of scientific divers, including undergraduate and graduate students, collected over one hundred samples of coral reef organisms from five sites around Waimea Bay.&nbsp;</p>
  482.  
  483.  
  484.  
  485. <p>The researchers extracted microbial DNA from the samples and identified over 36,000 unique microbial groups associated with larger host organisms. In true symbiotic fashion, limu tended to harbor microbes that are perfectly equipped to break down large organic molecules, like the complex carbohydrates that are typically exuded by limu. Coral and crustose coralline algae were commonly found to harbor microorganisms associated with the recycling of inorganic nutrients, such as nitrogen, which may be a clue as to how corals persist in nutrient poor waters.</p>
  486.  
  487.  
  488.  
  489. <p><strong><em>Organic compounds, the silent language of life</em></strong></p>
  490.  
  491.  
  492.  
  493. <p>In collaboration with the Dorrestein Lab at the University of California (UC), San Diego, the team analyzed the samples using high-throughput organic chemistry techniques that are known as ‘untargeted metabolomics’ and identified more than 10,000 distinct chemical features.&nbsp;</p>
  494.  
  495.  
  496.  
  497. <p>“Each compound might be a food source for microbes, or a signaling compound used for communication, or a defense compound that deters competitors,” said Helena Mannochio-Russo, co-lead author and postdoctoral researcher at UC San Diego.</p>
  498.  
  499.  
  500.  
  501. <p>To generate insights into this silent communication, the team relied on statistical software and machine learning to detect patterns across thousands of microorganisms and chemical compounds.&nbsp;</p>
  502.  
  503.  
  504.  
  505. <p>Many chemical compounds were produced by all three types of primary producers, but each primary producer type also produced unique chemical compounds. Crustose coralline algae, in particular, was associated with a large number of unique compounds and these compounds did not match any known chemical structures in public databases.</p>
  506.  
  507.  
  508.  
  509. <p>“These unique compounds likely represent undiscovered chemical diversity,” said Craig Nelson, lead investigator on the study and professor with the <a href="https://hahana.soest.hawaii.edu/cmoreserver/">Center for Microbial Oceanography: Research and Education</a> and <a href="https://seagrant.soest.hawaii.edu/">Hawai‘i Sea Grant</a> in SOEST. “These coralline algae are well known for inducing settlement in larval corals and other organisms, and our previous work has similarly demonstrated that they also release many novel compounds into the water. Unraveling the mystery of these chemical cues is the next frontier in marine ecology.”  </p>
  510.  
  511.  
  512.  
  513. <p>“Among the most interesting compounds we detected were fatty acids and lipids that are known to be involved in immune response pathways of the host organisms,” said Swift. “Some of these immune response pathways are quite ancient. Because they evolved so long ago, there are similarities in these chemical pathways across a wide array of organisms, including corals, humans, insects, and plants. It’s interesting to think about how these pathways may have evolved alongside the microorganisms that colonize these extremely distinct macroorganisms.”</p>
  514.  
  515.  
  516.  
  517. <p><strong><em>A tool to measure coral reef health, stress&nbsp;</em></strong></p>
  518.  
  519.  
  520.  
  521. <p>“Expanding this work to other reefs, especially those that are under stress, will teach us a lot about how coral reef ecosystems work on a molecular level,” said Swift. “For example, one of the near-term goals in the field of coral reef metabolomics is to identify chemical compounds that can tell us whether coral reef organisms are healthy or stressed.”</p>
  522.  
  523.  
  524.  
  525. <p>Some of the UH Mānoa researchers involved in this project are now assessing the aftermath of the recent Maui wildfires by studying the effects that urban fire runoff may be having on nearby coral reef ecosystems.&nbsp;</p>
  526.  
  527.  
  528.  
  529. <p>“We will use these metabolomics techniques to assess reef health and identify fire-derived contaminants in environmental samples, like water and sediment, and in the tissues of reef organisms such as corals, algae, and fish,” said Nelson. “Our main focus is to use these techniques to understand how fire-related contaminants entering the waters around Lahaina may be affecting reef health.”</p>
  530. ]]></content:encoded>
  531. </item>
  532. </channel>
  533. </rss>
  534.  
  535. <!--
  536. Performance optimized by W3 Total Cache. Learn more: https://www.boldgrid.com/w3-total-cache/
  537.  
  538. Object Caching 48/310 objects using Disk
  539. Page Caching using Disk: Enhanced (Page is feed)
  540. Lazy Loading (feed)
  541. Database Caching using Disk
  542.  
  543. Served from: www.soest.hawaii.edu @ 2024-02-28 05:12:26 by W3 Total Cache
  544. -->

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid RSS" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=https%3A//www.soest.hawaii.edu/soestwp/feed/

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda