Congratulations!

[Valid Atom 1.0] This is a valid Atom 1.0 feed.

Recommendations

This feed is valid, but interoperability with the widest range of feed readers could be improved by implementing the following recommendations.

Source: http://matematicasolo.blogspot.com/feeds/posts/default

  1. <?xml version='1.0' encoding='UTF-8'?><?xml-stylesheet href="http://www.blogger.com/styles/atom.css" type="text/css"?><feed xmlns='http://www.w3.org/2005/Atom' xmlns:openSearch='http://a9.com/-/spec/opensearchrss/1.0/' xmlns:blogger='http://schemas.google.com/blogger/2008' xmlns:georss='http://www.georss.org/georss' xmlns:gd="http://schemas.google.com/g/2005" xmlns:thr='http://purl.org/syndication/thread/1.0'><id>tag:blogger.com,1999:blog-6749100220509682424</id><updated>2018-09-17T02:50:04.116-07:00</updated><category term="matematica"/><category term="geometria"/><category term="esempi svolti"/><category term="esercizi di matematica svolti"/><category term="esercizzi di matematica con soluzione"/><category term="algebra"/><category term="medie"/><category term="geometria analitica"/><category term="matematica III"/><category term="Geometria del piano"/><category term="Geometria dello spazio"/><category term="esercizi sistema lineare"/><category term="esercizi sistemi lineari omogenei"/><category term="esercizio diagonalizazione"/><category term="esercizi determinante"/><category term="media I"/><category term="Calcolo combinatorio"/><category term="Sottospazio"/><category term="matrici"/><category term="tavola dei NUMERI PRIMI da 2 a 5000"/><category term="Anelli"/><category term="Aritmetica"/><category term="Autospazio"/><category term="Autovettore Autovalore"/><category term="Base Ortonormale"/><category term="Calcolo dell&#39;Inversa di una Matrice"/><category term="Campi"/><category term="Caratterizzazione Diagonalizzazione"/><category term="Classe 1"/><category term="Definizione Omomorfismo"/><category term="Diagonalizzazione"/><category term="Diagonalizzazione Endomorfismi"/><category term="Diagonalizzazione Ortogonale"/><category term="Disuguaglianza Cauchy Schwarz"/><category term="EQUAZIONI E DISEQUAZIONI"/><category term="FORMULARIO: tavola degli integrali indefiniti"/><category term="FORMULARIO: tavola dei NUMERI PRIMI da 2 a 5000"/><category term="Geometria Solida. Parti della sfera e della superficie sferica"/><category term="Geometria Solida. Poliedri"/><category term="Geometria Solida. Poliedri regolari"/><category term="Geometria Solida. Poliedri. Piramide e tronco di piramide"/><category term="Geometria Solida. Poliedri. Prisma"/><category term="Geometria Solida. Solidi di rotazione. Cilindro"/><category term="Gruppi"/><category term="I"/><category term="I Numeri Interi"/><category term="I Numeri Reali"/><category term="I numeri complessi"/><category term="Il Campo dei Numeri Reali"/><category term="Il moto dei fluidi"/><category term="Il principio di induzione"/><category term="Insiemi Numerici"/><category term="Integrali indefiniti fondamentali"/><category term="Integrali indefiniti riconducibili a quelli immediati"/><category term="Integrali notevoli"/><category term="Intersezione Sotto spazi"/><category term="Intorni"/><category term="Introduzione alla fisica"/><category term="L&#39;accelerazione"/><category term="L&#39;energia meccanica"/><category term="L&#39;equilibrio dei fluidi"/><category term="La gravitazione"/><category term="La linea retta"/><category term="La meccanica"/><category term="La termologia"/><category term="Le onde"/><category term="LemmaSteinitz"/><category term="Lineare Dipendenza Indipendenza"/><category term="Matrice Scalini"/><category term="Matrici invertibili"/><category term="Matrici-Rango"/><category term="Meccanica-Razionale"/><category term="MetodoDiCramer"/><category term="MetodoDiGauss"/><category term="Molteplicita"/><category term="Nucleo Immagine omomorfismi"/><category term="Operazioni Matrici"/><category term="Permutazioni"/><category term="Principio di Induzione"/><category term="Prodotti notevoli"/><category term="Prodotto Scalare"/><category term="Proiezione Vettore"/><category term="Proprietà delle operazioni"/><category term="Punto retta segmento"/><category term="Rappresentazione Matriciale"/><category term="Relazione Grassmann"/><category term="SV-Componenti"/><category term="Sistemi Lineari"/><category term="Sistemi di equazioni lineari omogenei"/><category term="Somma Sottospazi"/><category term="Sottospazio Ortogonale"/><category term="Spazio Vettoriale Base"/><category term="Spazzi Vettoriali-TeoremaBase"/><category term="Strutture Algebriche"/><category term="Teorema  Rouche&#39;-Capelli"/><category term="Teorema Dimensione"/><category term="Teorema Gram Schimdt"/><category term="Teorema Spettrale"/><category term="Teoria degli Insiemi"/><category term="Trasformazioni geometriche"/><category term="Vettori Ortogonali"/><category term="circonferenza"/><category term="cono"/><category term="cubo"/><category term="cuola media"/><category term="definizione e proprietà delle potenze"/><category term="ellisse"/><category term="esercizi La linea retta"/><category term="esercizi meccanica razionale"/><category term="esercizi omomorfismi"/><category term="esercizi_SV-ComponentiVettore_1"/><category term="esercizio Dipendenza Indipendenza Lineare_1"/><category term="esercizio autospazio"/><category term="fisica"/><category term="geometria analitica - metrica"/><category term="geometria analitica. Cambiamento di riferimento. Traslazione"/><category term="giochi logici"/><category term="i numeri"/><category term="iperbole"/><category term="la retta"/><category term="matematica IV"/><category term="matrici determinante"/><category term="matrici esercizzi"/><category term="parabola"/><category term="parallelpipedo"/><category term="principali criteri di divisibilità dei numeri interi"/><category term="proporzioni e proprietà"/><category term="punti di accumulazione"/><category term="rotazione"/><category term="rototraslazione e coordinate polari"/><category term="sfera"/><category term="spazi vettoriali GeneralitaSottospazi"/><category term="spazio euclideo - Angolo"/><category term="tronco di cono"/><title type='text'>solo matematica</title><subtitle type='html'></subtitle><link rel='http://schemas.google.com/g/2005#feed' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/posts/default'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default?redirect=false'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/'/><link rel='hub' href='http://pubsubhubbub.appspot.com/'/><link rel='next' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default?start-index=26&amp;max-results=25&amp;redirect=false'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><generator version='7.00' uri='http://www.blogger.com'>Blogger</generator><openSearch:totalResults>155</openSearch:totalResults><openSearch:startIndex>1</openSearch:startIndex><openSearch:itemsPerPage>25</openSearch:itemsPerPage><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-6566471091033386027</id><published>2016-03-13T16:46:00.000-07:00</published><updated>2016-03-13T16:47:45.471-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica. Cambiamento di riferimento. Traslazione"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><category scheme="http://www.blogger.com/atom/ns#" term="rotazione"/><category scheme="http://www.blogger.com/atom/ns#" term="rototraslazione e coordinate polari"/><title type='text'>geometria analitica. Cambiamento di riferimento. Traslazione, rotazione, rototraslazione e coordinate polari</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;1&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;dividisotto&quot; colspan=&quot;2&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Formule per la traslazione degli assi&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Le coordinate del generico punto P sono:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image238.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;50&quot; /&gt;&amp;nbsp;nel sistema di assi cartesiani ortogonali&amp;nbsp;&lt;i&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image241.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;&lt;/i&gt;, e&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image239.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;55&quot; /&gt;&amp;nbsp;nel sistema di assi paralleli e concordi&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image242.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;46&quot; /&gt;.&lt;br /&gt;Se l&#39;origine del nuovo sistema&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image242.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;46&quot; /&gt;&amp;nbsp;ha, rispetto al primo, le coordinate&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image240.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;54&quot; /&gt;, valgono le relazioni:&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image244.gif&quot; width=&quot;75&quot; /&gt;&amp;nbsp;.&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;49%&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;3&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot; valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr align=&quot;right&quot; valign=&quot;top&quot;&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Muovi il punto P in una posizone a tuo piacere, oppure il punto O&#39; per effettuare una traslazione del sistema di riferimento XO&#39;Y.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;dividisotto&quot; colspan=&quot;2&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Formule per la rotazione degli assi&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Le coordinate del generico punto P sono:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image238.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;50&quot; /&gt;&amp;nbsp;nel sistema di assi cartesiani ortogonali&amp;nbsp;&lt;i&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image241.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;&lt;/i&gt;, e&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image239.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;55&quot; /&gt;&amp;nbsp;riferite al sistema&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image242.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;46&quot; /&gt;&amp;nbsp;in cui gli assi sono ruotati di un angolo&amp;nbsp;&lt;span class=&quot;greco&quot; style=&quot;font-family: Courier, Times, Arial, Helvetica, sans-serif; font-size: 1.6em; font-style: italic; letter-spacing: 0.2em;&quot;&gt;α&lt;/span&gt;, e le origini O e O&#39; coincidono.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Le relazioni:&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image245.gif&quot; width=&quot;150&quot; /&gt;,&lt;br /&gt;consentono di passare da un sistema di riferimento&amp;nbsp;&lt;i&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image241.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;&lt;/i&gt;&amp;nbsp;al sistema&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image242.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;46&quot; /&gt;&amp;nbsp;ruotato di un angolo&amp;nbsp;&lt;span class=&quot;greco&quot; style=&quot;font-family: Courier, Times, Arial, Helvetica, sans-serif; font-size: 1.6em; font-style: italic; letter-spacing: 0.2em;&quot;&gt;α&lt;/span&gt;rispetto al precedente.&lt;/span&gt;&lt;br /&gt;&lt;i&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Disponendo per esempio dell&#39;equazione cartesiana di una curva y=f(x) con queste formule si può trasformare l&#39;equazione della curva nelle nuove variabili X,Y. Un esempio tipico è quello di trasformare l&#39;equazione di un iperbole equilatera nell&#39;equazione della stessa iperbole riferita ai propri asintoti.&lt;/span&gt;&lt;/i&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;49%&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;3&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot; valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr align=&quot;right&quot; valign=&quot;top&quot;&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;I due riferimenti xOy e XO&#39;Y hanno la stessa origine O=O&#39;.&lt;br /&gt;Puoi muovere dove vuoi il punto P. Per effettuare una rotazione del sistema di riferimento XO&#39;Y prova a ruotare l&#39;asse X in senso antiorario.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;dividisotto&quot; colspan=&quot;2&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Formule per la rototraslazione degli assi&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Questo movimento risulta composto dalla traslazione che porta dal sistema&amp;nbsp;&lt;i&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image241.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;&lt;/i&gt;&amp;nbsp;al sistema&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image243.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;51&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image246.gif&quot; width=&quot;79&quot; /&gt;,&lt;br /&gt;e dalla rotazione di un angolo&amp;nbsp;&lt;span class=&quot;greco&quot; style=&quot;font-family: Courier, Times, Arial, Helvetica, sans-serif; font-size: 1.6em; font-style: italic; letter-spacing: 0.2em;&quot;&gt;α&lt;/span&gt;&amp;nbsp;che porta dal sistema&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image243.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;51&quot; /&gt;&amp;nbsp;al sistema&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image242.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;46&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image247.gif&quot; width=&quot;157&quot; /&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Si ottengono così le formule per la rototraslazione:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image248.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;173&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;49%&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;3&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot; valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr align=&quot;right&quot; valign=&quot;top&quot;&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;I due riferimenti XO&#39;Y e X&#39;O&#39;Y&#39; hanno la stessa origine O&#39;.&lt;br /&gt;Muovi il punto P a tuo piacere. Per effettuare la traslazione del riferimento X&#39;O&#39;Y&#39; trascina il punto O&#39;. Per effettuare una traslazione del riferimento XO&#39;Y ruota l&#39;asse X in senso antiorario.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; colspan=&quot;2&quot; style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Formule di trasformazione da coordinate cartesiane a coordinate polari e viceversa.&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;La posizione di un punto qualsiasi sul piano è univocamente determinata da:&lt;br /&gt;- la sua distanza dal&amp;nbsp;&lt;i&gt;polo&lt;/i&gt;&amp;nbsp;=&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;RAGGIO VETTORE&lt;/span&gt;&lt;br /&gt;- l&#39;angolo (&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;ANOMALIA&lt;/span&gt;&amp;nbsp;o&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;ASCISSA ANGOLARE&lt;/span&gt;) formato dall&#39;&lt;i&gt;asse polare&amp;nbsp;&lt;/i&gt;e dal&amp;nbsp;&lt;i&gt;raggio vettore&lt;/i&gt;, assumendo l&#39;&lt;i&gt;asse polare&lt;/i&gt;&amp;nbsp;come origine, e positivo il senso antiorario.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Per rappresentare tutti i punti del piano si conviene che:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;14&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image249.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;30&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image250.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;73&quot; /&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Osservazioni:&lt;br /&gt;- Tutti i punti dell&#39;&lt;i&gt;asse polare&lt;/i&gt;&amp;nbsp;hanno&amp;nbsp;&lt;i&gt;anomalia&lt;/i&gt;&amp;nbsp;nulla.&lt;br /&gt;- L&#39;equazione polare dell&#39;&lt;i&gt;asse&lt;/i&gt;&amp;nbsp;é&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image251.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;39&quot; /&gt;oppure&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image252.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;48&quot; /&gt;&lt;br /&gt;- Tutte le rette passanti per il&amp;nbsp;&lt;i&gt;polo&lt;/i&gt;&amp;nbsp;hanno un&#39;equazione del tipo:&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;19&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image254.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;83&quot; /&gt;&lt;br /&gt;- Un cerchio con centro nel&amp;nbsp;&lt;i&gt;polo&lt;/i&gt;&amp;nbsp;ha un&#39;equazione del tipo:&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;19&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image255.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;81&quot; /&gt;&lt;br /&gt;- Il&amp;nbsp;&lt;i&gt;polo&lt;/i&gt;&amp;nbsp;ha&amp;nbsp;&lt;i&gt;raggio vettore&lt;/i&gt;&amp;nbsp;nullo e&amp;nbsp;&lt;i&gt;anomalia&lt;/i&gt;indeterminata.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Per passare dal sistema cartesiano&amp;nbsp;&lt;i&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image241.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;&lt;/i&gt;&amp;nbsp;al sistema polare (applicando il&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/trigonometria.htm&quot; style=&quot;text-decoration: none;&quot;&gt;primo teorema sui triangoli rettangoli&lt;/a&gt;) si usano le seguenti relazioni:&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image256.gif&quot; width=&quot;86&quot; /&gt;,&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Viceversa, per passare dal sistema polare al cartesiano:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image257.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;118&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image258.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;118&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/cambia_rif/Image259.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;57&quot; /&gt;.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/6566471091033386027/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-analitica-cambiamento-di.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6566471091033386027'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6566471091033386027'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-analitica-cambiamento-di.html' title='geometria analitica. Cambiamento di riferimento. Traslazione, rotazione, rototraslazione e coordinate polari'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-2478966505462074669</id><published>2016-03-13T16:45:00.003-07:00</published><updated>2016-03-13T16:47:45.459-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="iperbole"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>iperbole</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;1&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Iperbole&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana:&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;47&quot; src=&quot;http://www.math.it/formulario/images/iperbole/equaz01.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;83&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;fuochi:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/iperbole/fuochi01.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;211&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;asintoti:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/iperbole/asintoti01a.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;64&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/iperbole/asintoti01b.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;52&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;eccentricità:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/iperbole/eccentric.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;40&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;br /&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana:&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;47&quot; src=&quot;http://www.math.it/formulario/images/iperbole/equaz02.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;93&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;fuochi:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/iperbole/fuochi02.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;215&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;asintoti:&amp;nbsp;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/iperbole/asintoti02a.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;64&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/iperbole/asintoti02b.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;52&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: l&#39;&lt;b&gt;iperbole&lt;/b&gt;&amp;nbsp;è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti&amp;nbsp;&lt;b&gt;fuochi&lt;/b&gt;.&lt;/span&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Vista come sezione di un cono rotondo indefinito, l&#39;iperbole è quella conica che si ottiene come sezione piana del cono di rotazione con un piano parallelo all&#39;asse del cono.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;divididestra&quot; colspan=&quot;2&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;br /&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Iperbole equilatera riferita agli asintoti&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/iperbole/equaz03.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;43&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;lunghezza del semiasse trasverso:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;31&quot; src=&quot;http://www.math.it/formulario/images/iperbole/semia.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;65&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;coordinate dei vertici sul semiasse trasverso:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/iperbole/vertici03.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;225&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;coordinate dei fuochi:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/iperbole/fuochi03.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;260&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/2478966505462074669/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/iperbole.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/2478966505462074669'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/2478966505462074669'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/iperbole.html' title='iperbole'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-1109910420684550809</id><published>2016-03-13T16:44:00.006-07:00</published><updated>2016-03-13T16:47:45.455-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="ellisse"/><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>ellisse</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;1&quot; style=&quot;color: #660066; font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;divididestra&quot; colspan=&quot;2&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;47&quot; src=&quot;http://www.math.it/formulario/images/ellisse/equaz.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;83&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;fuochi:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/ellisse/fuochi01.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;343&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/ellisse/fuochi02.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;345&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;vertici:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/ellisse/vertici.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;245&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;lunghezza asse maggiore =&amp;nbsp;&lt;img alt=&quot;2a&quot; class=&quot;img-middle&quot; height=&quot;19&quot; src=&quot;http://www.math.it/formulario/images/ellisse/2a.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;21&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;lunghezza asse minore =&amp;nbsp;&lt;img alt=&quot;2b&quot; class=&quot;img-middle&quot; height=&quot;19&quot; src=&quot;http://www.math.it/formulario/images/ellisse/2b.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;21&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;eccentricità :&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/ellisse/eccentric.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;40&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&amp;nbsp;equazione della retta tangente all’ellisse nel suo punto&amp;nbsp;&lt;img alt=&quot;p con zero&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/ellisse/pzero.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;70&quot; /&gt;:&amp;nbsp;&lt;img alt=&quot;tangente in P0&quot; class=&quot;img-middle&quot; height=&quot;42&quot; src=&quot;http://www.math.it/formulario/images/ellisse/tgp0.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Coefficienti angolari&amp;nbsp;&lt;i&gt;m&lt;/i&gt;&amp;nbsp;delle rette tangenti all’ellisse condotte dal punto esterno&amp;nbsp;&lt;img alt=&quot;p con zero&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/ellisse/pzero.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;70&quot; /&gt;, sono le soluzioni dell’equazione :&amp;nbsp;&lt;img alt=&quot;coefficienti angolari&quot; class=&quot;img-middle&quot; height=&quot;32&quot; src=&quot;http://www.math.it/formulario/images/ellisse/coeffang.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;241&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: l&#39;&lt;b&gt;&lt;i&gt;ellisse&lt;/i&gt;&amp;nbsp;&lt;/b&gt;è il luogo geometrico dei punti del piano per i quali è costante (=&lt;img alt=&quot;2a&quot; class=&quot;img-middle&quot; height=&quot;19&quot; src=&quot;http://www.math.it/formulario/images/ellisse/2a.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;21&quot; /&gt;) la somma delle distanze da due punti fissi detti&amp;nbsp;&lt;b&gt;&lt;i&gt;fuochi&lt;/i&gt;.&lt;/b&gt;&lt;/span&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;span style=&quot;background-color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Vista come&amp;nbsp;&lt;b&gt;sezione di un cono rotondo&lt;/b&gt;&amp;nbsp;indefinito, la ellisse è quella conica che si ottiene come sezione piana del cono di rotazione con un piano, non parallelo alla generatrice, e incidente l&#39;asse del cono.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/1109910420684550809/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/ellisse.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1109910420684550809'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1109910420684550809'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/ellisse.html' title='ellisse'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-6848024404334865370</id><published>2016-03-13T16:44:00.002-07:00</published><updated>2016-03-13T16:47:45.475-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><category scheme="http://www.blogger.com/atom/ns#" term="parabola"/><title type='text'>parabola</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;1&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: la&amp;nbsp;&lt;b&gt;parabola&lt;/b&gt;&amp;nbsp;è il luogo geometrico dei punti del piano equidistante da un punto fisso, detto&amp;nbsp;&lt;b&gt;fuoco&lt;/b&gt;, e da una retta fissa, chiamata&lt;b&gt;direttrice&lt;/b&gt;.&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Vista come sezione di un cono rotondo indefinito, la parabola è quella conica che si ottiene come sezione piana del cono di rotazione con un piano parallelo alla generatrice del cono.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;50%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Parabola con asse verticale&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;17&quot; src=&quot;http://www.math.it/formulario/images/parabola/eq-parabola.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;98&quot; /&gt;&lt;br /&gt;vertice:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/parabola/vertice.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;128&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;fuoco:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/parabola/fuoco.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;145&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;asse:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;40&quot; src=&quot;http://www.math.it/formulario/images/parabola/asse.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;58&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;direttrice:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;42&quot; src=&quot;http://www.math.it/formulario/images/parabola/direttrice.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;116&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;50%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Parabola con asse orizzontale&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/parabola/eq-parabolax.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;103&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;vertice:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;53&quot; src=&quot;http://www.math.it/formulario/images/parabola/vertice2.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;129&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;fuoco:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;53&quot; src=&quot;http://www.math.it/formulario/images/parabola/fuoco2.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;146&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;asse:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;40&quot; src=&quot;http://www.math.it/formulario/images/parabola/assex.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;59&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;direttrice:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;42&quot; src=&quot;http://www.math.it/formulario/images/parabola/direttricex.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;115&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/6848024404334865370/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/parabola.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6848024404334865370'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6848024404334865370'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/parabola.html' title='parabola'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-8463200627447309771</id><published>2016-03-13T16:43:00.003-07:00</published><updated>2016-03-13T16:47:45.479-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="circonferenza"/><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>circonferenza</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;1&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;divididestra&quot; colspan=&quot;2&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione della circonferenza di centro:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/c.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;51&quot; /&gt;&amp;nbsp;e raggio&amp;nbsp;&lt;i&gt;r&lt;/i&gt;:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;27&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/equaz2.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;151&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana (equazione canonica):&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/equaz.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;303&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;centro:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/c.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;51&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;raggio:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/raggio.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;231&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;condizione di realtà:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/condizione.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;101&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;asse radicale di due circonferenze&amp;nbsp;&lt;img alt=&quot;circonferenza&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/circ1.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;176&quot; /&gt;&amp;nbsp;e&amp;nbsp;&lt;img alt=&quot;circonferenza&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/circ2.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;190&quot; /&gt;:&amp;nbsp;&lt;img alt=&quot;asse radicale&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/circonferenza/asseradicale.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;209&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;3&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L&#39;&lt;b&gt;asse radicale&lt;/b&gt;&amp;nbsp;di due circonferenza è la retta che passa per i loro punti di intersezione.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div id=&quot;applet_container&quot; style=&quot;display: inline; height: 400px; width: 500px;&quot;&gt;&lt;div class=&quot;applet_scaler&quot; style=&quot;height: 400px; position: relative; transform-origin: 0% 0% 0px; transform: none; width: 500px;&quot;&gt;&lt;article class=&quot;notranslate geogebraweb&quot; data-param-enablelabeldrags=&quot;false&quot; data-param-enablerightclick=&quot;false&quot; data-param-enableshiftdragzoom=&quot;true&quot; data-param-errordialogsactive=&quot;true&quot; data-param-ggbbase64=&quot;UEsDBBQACAgIAByVYkQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAByVYkQAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vnfc9s2En5O/woMH+7JkogfBMmcnI6TxnOZcetOnd7c3MsNSEISaorkkZQsZ/LH3y5ASpTsuJHtOnk4JzJEYLGL/Xb3A0BPf9wsc7LWdWPK4tSjY98jukjLzBTzU2/VzkaR9+ObH6ZzXc51UisyK+ulak89MRbebh48jWmAk0126skkyHzGxEjoxB8JFs5GSio+0jKhXMUzlYjUI2TTmNdF+Yta6qZSqb5KF3qpLspUtVbnom2r15PJzc3NuLc+Luv5ZD5Pxpsm8wisvGhOve7La1C3N+mGW3Hm+3Tyr58vnPqRKZpWFan2CHq1Mm9+eDW9MUVW3pAbk7ULWL2QHlloM1+Am0EQemSCQhX4Wum0NWvdwNTBo/W5XVaeFVMFjr9y30i+dccjmVmbTNennj/mfhzEYcA4o3FEBQOLZW100XbCtDM66dVN10bfOL34zZoUfgyLW5vGJLk+9WYqb8AtU8xqgBRWVK/gsWlvc52oun/eLYiewD8QMJ806oLYORxghEp5ElB5Evr+SRD4bjFDyx5pyzK3an0SxOTzZ8J85pMTbKhrGDRSuiHf9fncNcw1wjWBkxFuunCiwskIJyP4A452zztPu449V3tH+Z6j4B9+JHwsAgd+RgM/KTrxmVBcvW04wXVTu35sRPco3WNoG+q7hnaDEf6yeAE0MrJfnugaf5RrdGDVZcaXjd7JnN6ipPHXW2RP8nPrJbvPSxZ8wcsngtsbpcHAKNiy/+3njkl+lJ9fhPYIi1I8hQUeYTD0X8LgdNJz3rQrQtIsULZL11YvG6QfHlsGIpQEUKEyBMIICI2hCbFSGaEBEQE80ohIbEPCsTgF4SQiKEc5sTwTRPBL2MKVJABd2Bm6CiZckIATatlJEOAkYhkO2I5xkAgCEsAktE7RLJdESHjgERGwQOS2EPmDwzx4BuOMcEo4zqUhYcAGjITIj1T03EAYKGVE+kTiVCBIIEdHjDAjIhy9gQyvysZswV3ovNpGxeJoimrVdth1/eky63FsywPxrEyv3x6ArVXT9t9BCPal3fbn9qm93fHVNFeJzuEMcYV5QMha5RAqz+qflUVL+hxgrm9eq2ph0uZKty3Masgfaq0uVKs35yDd9Au0pu2mPdWrNDeZUcU/IUlQBSok2z0cianfwwUVzkpalnV2ddtA5pDNv3VdwgKEGMfDH6ilWzfEYcgf/FDYbJtUYc6LeH9SBEG47cYCf2+Wz51tvd76pjZ66xGZ11hRg4cPzdsy33VVpSnad6pqV7U9kgEP1ujWWTHPtUXXRh0ON+l1Um6uHEdKp+vjbaW3uCfzd2Ve1gRqkgUBCHRt4lorg0vbSvlWxrcSfh8nk23HacyshG0T11opCLxbWucq7d2kfm/GNJZJQPleXtq0wbPSqjDtRf/QmvR65ypO+GW1TCDjupTc10mfS+d0cpBk02tdFzp3qVRAMFflqnG5vc3PV9NVo39V7eKsyH7Tc6jKXxUSYwuqnehuyZlOzRImuv4OPIWB/R2W6nozPa9172JuT8EO2mFJucS+021Vndfl8kOx/ghZc7DU6aT3Z9qktakwO0kCTH2td/mXmUYBz2fDeeB8A16kyDkAZIsgekSt2kVZ24MuFC60WKW5XsKplrQ2EW0ubwNyac/LiDwpkz+AO7Z7hRvf4QTD9yalTV+VVwuFZ+rO6Vzd6noPBqvv5zI7BAewtx4AH1SoAPOg0tqlkFsxfKlAoa28QYgt3g3Z4IWJY+3DWvA+9MndoNx9AZ3FcnRW+bD3IFKQaA6nP0Hs7Z8gNljhc0B2OZs1ukUvR8w5+QKAjvyxiKwxPubRs0CalsulKjJS2PPJO1OnufZ2G6PyMReJogiwA2/V9gPv/kOduk7JnQhBLZh0GwEUf9EY3YnCjntb2FCv4fbY2KN3220F9ss/TJZpe1xwe5OZ62INay2Bo8jG794D3PrOPvnU92yoDRCO0a7rEx0ECOJfmw056+XPeqkzhvFkksu9nZGc8c7EmQDNrpjOAky4cbdn6/8Wzp3GkTWeMswMID+ibi7/puCI9PcX5ZtB8dDopYpH9LUD8LG/nI5++sap/jyYBeNQdHzzPAz+NXTTJaQlnZ/uIR12HOmw/5POF0iHwS4SRtGOdIJD0nE105MOO4519mP9ocBTHrh0EG7cFWyoMVJEsS0Gg5i/fzji+5X3/nHxlpENODaJax4b8F35AKv7NBYykJRRyvCu1W3eoeRcioD6MOg/Dxs9Fm52B+7zY+A+/67gpoJTGlE/oiKKuYObjoUIeRAGlEWhDIUf/wV4X0CVH0D93gF9fgdf9TC+SBhb+NSjNub+DtvfT48Hl989zMcsikNANaIyDiXlbuMe+5RxGTARSx9auOc6eEcSohHBUMh8GQkZRk+gwwPGMcsqN6lpuzWqym50dt2qaTSpVWbwhcPDIbvSc+z/2tNu/XDUmk5bH5j6297g9i4NsTv4wBkycts47uvREwICsOR4bNiyDOB/97J/rXWFb1kui4+1Khr869j+Lf/o2Dx8NKi74ePi9A3Ov18VLTpmwf6LtI62uKBscFOQ33EY72HFrr4ud7Hai2FyBDcm3ws34glsGBJ8Idrf06nb3UfhWEh/cNaiL0eHKeBX30OHk+G7Kvv2uPtT8pv/AVBLBwjAVda3wwcAAPoeAABQSwECFAAUAAgICAAclWJE1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAByVYkTAVda3wwcAAPoeAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAWggAAAAA&quot; data-param-height=&quot;400&quot; data-param-showalgebrainput=&quot;false&quot; data-param-showmenubar=&quot;false&quot; data-param-showreseticon=&quot;false&quot; data-param-showsplash=&quot;false&quot; data-param-showtoolbar=&quot;false&quot; data-param-showtoolbarhelp=&quot;false&quot; data-param-usebrowserforjs=&quot;false&quot; data-param-width=&quot;500&quot; data-scalex=&quot;1&quot; data-scaley=&quot;1&quot; id=&quot;geogebraweb01457912575708&quot; style=&quot;-webkit-tap-highlight-color: rgba(255, 255, 255, 0); border: 0px solid rgb(211, 211, 211); display: inline-block;&quot;&gt;&lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;GeoGebraFrame jsloaded&quot; style=&quot;border: 1px solid rgb(211, 211, 211); font-family: geogebra-sans-serif, Frutiger, &#39;Frutiger Linotype&#39;, Univers, Calibri, &#39;Gill Sans&#39;, &#39;Gill Sans MT&#39;, &#39;Myriad Pro&#39;, Myriad, &#39;DejaVu Sans Condensed&#39;, &#39;Liberation Sans&#39;, &#39;Nimbus Sans L&#39;, Tahoma, Geneva, &#39;Helvetica Neue&#39;, Helvetica, Arial, sans-serif; font-size: 15.552px; font-stretch: normal; height: auto; line-height: 1.2em; margin: 0px; padding: 5px; position: relative; width: auto;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; style=&quot;font-size: 0.9em; vertical-align: top;&quot;&gt;&lt;div style=&quot;height: 398px; position: relative; width: 498px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;div aria-hidden=&quot;true&quot; style=&quot;height: 10ex; position: absolute; top: -20ex; visibility: hidden; width: 10em; z-index: -32767;&quot;&gt;&lt;/div&gt;&lt;div style=&quot;bottom: 0px; left: 0px; overflow: hidden; position: absolute; right: 0px; top: 0px;&quot;&gt;&lt;div style=&quot;bottom: 0px; left: 0px; position: absolute; right: 0px; top: 0px;&quot;&gt;&lt;div class=&quot;EuclidianPanel&quot; dir=&quot;ltr&quot; style=&quot;bottom: -1px; height: 398px; left: 0px; overflow: hidden; position: relative; right: -1px; top: 0px; width: 498px;&quot;&gt;&lt;canvas class=&quot;cursor_default&quot; dir=&quot;ltr&quot; height=&quot;398&quot; id=&quot;View_1&quot; style=&quot;-webkit-user-select: none; cursor: crosshair; height: 398px; position: absolute; width: 498px; z-index: 0;&quot; tabindex=&quot;0&quot; width=&quot;498&quot;&gt;&lt;/canvas&gt;&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;/span&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/article&gt;&lt;/div&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Puoi variare la posizione dei centri delle due circonferenze o il loro raggio. Cosa succede all&#39;asse radicale quando le due circonferenze non si intersecano?&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;td align=&quot;left&quot; style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;49%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: la&amp;nbsp;&lt;b&gt;circonferenza&amp;nbsp;&lt;/b&gt;è il luogo geometrico dei punti del piano equidistante da un punto fisso, detto&lt;b&gt;centro.&lt;/b&gt;&lt;/span&gt;&lt;br /&gt;&lt;div class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&amp;nbsp;Vista come sezione di un cono rotondo indefinito, la circonferenza è quella conica che si ottiene come sezione piana del cono di rotazione con un piano perpendicolare all&#39;asse del cono.&lt;/span&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/8463200627447309771/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/circonferenza.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8463200627447309771'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8463200627447309771'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/circonferenza.html' title='circonferenza'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-5461514316305308882</id><published>2016-03-13T16:42:00.003-07:00</published><updated>2016-03-13T16:47:45.467-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="la retta"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>la retta</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;1&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;divididestra&quot; colspan=&quot;2&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana in&amp;nbsp;&lt;b&gt;forma implicita&lt;/b&gt;:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/retta/Image320.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;98&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;coeffciente angolare:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/retta/Image345.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;123&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;termine noto:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/retta/Image346.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;119&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Condizione di parallelismo tra le due rette&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/retta/Image320.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;98&quot; /&gt;&amp;nbsp;e&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/retta/Image331.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;115&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/retta/Image332.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;91&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Condizione di perpendicolarità tra le due rette&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/retta/Image320.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;98&quot; /&gt;&amp;nbsp;e&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/retta/Image331.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;115&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/retta/Image333.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;91&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;/td&gt;&lt;td bgcolor=&quot;#FFFFFF&quot; style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;50%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione cartesiana in&amp;nbsp;&lt;b&gt;forma esplicita&lt;/b&gt;:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/retta/Image321.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;73&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;coefficiente angolare:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/retta/Image322.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;162&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;termine noto o intercetta:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/retta/Image323.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;182&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione della retta passante per due punti&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/retta/Image342.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;63&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/retta/Image343.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;69&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/retta/Image324.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;273&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/retta/Image325.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;133&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/retta/Image326.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;137&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;equazione della retta passante per un punto&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/retta/Image341.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;69&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/retta/Image340.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;125&quot; /&gt;&amp;nbsp;(fascio di rette proprio)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;condizione di parallelismo tra le due rette&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/retta/Image321.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;73&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/retta/Image327.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;81&quot; /&gt;:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/retta/Image328.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;48&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;condizione di perpendicolarità tra le due rette&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/retta/Image321.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;73&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/retta/Image327.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;81&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/retta/Image329.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;61&quot; /&gt;&amp;nbsp;o anche&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/retta/Image330.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;70&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;angolo tra due rette&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/retta/Image321.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;73&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/retta/Image327.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;81&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/retta/Image347.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;107&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/5461514316305308882/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/la-retta.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/5461514316305308882'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/5461514316305308882'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/la-retta.html' title='la retta'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-3278213084175956685</id><published>2016-03-13T16:42:00.000-07:00</published><updated>2016-03-13T16:47:45.463-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica - metrica"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>geometria analitica - metrica</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; style=&quot;color: #660066; font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td colspan=&quot;2&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image461.gif&quot; width=&quot;61&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image462.gif&quot; width=&quot;63&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;23&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image463.gif&quot; width=&quot;62&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Coordinate del punto medio di un segmento:&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;42&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image464.gif&quot; width=&quot;91&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;42&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image465.gif&quot; width=&quot;94&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Distanza tra due punti:&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;30&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image466.gif&quot; width=&quot;198&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Distanza di un punto da una retta di equazione&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image467.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;98&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;51&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image468.gif&quot; width=&quot;118&quot; /&gt;&lt;br /&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;3&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div id=&quot;applet_container1&quot; style=&quot;display: inline; height: 260px; width: 400px;&quot;&gt;&lt;div class=&quot;applet_scaler&quot; style=&quot;height: 260px; position: relative; transform-origin: 0% 0% 0px; transform: none; width: 400px;&quot;&gt;&lt;article class=&quot;notranslate geogebraweb&quot; data-param-enablelabeldrags=&quot;false&quot; data-param-enablerightclick=&quot;false&quot; data-param-enableshiftdragzoom=&quot;true&quot; data-param-errordialogsactive=&quot;true&quot; data-param-ggbbase64=&quot;UEsDBBQACAgIADGWYkQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADGWYkQAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vhtb9s2EP7c/gpCnzYgsUmKlOTC7rAWGFogW4OlG4Z9oyXa5iJLmkQ7L+if2h/Zb9odKcmynaRpU3TDkjh8O97xnnvh0dPvrtc52eq6MWUxC9iIBkQXaZmZYjkLNnZxmgTfvXw+Xepyqee1IouyXis7C8RIBLt9MBoxiZtNNgt4phNOk+w0noTRqUjV4nSiFvx0IZlMZEqzudYBIdeNeVGUP6m1biqV6ot0pdfqrEyVdTxX1lYvxuOrq6tRJ31U1svxcjkfXTdZQODkRTML2s4LYLe36Sp05JxSNv7txzPP/tQUjVVFCvJRq415+fzZ9MoUWXlFrkxmV6ALjwOy0ma5QjVZGJAxElWga6VTa7a6ga2DodPZrqvAkakC15/5Hsl7dQKSma3JdD0L6EhESZgIGouJYELygJS10YVtSVkrctwxm26NvvJcsecECjqBc25NY+a5ngULlTeglCkWNQAK56k3MGzsTa7nqu7Gu+OwE/gFAnOrkRdYzqMwC2TITqQQJzGlJ1JSf5ah4IDYsswdV0rkhHz4QDjllJxgw3zDoYkiv0T9HA19w30jfCM9jfDbhScVnkZ4GhE+oGc73inaTuxp2ukZDvVkoB9+Ivg4AA70TAZ6MlTiA2F4eteEBM/N3PmxEe0w8sPYNYz6hrWLCf5zeAE0UeI6T1Qt/CzV2ECqd4z7hR45zp1O8zGJ/El69lryu2RyeY+WTwS3E8rkMDogKPDPfY5Ehp+k573QfoLESDwlCXyGwJh+DYHTcZfypm0QkmaFtK27Wr1uMP2EE5eBCCMSIjSKIWFIwibQxBipnDBJhIQhS0iEbUxCDE5BQpIQpGMhcXlGJvBPuMCNiAReOBn7CCahIDIkzGUnQSAnEZfhINvxECikJBI2oXSGYsOIiAgGYUIEHBBzW4z5I4R9MAbhnISMhLiXxYRDNuAkxvzIRJcbCAemnESURLgVEiQkR58YYUdCQtQGPLwqG9ODu9J51VvF4WiKamNb7Nr5dJ11ONrygDwr08tXB2Br1diuD0RwLe3uPn9N7V2Nz6a5muscCogL9ANCtioHUwWO/6IsLOl8gPu5Za2qlUmbC20t7GrIH2qrzpTV1z8AddMd0Il2N/ZUb9LcZEYVv4KTIAtkSPoLHJ2ou8B53EpOy7LOLm4a8Bxy/buuS1jDkmXwAwDe+JXwYIUC0E2q0OUl3V+B3HRzz1Krn972mqlr3etDljXG02DwtnlV5rupqjSFfa0qu6ldNQaSalTq+2KZa4etsznUNenlvLy+8Bky8rze31S6R32+fF3mZU0gIrmUQNC2c986GjxaT0UdDXUUtLOSyfp1NuGOwrVz3zoqMLs/Wqsq69RktBNjGpdHgPmeVzqnwTJpUxh71g2sSS93quKGnzbrOfhb65D7PNmX4jkdH7jY9FLXhc69IxVgzE25abxn9975bLpp9Lmyq++L7Ge9hJg8V5gWLbD2pLsjZzo1a9jo51vwFBr2Fziqn830stadirkrgD20w4Dybn007Vj9UJfrt8X2PXjNwVGn406faZPWpkLvJHPI05d653+ZaRRk+Wy4D5RvQIsUMw4AaRHEgKiNXZW1q3EhbKHFGM31GkpaYp0jOl/uDXLuSmVEnpTzPyBz9DeFX9/hBMt3OqVzX5VXK4XldKt0rm50vQeD4/djmR2CA9g7DSAbVMgA/aDS2ruQPzF0KmDoIm9gYod3Q65nwSkdRRBsN/j6SaBYvPXPJ/9YQHUxIL3ccDh7YCtwNY/URzB79RHMBmf8L4PGRzJxoEHnQczYF8Ds9f8CM0CKO8jCUfywn/FHYpaW67UqMlK4ou0McnawqxUURWcjiiF+HpuN7RZqz6plcAQ/pv8e3frfjfKB07ERjyfDH++CEs1xi+vRiEouDq8wC1XJJbzAG/d+se2N6jpvTJbpovdS/WfhtzT+XjHrKjepsQ8D/66GtLksC5XfYYJzb4L6yATzTzDB/NgE+1fjIyKAfhETOKxv7rHFLTp5ktBwMCu/tjXeFnhRA0YHhqi9IeZHhnjzsCH2U9GbzwqGrlr7VEu8WywabR3w/ori/NF2SmRMQz4ofGF7IkdSCiZZa53Y2yweRSIRXzAVXeglzt8dCm+OLLB62AJNy63DePWv2UD4/H2nDcJDGzBI8zIKE86TiIVywnz2pyMhEhZRlsB8HHMh2+QFj44EHs4igkf1RHL5hDwG2OZ4E/WxAHfXcZl7qXWF74t3xftaFQ1+JXxY36bwbMF7zxeyBr9zvVXkm/OT+tuHPcA9bg7s/7qzP1EcveHQDf7+62E/cMVwb2Wg7ivk48IZ+puuAhlBJMSTKORRPBEJdDzJ591ojB47EHukA+GX0C533h3FR2+vRxi8e3LU6aBMPYrO8bDed+/v9pv4l/8AUEsHCNAFb6ALBwAAORgAAFBLAQIUABQACAgIADGWYkTWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAMZZiRNAFb6ALBwAAORgAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACiBwAAAAA=&quot; data-param-height=&quot;260&quot; data-param-showalgebrainput=&quot;false&quot; data-param-showmenubar=&quot;false&quot; data-param-showreseticon=&quot;false&quot; data-param-showsplash=&quot;false&quot; data-param-showtoolbar=&quot;false&quot; data-param-showtoolbarhelp=&quot;false&quot; data-param-usebrowserforjs=&quot;false&quot; data-param-width=&quot;400&quot; data-scalex=&quot;1&quot; data-scaley=&quot;1&quot; id=&quot;geogebraweb01457912500949&quot; style=&quot;-webkit-tap-highlight-color: rgba(255, 255, 255, 0); border: 0px solid rgb(211, 211, 211); display: inline-block;&quot;&gt;&lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;GeoGebraFrame jsloaded&quot; style=&quot;border: 1px solid rgb(211, 211, 211); font-family: geogebra-sans-serif, Frutiger, &#39;Frutiger Linotype&#39;, Univers, Calibri, &#39;Gill Sans&#39;, &#39;Gill Sans MT&#39;, &#39;Myriad Pro&#39;, Myriad, &#39;DejaVu Sans Condensed&#39;, &#39;Liberation Sans&#39;, &#39;Nimbus Sans L&#39;, Tahoma, Geneva, &#39;Helvetica Neue&#39;, Helvetica, Arial, sans-serif; font-size: 15.552px; font-stretch: normal; height: auto; line-height: 1.2em; margin: 0px; padding: 5px; position: relative; width: auto;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; style=&quot;font-size: 0.9em; vertical-align: top;&quot;&gt;&lt;div style=&quot;height: 258px; position: relative; width: 398px;&quot;&gt;&lt;div aria-hidden=&quot;true&quot; style=&quot;height: 10ex; position: absolute; top: -20ex; visibility: hidden; width: 10em; z-index: -32767;&quot;&gt;&lt;/div&gt;&lt;div style=&quot;bottom: 0px; left: 0px; overflow: hidden; position: absolute; right: 0px; top: 0px;&quot;&gt;&lt;div style=&quot;bottom: 0px; left: 0px; position: absolute; right: 0px; top: 0px;&quot;&gt;&lt;div class=&quot;EuclidianPanel&quot; dir=&quot;ltr&quot; style=&quot;bottom: -1px; height: 258px; left: 0px; overflow: hidden; position: relative; right: -1px; top: 0px; width: 398px;&quot;&gt;&lt;canvas dir=&quot;ltr&quot; height=&quot;258&quot; id=&quot;View_1&quot; style=&quot;-webkit-user-select: none; height: 258px; position: absolute; width: 398px; z-index: 0;&quot; tabindex=&quot;0&quot; width=&quot;398&quot;&gt;&lt;/canvas&gt;&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/article&gt;&lt;/div&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;Muovi il punto P o la retta r per vedere come varia la distanza PH tra il punto e la retta.&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Distanza di un punto da una retta di equazione&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image469.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;73&quot; /&gt;&lt;br /&gt;&lt;img align=&quot;middle&quot; alt=&quot;formula&quot; height=&quot;51&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image470.gif&quot; width=&quot;126&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;angolo tra due rette&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/retta/Image321.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;73&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/retta/Image327.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;81&quot; /&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/retta/Image347.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;107&quot; /&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;49%&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;3&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div id=&quot;applet_container2&quot; style=&quot;display: inline; height: 260px; width: 329px;&quot;&gt;&lt;div class=&quot;applet_scaler&quot; style=&quot;height: 260px; position: relative; transform-origin: 0% 0% 0px; transform: none; width: 329px;&quot;&gt;&lt;article class=&quot;notranslate geogebraweb&quot; data-param-enablelabeldrags=&quot;false&quot; data-param-enablerightclick=&quot;false&quot; data-param-enableshiftdragzoom=&quot;true&quot; data-param-errordialogsactive=&quot;true&quot; data-param-ggbbase64=&quot;UEsDBBQACAgIAOKWYkQAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAOKWYkQAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVhtj9M4EP68/IpRPtynbRvnvXstCJCQkBaEbrnT6b45iduaTeModt8QP/5m7CTtFnbvYBGw3XZiezzj5/HM2O3s2X5dwVa0Wqp67rGx74GoC1XKejn3NmYxyrxnT5/MlkItRd5yWKh2zc3ci8aRd5yHrTGLabIs5x4vF0E8DfJRxpN4FIkoGmWliEbTaBH7xUIEeT71APZaXtXqLV8L3fBC3BQrsebXquDG2lwZ01xNJrvdbtx7H6t2OVku8/Felx7gyms997qHKzR3Z9IutOqB77PJ32+unfmRrLXhdSE8IFQb+fTJxWwn61LtYCdLs5p7YZx4sBJyuSKYLPRgQkoNYm1EYeRWaJx60rSYzbrxrBqvafzCPUE1wPGglFtZinbu+eM4Yek0TeMg87NplmUeqFaK2nS6rPM56a3NtlLsnFl6sh4jf5riFkgt80rMvQWvNKKS9aJFRnFB7Qab2hwqkfO2bx/Xwy7xhQryoyBbuHWOBhxJsst4ml2mvn8Zx75by6ljD4xSlbXqQzyFT58g8AMfLkkwJwIUSeKGfNfnh04ETkROxE4nctMjpxo5ncjpROEDOLv2EWjXcQdpjzO8gxPx0TvBtyXgDGd2gpMRiE/AaPVWhEDrZnb9JKKumbhmagXznWDdYEYfli+kJsnswyOhhd8EjZ14dYFxv9PPAmfwGEz/v8fgUTgHlMGXUAbxPSgfSW7vlMUnTtGX/bfvz1yGX4XzXmq/wmMSPaYIfIPD1P8RDmeTvuTNuiQEvSLdLlyNWGsqP+HUViBgEGOGJikWjBjYFEVKmRoAiyGKsckySEimEFJyRhBCBqTHQrB1Js7wI7KJm0CMtqgzdRkMYQRxCMxWpwiwJoGtcFjtghA14hhinETeGbkNE4gSbIQZRLhAqm0p1Y8Q52EbnQcQMghpLkshwGoQQEr1kUV9bYAAjQaQ+JDQVCyQWBxdYcQZGYSEBiO8UVoO5K5E1Qy7YnmUdbMxHXddf7Euex6NOlMvVXH74oxswbXpn1EJj6Xj4eeOqTtn48Ws4rmo8AZxQ3EAsOUVbpVn7S9UbaCPgcD1LVverGShb4QxOEvDB77l19yI/SvU1v0CrWt7ZM/EpqhkKXn9FwYJmSCDMJzgVJj6EzxIO8+FUm15c9AYObD/R7SKCgQbp0k4vDCVDt1IkIyxtBz/8DDQBaeQj4NxfDqCGX+4d8h6FtsBGd8L3VO5bCmdOvKp8Vq/UNWxq1GyNi95YzatvY1hEWwJ0/N6WQlLrd1yvNcUt7na37gCmThb7w+NGEjPly9VpVrAhAziGBU6mTtpdWhlg5ZvdXyr4febJMthnE0Dq2Fl7qTVwl13S+uQsh4m83s3UtsygsZPY8yGDN2SNrU0133DyOL2iJT0327WOUZbN+2uSfadTM4mZ/E1uxVtLSoXRTXu5EZttAvrITQvZhst3nGzel6Xf4glJuQ7TjXRoGmnelxxKQq5xomuv6OO07b+iUt1vaVYtqJHWNnrryP2NJtcTH/WbU29atX6db19jzFzttTZpMcz00UrGwpNyLFI34pj9JVScyzx5ek8BK8RRUHlBok0RKIHfGNWqrU3XMxZlJSglVjjfRaMDUMbycOGvLMXZWIeVP4By8bZhh15wuEvhqQNXl41K06X6Q50xQ+ivUODtfdGlefkIPcWAZaChgxQHDRCuAhyK8aHBg3avDvZYsu3hj0ugb7sHLpvTB+ddN8TCCvlonManvaebRTGmaPJUrte87qE2h6jb2TbqtY71m/uE2/A2dw7PMd47/jZmGHwN44Hwe/ObGfsv/ahm/JTd+PI6OhnUNpRYIndP0TsN9P7i5I8+vEsn3L9YBB/F8Z/Ld6/O+2T01psL0bdbyRP/wVQSwcIzIjgAoEFAADTEQAAUEsBAhQAFAAICAgA4pZiRNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICADilmJEzIjgAoEFAADTEQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAABgGAAAAAA==&quot; data-param-height=&quot;260&quot; data-param-showalgebrainput=&quot;false&quot; data-param-showmenubar=&quot;false&quot; data-param-showreseticon=&quot;false&quot; data-param-showsplash=&quot;false&quot; data-param-showtoolbar=&quot;false&quot; data-param-showtoolbarhelp=&quot;false&quot; data-param-usebrowserforjs=&quot;false&quot; data-param-width=&quot;329&quot; data-scalex=&quot;1&quot; data-scaley=&quot;1&quot; id=&quot;geogebraweb11457912500951&quot; style=&quot;-webkit-tap-highlight-color: rgba(255, 255, 255, 0); border: 0px solid rgb(211, 211, 211); display: inline-block;&quot;&gt;&lt;table cellpadding=&quot;0&quot; cellspacing=&quot;0&quot; class=&quot;GeoGebraFrame jsloaded&quot; style=&quot;border: 1px solid rgb(211, 211, 211); font-family: geogebra-sans-serif, Frutiger, &#39;Frutiger Linotype&#39;, Univers, Calibri, &#39;Gill Sans&#39;, &#39;Gill Sans MT&#39;, &#39;Myriad Pro&#39;, Myriad, &#39;DejaVu Sans Condensed&#39;, &#39;Liberation Sans&#39;, &#39;Nimbus Sans L&#39;, Tahoma, Geneva, &#39;Helvetica Neue&#39;, Helvetica, Arial, sans-serif; font-size: 15.552px; font-stretch: normal; height: auto; line-height: 1.2em; margin: 0px; padding: 5px; position: relative; width: auto;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; style=&quot;font-size: 0.9em; vertical-align: top;&quot;&gt;&lt;div style=&quot;height: 258px; position: relative; width: 327px;&quot;&gt;&lt;div aria-hidden=&quot;true&quot; style=&quot;height: 10ex; position: absolute; top: -20ex; visibility: hidden; width: 10em; z-index: -32767;&quot;&gt;&lt;/div&gt;&lt;div style=&quot;bottom: 0px; left: 0px; overflow: hidden; position: absolute; right: 0px; top: 0px;&quot;&gt;&lt;div style=&quot;bottom: 0px; left: 0px; position: absolute; right: 0px; top: 0px;&quot;&gt;&lt;div class=&quot;EuclidianPanel&quot; dir=&quot;ltr&quot; style=&quot;bottom: -1px; height: 258px; left: 0px; overflow: hidden; position: relative; right: -1px; top: 0px; width: 327px;&quot;&gt;&lt;canvas dir=&quot;ltr&quot; height=&quot;258&quot; id=&quot;View_1&quot; style=&quot;-webkit-user-select: none; height: 258px; position: absolute; width: 327px; z-index: 0;&quot; tabindex=&quot;0&quot; width=&quot;327&quot;&gt;&lt;/canvas&gt;&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/article&gt;&lt;/div&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;Muovi il punto P per vedere come variano i suoi simmetrici ripetto agli assi e rispetto all&#39;origine.&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;more&quot; style=&quot;background-image: url(&amp;quot;../images/back_math-g.gif&amp;quot;); color: #777777; font-size: 0.9em; letter-spacing: 0.1em; line-height: 1.2em;&quot;&gt;Nella sezione&amp;nbsp;&lt;i&gt;costruzioni geometriche con Cabri&lt;/i&gt;&amp;nbsp;puoi imparare qualcos&#39;altro sulla&lt;b&gt;simmetria&lt;/b&gt;&amp;nbsp;&lt;a class=&quot;C&quot; href=&quot;http://www.math.it/cabri/simm_assiale.htm&quot; style=&quot;color: #ff6600; text-decoration: none;&quot;&gt;assiale&lt;/a&gt;&amp;nbsp;e&amp;nbsp;&lt;a class=&quot;C&quot; href=&quot;http://www.math.it/cabri/simm_centrale.htm&quot; style=&quot;color: #ff6600; text-decoration: none;&quot;&gt;centrale&lt;/a&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Coordinate del&amp;nbsp;&lt;a class=&quot;C&quot; href=&quot;http://www.math.it/cabri/baricentro.htm&quot; style=&quot;color: #ff6600; text-decoration: none;&quot;&gt;baricentro del triangolo&lt;/a&gt;&amp;nbsp;&lt;i&gt;ABC&amp;nbsp;&lt;/i&gt;(note le coordinate dei tre punti):&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;42&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image471.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;118&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;42&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image472.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;122&quot; /&gt;&lt;br /&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Area del triangolo&amp;nbsp;&lt;i&gt;ABC&lt;/i&gt;&lt;br /&gt;Note le coordinate dei tre vertici A(x&lt;sub&gt;1&lt;/sub&gt;;y&lt;sub&gt;1&lt;/sub&gt;), B(x&lt;sub&gt;2&lt;/sub&gt;;y&lt;sub&gt;2&lt;/sub&gt;), C(x&lt;sub&gt;3&lt;/sub&gt;;y&lt;sub&gt;3&lt;/sub&gt;), l’Area si calcola con il determinante:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image658.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;149&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image473.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;62&quot; /&gt;,&lt;br /&gt;dove&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;58&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image474.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;145&quot; /&gt;, ovvero&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/metrici/Image475.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;286&quot; /&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/3278213084175956685/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-analitica-metrica.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/3278213084175956685'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/3278213084175956685'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-analitica-metrica.html' title='geometria analitica - metrica'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-1179223676050178575</id><published>2016-03-13T16:41:00.000-07:00</published><updated>2016-03-13T16:41:24.792-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="geometria analitica"/><category scheme="http://www.blogger.com/atom/ns#" term="Trasformazioni geometriche"/><title type='text'>Trasformazioni geometriche</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;1&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Traslazione&lt;/b&gt;&amp;nbsp;di vettore&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image001.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;61&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;50&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image004.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;81&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Rotazione&lt;/b&gt;&amp;nbsp;di un angolo&amp;nbsp;&lt;span class=&quot;greco&quot; style=&quot;font-family: Courier, Times, Arial, Helvetica, sans-serif; font-size: 1.6em; font-style: italic; letter-spacing: 0.2em;&quot;&gt;α&lt;/span&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image024.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;146&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Simmetria centrale&lt;/b&gt;&amp;nbsp;di centro C&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image006.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;50&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;50&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image007.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;89&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Simmetria assiale&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Rispetto all’asse delle ascisse (&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image009.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;)&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image010.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;61&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Rispetto all’asse delle ordinate (&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image011.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image012.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;58&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Rispetto ad una retta parallela all’asse delle ascisse (&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image013.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;38&quot; /&gt;)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image014.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;92&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Rispetto ad una retta parallela all’asse delle ordinate (&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image015.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;37&quot; /&gt;)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image016.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Rispetto alla bisettrice I, III (&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;17&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image017.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;38&quot; /&gt;)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image018.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;50&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Rispetto alla bisettrice II, IV (&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;17&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image019.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;48&quot; /&gt;)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image020.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;60&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;49%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Omotetia&lt;/b&gt;&amp;nbsp;di centro O(0,0) e rapporto&amp;nbsp;&lt;i&gt;k&lt;/i&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image021.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;62&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Omotetia&lt;/b&gt;&amp;nbsp;di centro O(0,0) rapporto&amp;nbsp;&lt;i&gt;k&lt;/i&gt;&amp;nbsp;con traslazione di vettore&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image001.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;61&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;50&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image022.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;92&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Omotetia&lt;/b&gt;&amp;nbsp;di centro C(&lt;i&gt;a&lt;/i&gt;,&lt;i&gt;b&lt;/i&gt;) e rapporto&amp;nbsp;&lt;i&gt;k&lt;/i&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;53&quot; src=&quot;http://www.math.it/formulario/images/trasformaz_geometriche/image023.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;126&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/1179223676050178575/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/trasformazioni-geometriche.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1179223676050178575'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1179223676050178575'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/trasformazioni-geometriche.html' title='Trasformazioni geometriche'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-6436356933850006430</id><published>2016-03-13T16:38:00.003-07:00</published><updated>2016-03-13T16:39:27.464-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria dello spazio"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria Solida. Parti della sfera e della superficie sferica"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Geometria Solida. Parti della sfera e della superficie sferica</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;br /&gt;&lt;/span&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;28%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;36%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;36%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;volume&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;28%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Calotta sferica&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;36%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;29&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image518.gif&quot; width=&quot;117&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;36%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;br /&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;28%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Zona sferica&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;36%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;29&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image519.gif&quot; width=&quot;103&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;36%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;br /&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;28%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Fuso sferico&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;36%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image521.gif&quot; width=&quot;106&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;36%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;br /&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Segmento sferico a una base&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image522.gif&quot; width=&quot;111&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Segmento sferico a due basi&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image523.gif&quot; width=&quot;159&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Spicchio sferico&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image524.gif&quot; width=&quot;75&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;br style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot; /&gt;&lt;/span&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisoprasotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;65%&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Calotta sferica&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie della calotta sferica&amp;nbsp;&lt;/b&gt;è data dal prodotto della lunghezza della circonferenza massima della superficie a cui appartiene per la sua altezza:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;&quot; height=&quot;29&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image518.gif&quot; width=&quot;117&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisoprasotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot; width=&quot;35%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Calotta sferica&quot; height=&quot;177&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/calotta.gif&quot; width=&quot;177&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Zona sferica&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;zona sferica&lt;/b&gt;&amp;nbsp;è data dal prodotto della lunghezza della circonferenza massima della superficie sferica a cui appartiene per la sua altezza:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;29&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image519.gif&quot; width=&quot;103&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Zona sferica&quot; height=&quot;174&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/zona.gif&quot; width=&quot;174&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Fuso sferico&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;È la parte di superficie sferica compresa tra due semipiani uscenti dallo stesso diametro. L’&lt;i&gt;ampiezza del fuso&lt;/i&gt;&amp;nbsp;è l’angolo&amp;nbsp;&lt;img alt=&quot;alfa&quot; class=&quot;img-middle&quot; height=&quot;14&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image520.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;16&quot; /&gt;compreso tra i due semipiani.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image521.gif&quot; width=&quot;106&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Fuso sferico&quot; height=&quot;163&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/fuso.gif&quot; width=&quot;132&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Segmento sferico a una base&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image522.gif&quot; width=&quot;111&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Segmento sferico a una base&quot; height=&quot;175&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/segmentosferico1.gif&quot; width=&quot;175&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Segmento sferico a due basi&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image523.gif&quot; width=&quot;159&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Segmento sferico a due basi&quot; height=&quot;177&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/segmentosferico2.gif&quot; width=&quot;177&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Spicchio sferico&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image524.gif&quot; width=&quot;75&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Spicchio sferico&quot; height=&quot;169&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/spicchio.gif&quot; width=&quot;139&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/6436356933850006430/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-parti-della-sfera-e.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6436356933850006430'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6436356933850006430'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-parti-della-sfera-e.html' title='Geometria Solida. Parti della sfera e della superficie sferica'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-545663170230027516</id><published>2016-03-13T16:37:00.002-07:00</published><updated>2016-03-13T16:39:27.460-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="cono"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria dello spazio"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria Solida. Solidi di rotazione. Cilindro"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><category scheme="http://www.blogger.com/atom/ns#" term="sfera"/><category scheme="http://www.blogger.com/atom/ns#" term="tronco di cono"/><title type='text'>Geometria Solida. Solidi di rotazione. Cilindro, cono, tronco di cono, sfera</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;div style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;Solidi di rotazione&lt;/b&gt;&lt;/span&gt;&lt;br /&gt;Sono solidi ottenuti dalla rotazione di una figura piana intorno ad una retta (&lt;i&gt;asse di rotazione&lt;/i&gt;).&lt;/span&gt;&lt;/div&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;/td&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;19%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie laterale&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;19%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie totale&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;13%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;volume&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Cilindro&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image506.gif&quot; width=&quot;75&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image507.gif&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;13%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image508.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Cono&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image509.gif&quot; width=&quot;67&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image510.gif&quot; width=&quot;77&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;13%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image511.gif&quot; width=&quot;74&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Tronco di cono&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image512.gif&quot; width=&quot;109&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image513.gif&quot; width=&quot;113&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;13%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;52&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image514.gif&quot; width=&quot;188&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;/td&gt;&lt;th colspan=&quot;2&quot; style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie sferica&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;13%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;volume&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Sfera&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; colspan=&quot;2&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image515.gif&quot; width=&quot;61&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image517.gif&quot; width=&quot;66&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;br style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot; /&gt;&lt;/span&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;dividisoprasotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot; width=&quot;71%&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Cilindro&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;/b&gt;Il&amp;nbsp;&lt;b&gt;cilindro&lt;/b&gt;&amp;nbsp;è un solido ottenuto dalla rotazione completa di un rettangolo intorno ad un suo lato.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Cilindro equilatero&lt;/b&gt;È un cilindro in cui l’altezza è lunga quanto il diametro della base.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie laterale&lt;/b&gt;&amp;nbsp;di un cilindro si ottiene moltiplicando la lunghezza della circonferenza di base per la misura dell’altezza:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image506.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;76&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie totale&lt;/b&gt;&amp;nbsp;di un cilindro si ottiene sommando la superficie laterale e l’area delle due basi:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image507.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il&amp;nbsp;&lt;b&gt;volume&lt;/b&gt;&amp;nbsp;di un cilindro si ottiene moltiplicando l’area di base per la misura dell’altezza:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image508.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisoprasotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot; width=&quot;29%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;cilindro&quot; height=&quot;202&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/cilindro.gif&quot; width=&quot;158&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Cono&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;/b&gt;Il&amp;nbsp;&lt;b&gt;cono&lt;/b&gt;&amp;nbsp;è un solido ottenuto dalla rotazione di un triangolo intorno ad un suo cateto.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Cono equilatero&lt;/b&gt;È un cono in cui l’apotema è lungo quanto il diametro della base.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie laterale&lt;/b&gt;&amp;nbsp;di un cono si ottiene moltiplicando la lunghezza della circonferenza di base per la misura dell’apotema e dividendo tale prodotto per due:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image509.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;68&quot; /&gt;, dove l’apotema è la lunghezza del lato obliquo del cono&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image527.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;86&quot; /&gt;&amp;nbsp;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie totale&lt;/b&gt;&amp;nbsp;di un cono si ottiene sommando la superficie laterale e l’area della base:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image510.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;77&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;. Il cono è equivalente a un terzo di un cilindro avente base ed altezza congruenti rispettivamente alla base e all’altezza del cono.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il&amp;nbsp;&lt;b&gt;volume&lt;/b&gt;&amp;nbsp;di un cono si ottiene moltiplicando l’area di base per la misura dell’altezza e dividendo tale prodotto per tre:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image511.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;74&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;cono&quot; height=&quot;187&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/cono.gif&quot; width=&quot;179&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Tronco di cono&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Consideriamo un cono e tagliamolo con un piano parallelo al piano della base: otteniamo due figure, una è ancora un cono, l’altra è un&amp;nbsp;&lt;b&gt;tronco di cono&lt;/b&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il&amp;nbsp;&lt;b&gt;tronco di cono&lt;/b&gt;&amp;nbsp;è un solido attenuto dalla rotazione di un trapezio rettangolo attorno al lato perpendicolare alle basi.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;. La superficie laterale di un tronco di cono è equivalente a un trapezio avente per basi le due circonferenze di base del tronco e per altezza il suo apotema.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie laterale&lt;/b&gt;&amp;nbsp;di un tronco di cono si ottiene moltiplicando la somma delle misure delle lunghezze delle due circonferenze di base per la misura dell’apotema e dividendo tale prodotto per due:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image512.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;109&quot; /&gt;, dove l’apotema è la lunghezza del lato obliquo del tronco di cono:&amp;nbsp;&lt;img alt=&quot;apotema&quot; class=&quot;img-middle&quot; height=&quot;34&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/apotema.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;128&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie totale&lt;/b&gt;&amp;nbsp;di un tronco di cono si ottiene sommando la superficie laterale e l’area delle due basi:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image513.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;113&quot; /&gt;. In modo equivalente si può scrivere in funzione dei raggi:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;32&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image526.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;193&quot; /&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;. Per il principio di Cavalieri, un tronco di cono e un tronco di piramide aventi basi equivalenti e altezze congruenti sono equivalenti.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il&amp;nbsp;&lt;b&gt;volume&lt;/b&gt;di un tronco di cono si ottiene moltiplicando la misura dell’altezza per la somma delle aree delle due basi con la radice quadrata del loro prodotto, e dividendo tale prodotto per tre:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;52&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image514.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;188&quot; /&gt;.&lt;br /&gt;In modo equivalente il volume si può scrivere in funzione dei raggi:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image525.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;164&quot; /&gt;&amp;nbsp;.&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;tronco di cono&quot; height=&quot;148&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/tronco-cono.gif&quot; width=&quot;180&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Sfera e superficie sferica&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;La&amp;nbsp;&lt;b&gt;sfera&lt;/b&gt;&amp;nbsp;è un solido ottenuto dalla rotazione completa di un semicerchio attorno al proprio diametro, il raggio e il centro del semicerchio sono il raggio e il centro della sfera.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;La&amp;nbsp;&lt;b&gt;superficie sferica&amp;nbsp;&lt;/b&gt;è l’insieme di tutti e solo i punti dello spazio che hanno la stessa distanza da un punto interno detto centro.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;. La superficie sferica è equivalente alla superficie laterale del cilindro equilatero circoscritto ad essa.&lt;/span&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’area della&amp;nbsp;&lt;b&gt;superficie sferica&lt;/b&gt;&amp;nbsp;si ottiene moltiplicando per quattro l’area del suo cerchio massimo:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image515.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;61&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;. Una sfera è equivalente a un cono avente per altezza il raggio della sfera e per raggio di base il diametro della sfera.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il&amp;nbsp;&lt;b&gt;volume&lt;/b&gt;&amp;nbsp;della sfera si ottiene moltiplicando&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image516.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;28&quot; /&gt;per il cubo del suo raggio:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/Image517.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;66&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;sfera&quot; height=&quot;164&quot; src=&quot;http://www.math.it/formulario/images/poliedri/rotondi/sfera.gif&quot; width=&quot;167&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/545663170230027516/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-solidi-di-rotazione.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/545663170230027516'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/545663170230027516'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-solidi-di-rotazione.html' title='Geometria Solida. Solidi di rotazione. Cilindro, cono, tronco di cono, sfera'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-1475683196771883761</id><published>2016-03-13T16:36:00.003-07:00</published><updated>2016-03-13T16:39:27.455-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria dello spazio"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria Solida. Poliedri. Piramide e tronco di piramide"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Geometria Solida. Poliedri. Piramide e tronco di piramide  </title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;br /&gt;&lt;/span&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; valign=&quot;top&quot; width=&quot;27%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie laterale&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; valign=&quot;top&quot; width=&quot;22%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie totale&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; valign=&quot;top&quot; width=&quot;31%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;volume&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr valign=&quot;middle&quot;&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;middle&quot; width=&quot;20%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;piramide qualsiasi&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;22%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image398.gif&quot; width=&quot;77&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;31%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image399.gif&quot; width=&quot;66&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;middle&quot;&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;middle&quot; width=&quot;20%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;piramide retta&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image400.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;22%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image398.gif&quot; width=&quot;77&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;31%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image399.gif&quot; width=&quot;66&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;middle&quot;&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;middle&quot; width=&quot;20%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;tronco di piramide&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image401.gif&quot; width=&quot;121&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;22%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image402.gif&quot; width=&quot;111&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;31%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;51&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/Image403.gif&quot; width=&quot;189&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;br style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot; /&gt;&lt;/span&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Piramide&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;La&amp;nbsp;&lt;b&gt;piramide&lt;/b&gt;&amp;nbsp;è un&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/poliedri.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poliedro&lt;/a&gt;&amp;nbsp;limitato da un poligono qualsiasi e da tanti triangoli quanti sono i lati di questo poligono, aventi tutti un vertice in comune.&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;center&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;piramide&quot; height=&quot;259&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/piramide.gif&quot; width=&quot;248&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;LEGENDA&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;V vertice&lt;br /&gt;ABCDEF base (poligono di base)&lt;br /&gt;VAB faccia laterale (triangolo)&lt;br /&gt;VH altezza (distanza tra il vertice e la base)&lt;br /&gt;VM apotema&lt;br /&gt;H piede dell’altezza&lt;br /&gt;VB spigolo laterale&lt;br /&gt;AB spigolo di base&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Una&amp;nbsp;&lt;b&gt;piramide&lt;/b&gt;&amp;nbsp;si dice&amp;nbsp;&lt;b&gt;retta&lt;/b&gt;&amp;nbsp;se il poligono di base è circoscrittibile a una circonferenza e il piede dell’altezza coincide con il centro di questa circonferenza.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L’&lt;b&gt;apotema di una piramide retta&lt;/b&gt;&amp;nbsp;è l’altezza di una delle sue facce.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Una&amp;nbsp;&lt;b&gt;piramide&lt;/b&gt;&amp;nbsp;si dice&amp;nbsp;&lt;b&gt;regolare&lt;/b&gt;&amp;nbsp;se è retta ed il poligono di base è un poligono regolare.&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;apotema di una piramide retta&quot; height=&quot;150&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/apotema_piramide.gif&quot; width=&quot;149&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Tronco di piramide&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Tagliando una piramide con un piano parallelo alla base si ottengono due solidi: uno è ancora una piramide , l’altro è un&amp;nbsp;&lt;b&gt;tronco di piramide&lt;/b&gt;. I due poligoni che lo delimitano costituiscono le&amp;nbsp;&lt;b&gt;basi&lt;/b&gt;&amp;nbsp;del tronco di piramide, e le&amp;nbsp;&lt;b&gt;facce laterali&lt;/b&gt;&amp;nbsp;sono dei trapezi. La distanza tra le basi è l’&lt;b&gt;altezza&lt;/b&gt;&amp;nbsp;del solido.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Un&amp;nbsp;&lt;b&gt;tronco di piramide&lt;/b&gt;&amp;nbsp;si dice&amp;nbsp;&lt;b&gt;retto&lt;/b&gt;&amp;nbsp;se è stato ottenuto da una piramide retta.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Un&amp;nbsp;&lt;b&gt;tronco di piramide&lt;/b&gt;&amp;nbsp;si dice&amp;nbsp;&lt;b&gt;regolare&lt;/b&gt;&amp;nbsp;se è stato ottenuto da una piramide regolare.&lt;br /&gt;Le facce laterali di un tronco di piramide regolare sono tutti trapezi isosceli congruenti.&lt;br /&gt;L’altezza di uno qualsiasi di questi trapezi è l’&lt;b&gt;apotema&lt;/b&gt;&amp;nbsp;del tronco di piramide.&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;tronco di piramide&quot; height=&quot;126&quot; src=&quot;http://www.math.it/formulario/images/poliedri/piramidi/troncopiramide.gif&quot; width=&quot;253&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/1475683196771883761/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri-piramide-e.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1475683196771883761'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1475683196771883761'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri-piramide-e.html' title='Geometria Solida. Poliedri. Piramide e tronco di piramide  '/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-8051940975709581209</id><published>2016-03-13T16:35:00.002-07:00</published><updated>2016-03-13T16:39:27.472-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="cubo"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria dello spazio"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria Solida. Poliedri. Prisma"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><category scheme="http://www.blogger.com/atom/ns#" term="parallelpipedo"/><title type='text'>Geometria Solida. Poliedri. Prisma, parallelpipedo, cubo</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;br /&gt;&lt;/span&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;th nowrap=&quot;nowrap&quot; style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;22%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;diagonale&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th nowrap=&quot;nowrap&quot; style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;19%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie laterale&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th nowrap=&quot;nowrap&quot; style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;19%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;superficie totale&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;th nowrap=&quot;nowrap&quot; style=&quot;background-color: #660066; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; width=&quot;13%&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;volume&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;prisma retto&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;22%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image404.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image405.gif&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;13%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image406.gif&quot; width=&quot;66&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;parallelepipedo retto&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;22%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image404.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image405.gif&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;13%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image406.gif&quot; width=&quot;66&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;parallelepipedo rettangolo&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;22%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image407.gif&quot; width=&quot;122&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image404.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image405.gif&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;13%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image408.gif&quot; width=&quot;73&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;left&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;27%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;cubo&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;22%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image409.gif&quot; width=&quot;55&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image410.gif&quot; width=&quot;55&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;19%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image411.gif&quot; width=&quot;55&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; width=&quot;13%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/Image412.gif&quot; width=&quot;42&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;br style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot; /&gt;&lt;/span&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;dividisoprasotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Prismi&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il&amp;nbsp;&lt;b&gt;prisma&lt;/b&gt;&amp;nbsp;è un&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/poliedri.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poliedro&lt;/a&gt;&amp;nbsp;limitato da due poligoni uguali e paralleli (basi) e da tanti parallelogrammi (facce laterali) quanti sono i lati del poligono di base.&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;prisma obliquo&lt;/b&gt;: se tutte le facce laterali sono parallelogrammi e l’altezza non coincide con uno degli spigoli&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;prisma retto&lt;/b&gt;: se tutte le facce laterali sono perpendicolari alle basi e l’altezza coincide con uno degli spigoli&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;prisma regolare&lt;/b&gt;: se è retto e le basi sono poligoni regolari (le facce laterali sono rettangoli uguali fra loro).&lt;/span&gt;&lt;/blockquote&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;dividisoprasotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;figura di un prisma&quot; height=&quot;162&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/prisma.gif&quot; width=&quot;125&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Prismi particolari&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Parallelepipedo&lt;/b&gt;&lt;br /&gt;Un&amp;nbsp;&lt;b&gt;parallelepipedo&lt;/b&gt;&amp;nbsp;è un prisma le cui basi sono dei parallelogrammi.&lt;br /&gt;Un parallelepipedo può essere:&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;retto&lt;/b&gt;: se tutte le sue facce sono perpendicolari alle basi (le facce sono dei rettangoli e le basi dei parallelogrammi)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;rettangolo&lt;/b&gt;: se è retto e le sue basi sono dei rettangoli (tutte e sei le facce sono rettangoli uguali e paralleli a due a due)&lt;/span&gt;&lt;/blockquote&gt;&lt;/blockquote&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Cubo&lt;/b&gt;&lt;br /&gt;Il&amp;nbsp;&lt;b&gt;cubo&lt;/b&gt;&amp;nbsp;è un parallelepipedo rettangolo con le tre dimensioni uguali tra loro.&lt;br /&gt;Il cubo è un&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/poliedri_regolari.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poliedro regolare&lt;/a&gt;&amp;nbsp;limitato da sei facce quadrate (esaedro).&lt;/span&gt;&lt;/blockquote&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;figura di un parallelpipedo&quot; height=&quot;162&quot; src=&quot;http://www.math.it/formulario/images/poliedri/prismi/parallelepipedo.gif&quot; width=&quot;186&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/8051940975709581209/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri-prisma.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8051940975709581209'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8051940975709581209'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri-prisma.html' title='Geometria Solida. Poliedri. Prisma, parallelpipedo, cubo'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-6819676244398833582</id><published>2016-03-13T16:34:00.003-07:00</published><updated>2016-03-13T16:39:27.468-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria dello spazio"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria Solida. Poliedri regolari"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Geometria Solida. Poliedri regolari</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;div style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Un&amp;nbsp;&lt;b&gt;&lt;a href=&quot;http://www.math.it/formulario/poliedri.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poliedro&lt;/a&gt;&lt;/b&gt;&amp;nbsp;si dice&amp;nbsp;&lt;b&gt;regolare&lt;/b&gt;&amp;nbsp;se tutte le sue facce sono poligoni regolari uguali fra loro e tutti i diedri e gli angoloidi sono uguali fra loro.&lt;br /&gt;I poliedri regolari che si possono costruire sono 5, noti anche come&amp;nbsp;&lt;i&gt;solidi platonici&lt;/i&gt;.&lt;/span&gt;&lt;/div&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 1.2em; margin: 0px; padding: 5px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;/td&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;poligono regolare&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;N° facce&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;N° vertici&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;N° spigoli&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;N° spigoli concorrenti in un vertice&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;altezza&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;diagonale&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Area della superficie&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th class=&quot;cornice&quot; style=&quot;background-color: #660066; border: 1px solid rgb(238, 238, 238); font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Volume&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Tetraedro&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;triangolo&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;4&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;4&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;6&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;3&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image012.gif&quot; width=&quot;68&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image014.gif&quot; width=&quot;64&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image016.gif&quot; width=&quot;84&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Cubo o Esaedro&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;quadrato&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;6&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;8&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;12&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;3&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image018.gif&quot; width=&quot;57&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image020.gif&quot; width=&quot;50&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image022.gif&quot; width=&quot;44&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ottaedro&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;triangolo&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;8&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;6&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;12&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;4&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image024.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image026.gif&quot; width=&quot;77&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Dodecaedro&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;pentagono&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;12&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;20&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;30&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;3&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image028.gif&quot; width=&quot;122&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image030.gif&quot; width=&quot;105&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Icosaedro&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;triangolo&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;20&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;12&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;30&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;5&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image032.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;52&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image034.gif&quot; width=&quot;112&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;blockquote style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; letter-spacing: 0.1em;&quot;&gt;LEGENDA&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;border-color: initial; border-image-outset: initial; border-image-repeat: initial; border-image-slice: initial; border-image-source: initial; border-image-width: initial; border-width: initial;&quot;&gt;&lt;img alt=&quot;h&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image002.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;13&quot; /&gt;&lt;/span&gt;&amp;nbsp;= altezza&lt;br /&gt;&lt;span style=&quot;border-color: initial; border-image-outset: initial; border-image-repeat: initial; border-image-slice: initial; border-image-source: initial; border-image-width: initial; border-width: initial;&quot;&gt;&lt;img alt=&quot;s&quot; class=&quot;img-middle&quot; height=&quot;14&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image004.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;12&quot; /&gt;&lt;/span&gt;&amp;nbsp;= spigolo&lt;br /&gt;&lt;span style=&quot;border-color: initial; border-image-outset: initial; border-image-repeat: initial; border-image-slice: initial; border-image-source: initial; border-image-width: initial; border-width: initial;&quot;&gt;&lt;img alt=&quot;d&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image006.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;14&quot; /&gt;&lt;/span&gt;= diagonale&lt;br /&gt;&lt;span style=&quot;border-color: initial; border-image-outset: initial; border-image-repeat: initial; border-image-slice: initial; border-image-source: initial; border-image-width: initial; border-width: initial;&quot;&gt;&lt;img alt=&quot;S&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image008.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;14&quot; /&gt;&lt;/span&gt;&amp;nbsp;= Area della superficie totale&lt;br /&gt;&lt;span style=&quot;border-color: initial; border-image-outset: initial; border-image-repeat: initial; border-image-slice: initial; border-image-source: initial; border-image-width: initial; border-width: initial;&quot;&gt;&lt;img alt=&quot;V&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedri_regolari/image010.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;16&quot; /&gt;&lt;/span&gt;&amp;nbsp;= Volume&lt;/span&gt;&lt;/blockquote&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/6819676244398833582/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri-regolari.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6819676244398833582'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/6819676244398833582'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri-regolari.html' title='Geometria Solida. Poliedri regolari'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-8857482364481369263</id><published>2016-03-13T16:33:00.003-07:00</published><updated>2016-03-13T16:39:27.475-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria dello spazio"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria Solida. Poliedri"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Geometria Solida. Poliedri</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;div style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Le figure geometriche solide possono essere suddivise in due gruppi:&lt;br /&gt;quelli la cui superficie è formata da soli poligoni detti&amp;nbsp;&lt;b&gt;poliedri&lt;/b&gt;, e quelli la cui superficie è curva detti&lt;b&gt;solidi rotondi&lt;/b&gt;.&lt;/span&gt;&lt;/div&gt;&lt;div style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Un&amp;nbsp;&lt;b&gt;poliedro&lt;/b&gt;&amp;nbsp;è un solido limitato da più poligoni posti su piani diversi e tali che ogni lato è comune a due soli di essi.&lt;/span&gt;&lt;/div&gt;&lt;blockquote style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;figura di un poliedro&quot; height=&quot;162&quot; src=&quot;http://www.math.it/formulario/images/poliedri/poliedro.gif&quot; width=&quot;339&quot; /&gt;&lt;/span&gt;&lt;/blockquote&gt;&lt;div style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Tra le facce gli spigoli e i vertici di un poliedro sussiste la&lt;b&gt;&amp;nbsp;relazione di Eulero&lt;/b&gt;: f + v = s + 2&lt;/span&gt;&lt;/div&gt;&lt;div style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;I poliedri possono essere suddivisi in&amp;nbsp;&lt;b&gt;&lt;a class=&quot;B&quot; href=&quot;http://www.math.it/formulario/poliedri_regolari.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poliedri regolari&lt;/a&gt;&lt;/b&gt;,&amp;nbsp;&lt;b&gt;&lt;a class=&quot;B&quot; href=&quot;http://www.math.it/formulario/prismi.htm&quot; style=&quot;text-decoration: none;&quot;&gt;prismi&lt;/a&gt;&lt;/b&gt;&amp;nbsp;e&amp;nbsp;&lt;b&gt;&lt;a class=&quot;B&quot; href=&quot;http://www.math.it/formulario/piramidi.htm&quot; style=&quot;text-decoration: none;&quot;&gt;piramidi&lt;/a&gt;&lt;/b&gt;, come è raffigurato nello schema.&lt;/span&gt;&lt;/div&gt;&lt;blockquote style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 17.28px; line-height: 23.04px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;figura: classificazione dei poliedri&quot; height=&quot;175&quot; src=&quot;http://www.math.it/formulario/images/poliedri/classsificazione-poliedri.gif&quot; width=&quot;400&quot; /&gt;&amp;nbsp;&lt;/span&gt;&lt;/blockquote&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/8857482364481369263/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8857482364481369263'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8857482364481369263'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-solida-poliedri.html' title='Geometria Solida. Poliedri'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-1392464513366427204</id><published>2016-03-13T16:30:00.003-07:00</published><updated>2016-03-13T16:39:20.141-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria del piano"/><category scheme="http://www.blogger.com/atom/ns#" term="Geometria dello spazio"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Poligoni regolari e numeri fissi  </title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; width=&quot;63%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: si dice&amp;nbsp;&lt;b&gt;regolare&lt;/b&gt;&amp;nbsp;un&amp;nbsp;&lt;b&gt;poligono&lt;/b&gt;&amp;nbsp;equilatero ed equiangolo.&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;right&quot; class=&quot;more&quot; style=&quot;background-image: url(&amp;quot;../images/back_math-g.gif&amp;quot;); color: #777777; font-size: 0.9em; letter-spacing: 0.1em; line-height: 1.2em;&quot; width=&quot;37%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Vedi anche&lt;/b&gt;:&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/poligoni_convessi.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poligoni convessi&lt;/a&gt;&amp;nbsp;e&lt;a href=&quot;http://www.math.it/formulario/poligoni_regolari.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poligoni regolari&lt;/a&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;: ogni poligono regolare è inscrittibile e circoscrittibile, e le due circonferenze hanno lo stesso centro.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: si dice&amp;nbsp;&lt;b&gt;apotema&lt;/b&gt;&amp;nbsp;di un poligono regolare il raggio del cerchio inscritto nel poligono.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Se è noto il raggio&amp;nbsp;&lt;i&gt;R&lt;/i&gt;&amp;nbsp;del cerchio circoscritto e il lato del poligono regolare, l’apotema si trova applicando il teorema di Pitagora.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;: in ogni poligono regolare il rapporto tra l&#39;apotema e il lato è costante, dipende solo dal numero dei lati del poligono. A tale costante del poligono si dà il nome di&amp;nbsp;&lt;i&gt;&lt;b&gt;numero fisso&lt;/b&gt;&lt;/i&gt;:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image415.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;42&quot; /&gt;&lt;br /&gt;Per trovare l&#39;apotema, noto solo il lato del poligono regolare, si usa fornire nella geometria studiata nelle medie inferiori una tabella di&amp;nbsp;&lt;i&gt;numeri fissi&lt;/i&gt;.&lt;br /&gt;L&#39;apotema si trova moltiplicando il lato per la costante del poligono:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image416.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;60&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;th style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; valign=&quot;top&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Poligono regolare&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot; valign=&quot;top&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;i&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;f&lt;/span&gt;&lt;/i&gt;&lt;/div&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Triangolo&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;0,289&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Quadrato&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;0,5&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Pentagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;0,688&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Esagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;0,866&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ettagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;1,038&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ottagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;1,207&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ennagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;1,374&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Decagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;1,539&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;L&#39;apotema si può calcolare con l&#39;aiuto della trigonometria, nota l&#39;ampiezza&amp;nbsp;&lt;i&gt;α&lt;/i&gt;&amp;nbsp;dell’angolo del poligono:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;44&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image418.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;72&quot; /&gt;.&lt;br /&gt;Poiché in ogni poligono regolare il rapporto tra l&#39;area e il quadrato del suo lato è costante, dipende solo dal numero dei lati del poligono, indichiamo tale costante con&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image419.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;45&quot; /&gt;.&lt;br /&gt;L&#39;&lt;b&gt;area del poligono regolare&lt;/b&gt;&amp;nbsp;si calcola :&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image420.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;68&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Nella geometria studiata nelle medie inferiori si usa fornire una tabella di&amp;nbsp;&lt;i&gt;costanti&lt;/i&gt;.&lt;/span&gt;&lt;/td&gt;&lt;td align=&quot;center&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;middle&quot;&gt;&lt;th style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Poligono regolare&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;div align=&quot;center&quot;&gt;&lt;i&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;φ&lt;/span&gt;&lt;/i&gt;&lt;/div&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Triangolo&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;0,433&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Quadrato&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;1&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Pentagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;1,720&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Esagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;2,598&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ettagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;3,634&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ottagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;4,828&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ennagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;6,182&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Decagono&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;7,694&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/1392464513366427204/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/poligoni-regolari-e-numeri-fissi.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1392464513366427204'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1392464513366427204'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/poligoni-regolari-e-numeri-fissi.html' title='Poligoni regolari e numeri fissi  '/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-5953482573167928955</id><published>2016-03-13T16:29:00.004-07:00</published><updated>2016-03-13T16:31:31.515-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria del piano"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Poligoni regolari</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: si dice&amp;nbsp;&lt;b&gt;regolare&lt;/b&gt;&amp;nbsp;un&lt;b&gt;poligono&lt;/b&gt;&amp;nbsp;equilatero ed equiangolo.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Proprietà&lt;/span&gt;: ogni poligono regolare è inscrittibile e circoscrittibile, e le due circonferenze hanno lo stesso centro.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: si dice&amp;nbsp;&lt;b&gt;apotema&lt;/b&gt;&amp;nbsp;di un poligono regolare il raggio del cerchio inscritto nel poligono.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;In generale in un&amp;nbsp;&lt;b&gt;poligono regolare&lt;/b&gt;&amp;nbsp;con&amp;nbsp;&lt;i&gt;n&lt;/i&gt;lati di lato&amp;nbsp;&lt;i&gt;l&lt;/i&gt;&amp;nbsp;e apotema&amp;nbsp;&lt;i&gt;a&lt;/i&gt;:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image422.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;56&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image423.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;54&quot; /&gt;(semiperimetro per apotema)&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div class=&quot;more&quot; style=&quot;background-image: url(&amp;quot;../images/back_math-g.gif&amp;quot;); color: #777777; letter-spacing: 0.1em; line-height: 1.2em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; letter-spacing: 0.1em;&quot;&gt;Vedi anche&lt;/b&gt;:&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/poligoni_convessi.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poligoni convessi&lt;/a&gt;&amp;nbsp;|&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/poligoni_regolari_numerifissi.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poligoni regolari coi numeri fissi&lt;/a&gt;&amp;nbsp;|&amp;nbsp;&lt;a href=&quot;http://www.math.it/cabri/index.htm&quot; style=&quot;text-decoration: none;&quot;&gt;costruzioni geometriche dei poligoni regolari con Cabri II&lt;/a&gt;&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;LEGENDA&lt;/b&gt;&lt;br /&gt;lato :&amp;nbsp;&lt;i&gt;l&lt;/i&gt;&lt;br /&gt;altezza :&amp;nbsp;&lt;i&gt;h&lt;/i&gt;&lt;br /&gt;diagonale :&amp;nbsp;&lt;i&gt;d&lt;/i&gt;&lt;br /&gt;perimetro : 2&lt;i&gt;p&lt;/i&gt;&lt;br /&gt;semiperimetro :&amp;nbsp;&lt;i&gt;p&lt;/i&gt;&lt;br /&gt;apotema :&amp;nbsp;&lt;i&gt;a&lt;/i&gt;&lt;br /&gt;raggio della circonferenza circoscritta :&amp;nbsp;&lt;i&gt;R&lt;/i&gt;&lt;br /&gt;raggio della circonferenza inscritta :&amp;nbsp;&lt;i&gt;r&lt;/i&gt;&lt;br /&gt;Area :&amp;nbsp;&lt;i&gt;A&lt;/i&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td colspan=&quot;2&quot; style=&quot;font-size: 0.9em;&quot; valign=&quot;top&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;th style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Poligono&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th align=&quot;center&quot; style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;angolo&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th align=&quot;center&quot; style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;lato&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th align=&quot;center&quot; style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;apotema&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th align=&quot;center&quot; style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;perimetro&lt;/span&gt;&lt;/b&gt;&lt;/th&gt;&lt;th align=&quot;center&quot; style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Area&lt;/b&gt;(noto&amp;nbsp;&lt;i&gt;l&lt;/i&gt;)&lt;/span&gt;&lt;/th&gt;&lt;th align=&quot;center&quot; style=&quot;background-color: #660066; color: white; font-size: 1em; letter-spacing: 0.2em; padding-bottom: 5px; padding-top: 5px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Area&amp;nbsp;&lt;/b&gt;(noto&lt;i&gt;R&lt;/i&gt;)&lt;/span&gt;&lt;/th&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Triangolo&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;60°&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image424.gif&quot; width=&quot;55&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image425.gif&quot; width=&quot;42&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image426.gif&quot; width=&quot;51&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image427.gif&quot; width=&quot;66&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image428.gif&quot; width=&quot;79&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Quadrato&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;90°&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image429.gif&quot; width=&quot;57&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image430.gif&quot; width=&quot;65&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image431.gif&quot; width=&quot;53&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image432.gif&quot; width=&quot;42&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;19&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image433.gif&quot; width=&quot;55&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Pentagono convesso&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;108°&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image434.gif&quot; width=&quot;109&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image435.gif&quot; width=&quot;96&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image436.gif&quot; width=&quot;51&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image437.gif&quot; width=&quot;123&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image438.gif&quot; width=&quot;129&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Pentagono stellato&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image439.gif&quot; width=&quot;109&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image440.gif&quot; width=&quot;94&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image441.gif&quot; width=&quot;138&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Esagono&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;120°&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image442.gif&quot; width=&quot;37&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image443.gif&quot; width=&quot;63&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;v&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image444.gif&quot; width=&quot;53&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image445.gif&quot; width=&quot;77&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image446.gif&quot; width=&quot;79&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ottagono convesso&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;135°&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;27&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image447.gif&quot; width=&quot;90&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image448.gif&quot; width=&quot;98&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image449.gif&quot; width=&quot;51&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;31&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image450.gif&quot; width=&quot;107&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image451.gif&quot; width=&quot;77&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ottagono stellato&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;27&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image452.gif&quot; width=&quot;91&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image453.gif&quot; width=&quot;98&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;31&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image454.gif&quot; width=&quot;110&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Decagono convesso&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;144°&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image455.gif&quot; width=&quot;91&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image456.gif&quot; width=&quot;113&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image457.gif&quot; width=&quot;58&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image458.gif&quot; width=&quot;120&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image459.gif&quot; width=&quot;129&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Decagono stellato&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image460.gif&quot; width=&quot;91&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image461.gif&quot; width=&quot;111&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image462.gif&quot; width=&quot;138&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Dodecagono convesso&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;150°&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image463.gif&quot; width=&quot;106&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image464.gif&quot; width=&quot;110&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image465.gif&quot; width=&quot;58&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image466.gif&quot; width=&quot;54&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;evidenziato&quot; colspan=&quot;2&quot; style=&quot;background-color: #eeeeee; font-size: 0.9em; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Altre proprietà:&lt;/span&gt;&lt;/b&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Triangolo equilatero&amp;nbsp;&lt;/b&gt;L&#39;altezza del triangolo equilatero:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image467.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;55&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Quadrato&amp;nbsp;&lt;/b&gt;La diagonale del quadrato noto il lato:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image468.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;55&quot; /&gt;&lt;br /&gt;Il lato del quadrato nota la diagonale:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image469.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;59&quot; /&gt;&amp;nbsp;;&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image470.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;49&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Pentagono regolare convesso&lt;/b&gt;&lt;br /&gt;Il lato del pentagono regolare corrisponde alla&amp;nbsp;&lt;a href=&quot;http://www.math.it/cabri/sezaurea.htm&quot; style=&quot;text-decoration: none;&quot;&gt;sezione aurea&lt;/a&gt;&amp;nbsp;della sua diagonale:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image471.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;78&quot; /&gt;&lt;br /&gt;La diagonale del pentagono regolare in funzione del lato:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image472.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;93&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Esagono regolare convesso&amp;nbsp;&lt;/b&gt;L&#39;esagono regolare è inscrittibile in una circonferenza il cui raggio è uguale al lato dell&#39;esagono&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Decagono regolare convesso&lt;/b&gt;Il lato del decagono regolare convesso è uguale alla sezione aurea del raggio della circonferenza circoscritta:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligoni_regolari/Image455.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;91&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/5953482573167928955/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/poligoni-regolari.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/5953482573167928955'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/5953482573167928955'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/poligoni-regolari.html' title='Poligoni regolari'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-2652715373547184048</id><published>2016-03-13T16:29:00.000-07:00</published><updated>2016-03-13T16:31:31.512-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria del piano"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Poligoni convessi</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; width=&quot;59%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Definizione&lt;/span&gt;: si chiama&amp;nbsp;&lt;b&gt;poligono convesso&lt;/b&gt;&amp;nbsp;la parte di piano delimitata da una poligonale chiusa convessa e dalla poligonale stessa che ne costituisce il perimetro.&lt;/span&gt;&lt;br /&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;1&quot; cellspacing=&quot;1&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span class=&quot;nota&quot; style=&quot;line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Poligono convesso&lt;/span&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span class=&quot;nota&quot; style=&quot;line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Poligono concavo&lt;/span&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Poligono convesso&quot; height=&quot;192&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligono_convesso.gif&quot; width=&quot;192&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;Poligono concavo&quot; height=&quot;192&quot; src=&quot;http://www.math.it/formulario/images/poligoni/poligono_concavo.gif&quot; width=&quot;192&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;41%&quot;&gt;&lt;div class=&quot;more&quot; style=&quot;background-image: url(&amp;quot;../images/back_math-g.gif&amp;quot;); color: #777777; letter-spacing: 0.1em; line-height: 1.2em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Vedi anche&lt;/b&gt;:&amp;nbsp;&lt;a href=&quot;http://www.math.it/formulario/poligoni_regolari.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poligoni regolari&lt;/a&gt;&amp;nbsp;|&lt;a href=&quot;http://www.math.it/formulario/poligoni_regolari_numerifissi.htm&quot; style=&quot;text-decoration: none;&quot;&gt;poligoni regolari con i numeri fissi&lt;/a&gt;&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;LEGENDA&lt;/b&gt;&lt;br /&gt;semiperimetro :&amp;nbsp;&lt;i&gt;p&lt;/i&gt;&lt;br /&gt;raggio della circonferenza inscritta :&amp;nbsp;&lt;i&gt;r&lt;/i&gt;&lt;br /&gt;Area :&amp;nbsp;&lt;i&gt;A&lt;/i&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema&lt;/span&gt;: in un poligono ogni lato è minore del semiperimetro&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema&lt;/span&gt;: la&amp;nbsp;&lt;b&gt;somma degli angoli intern&lt;/b&gt;i di un poligono di&lt;i&gt;n&lt;/i&gt;&amp;nbsp;lati vale&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/poligoni/Image413.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;60&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema&lt;/span&gt;: la&amp;nbsp;&lt;b&gt;somma degli angoli esterni&lt;/b&gt;&amp;nbsp;di un poligono convesso è uguale ad un angolo giro (360°), qualunque sia il numero dei suoi lati&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema&lt;/span&gt;: in un poligono qualsiasi di&amp;nbsp;&lt;i&gt;n&lt;/i&gt;&amp;nbsp;lati, per ogni vertice passano (&lt;i&gt;n&lt;/i&gt;-3) diagonali&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema&lt;/span&gt;: un poligono si può inscrivere in una circonferenza se gli assi di tutti i suoi lati si incontrano in un unico punto (&lt;b&gt;circocentro&lt;/b&gt;)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema&lt;/span&gt;: un poligono si può circoscrivere ad una circonferenza se le bisettrici di tutti i suoi angoli si incontrano in un unico punto (&lt;b&gt;incentro&lt;/b&gt;)&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Area di un poligono qualsiasi&lt;/b&gt;: si scompone il poligono in poligoni di cui si sa calcolare l’area; si sommano le aree di tali poligoni.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Area di un poligono circoscritto ad una circonferenza&lt;/b&gt;&amp;nbsp;di raggio&amp;nbsp;&lt;i&gt;r&lt;/i&gt;&amp;nbsp;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/poligoni/Image414.gif&quot; width=&quot;58&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/2652715373547184048/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/poligoni-convessi.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/2652715373547184048'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/2652715373547184048'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/poligoni-convessi.html' title='Poligoni convessi'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-1642924561177866411</id><published>2016-03-13T16:28:00.003-07:00</published><updated>2016-03-13T16:31:31.508-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria del piano"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Quadrilateri</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; height: 350px; line-height: 1.2em; margin: 0px; padding: 5px; width: 99%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot; valign=&quot;middle&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align=&quot;center&quot; class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Muovi a tuo piacere i vertici del quadrilatero.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;LEGENDA&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;AB =&amp;nbsp;&lt;i&gt;c&lt;/i&gt;, BC =&amp;nbsp;&lt;i&gt;b&lt;/i&gt;, CD =&amp;nbsp;&lt;i&gt;a,&amp;nbsp;&lt;/i&gt;DA =&amp;nbsp;&lt;i&gt;d,&amp;nbsp;&lt;/i&gt;DMC = a,&lt;br /&gt;&lt;i&gt;p&lt;/i&gt;&amp;nbsp;= semiperimetro&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&amp;nbsp;&lt;b&gt;Calcolo dell’area&lt;/b&gt;:&lt;/span&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image261.gif&quot; width=&quot;161&quot; /&gt;&amp;nbsp;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Condizione di inscrittibilità&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image262.gif&quot; width=&quot;94&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Condizione di circoscrittibilità&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image263.gif&quot; width=&quot;139&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Formule relative al quadrilatero inscrittibile&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;30&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image264.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;264&quot; /&gt;&amp;nbsp;(Formula di Brahmagupta)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image265.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;193&quot; /&gt;&amp;nbsp;(Teorema di Tolomeo)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;45&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image266.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;168&quot; /&gt;&amp;nbsp;(Teorema di Legendre)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;55&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image267.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;457&quot; /&gt;&amp;nbsp;Raggio della circonferenza circoscritta&lt;/span&gt;&lt;br /&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Trapezio&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image268.gif&quot; width=&quot;63&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image269.gif&quot; width=&quot;147&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Trapezio isoscele&lt;/b&gt;:è un particolare trapezio in cui i lati obliqui sono uguali&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image270.gif&quot; width=&quot;158&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Proprietà del trapezio isoscele&lt;/b&gt;:&lt;br /&gt;- Gli angoli alle basi sono uguali&lt;br /&gt;- Le diagonali sono uguali&lt;br /&gt;- Il lato obliquo di un trapezio isoscele circoscritto ad un semicerchio è uguale alla metà della base maggiore&lt;br /&gt;- Il lato obliquo di un trapezio isoscele circoscritto ad una circonferenza è uguale alla semisomma delle basi del trapezio stesso.&lt;/span&gt;&lt;/blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Trapezio rettangolo&lt;/b&gt;: è un particolare trapezio in cui un lato è perpendicolare alle basi&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image271.gif&quot; width=&quot;158&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Quadrilatero particolare&lt;/b&gt;.&amp;nbsp;&lt;b&gt;Trapezio&lt;/b&gt;&amp;nbsp;(una coppia di lati sta su rette tra loro parallele).&lt;br /&gt;Muovi qualsiasi vertice del quadrilatero per variare le dimensioni e la disposizione della figura..&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Quadrilatero particolare.&lt;/b&gt;&amp;nbsp;&lt;b&gt;Trapezio isoscele&lt;/b&gt;&amp;nbsp;(i lati obliqui sono tra loro congruenti).&lt;br /&gt;Muovi il punto B per ruotare a piacere il quadrilatero o il punto A per variare le dimensioni.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Parallelogramma&lt;/b&gt;: è un quadrilatero con i lati opposti paralleli&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image272.gif&quot; width=&quot;158&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image273.gif&quot; width=&quot;158&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image274.gif&quot; width=&quot;174&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image275.gif&quot; width=&quot;107&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image276.gif&quot; width=&quot;169&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Proprietà del&amp;nbsp;&lt;/b&gt;&lt;b&gt;parallelogramma&lt;/b&gt;:&lt;br /&gt;- Gli angoli opposti sono uguali e gli adiacenti sono supplementari&lt;br /&gt;- Ogni diagonale scompone il parallelogramma in due triangoli uguali&lt;br /&gt;- Le diagonali si tagliano scambievolmente per metà&lt;/span&gt;&lt;/blockquote&gt;&lt;/td&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Quadrilatero particolare.&lt;/b&gt;&amp;nbsp;&lt;b&gt;Trapezio particolare. Parallelogramma&lt;/b&gt;&amp;nbsp;(i lati opposti sono congruenti e stanno su rette tra loro parallele).&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Rombo&lt;/b&gt;: è un parallelogramma particolare in cui i quattro lati sono uguali&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image277.gif&quot; width=&quot;142&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image278.gif&quot; width=&quot;67&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image283.gif&quot; width=&quot;118&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Proprietà del rombo&lt;/b&gt;:&lt;br /&gt;- Gli angoli opposti sono uguali e gli adiacenti sono supplementari&lt;br /&gt;- Le diagonali si tagliano scambievolmente per metà e sono fra loro perpendicolari&lt;br /&gt;- Le diagonali sono bisettrici degli angoli, i cui vertici sono gli estremi delle diagonali&lt;/span&gt;&lt;/blockquote&gt;&lt;/td&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Quadrilatero particolare.&lt;/b&gt;&amp;nbsp;&lt;b&gt;Parallelogramma&lt;/b&gt;&lt;b&gt;particolare. Rombo&lt;/b&gt;&amp;nbsp;(i lati sono tra loro congruenti e le diagonali stanno su rette tra loro perpendicolari).&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Rettangolo&lt;/b&gt;: è un parallelogramma particolare in cui i lati adiacenti sono tra loro perpendicolari&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image279.gif&quot; width=&quot;65&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image280.gif&quot; width=&quot;105&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Quadrato&lt;/b&gt;: è un rombo particolare in cui i lati adiacenti sono tra loro perpendicolari&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image281.gif&quot; width=&quot;162&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/quadrilateri/Image282.gif&quot; width=&quot;82&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr align=&quot;center&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;Quadrilatero particolare.&lt;/b&gt;&amp;nbsp;&lt;b&gt;Rombo&amp;nbsp;&lt;/b&gt;&lt;b&gt;particolare. Quadrato&amp;nbsp;&lt;/b&gt;(è un rombo in cui i lati adiacenti sono tra loro perpendicolari).&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/1642924561177866411/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/quadrilateri.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1642924561177866411'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1642924561177866411'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/quadrilateri.html' title='Quadrilateri'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-8910932593913220953</id><published>2016-03-13T16:27:00.002-07:00</published><updated>2016-03-13T16:31:31.527-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria del piano"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Cerchio e circonferenza</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; height: 350px; line-height: 1.2em; margin: 0px; padding: 5px; width: 99%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Lunghezza della circonferenza:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi1.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1025&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Area del cerchio:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi2.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1026&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Lunghezza dell&#39;arco:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi3.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1027&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Area del settore circolare:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi4.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1028&quot; /&gt;;&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi4b.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1028&quot; width=&quot;69&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Area del semicerchio:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi5.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1029&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Area del quadrante:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi6.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1030&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Area della corona circolare:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi7.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; v:shapes=&quot;_x0000_i1031&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Area del segmento circolare: si trova come differenza fra l&#39;area di un settore e l&#39;area di un triangolo.&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;blockquote&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;LEGENDA&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Raggio =&amp;nbsp;&lt;i&gt;r&lt;/i&gt;&lt;/span&gt;&lt;/blockquote&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;semicerchio&quot; height=&quot;169&quot; src=&quot;http://www.math.it/formulario/images/cerchio/semicerchio.gif&quot; width=&quot;190&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;settore&quot; height=&quot;173&quot; src=&quot;http://www.math.it/formulario/images/cerchio/settore.gif&quot; width=&quot;174&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;corona circolare&quot; height=&quot;173&quot; src=&quot;http://www.math.it/formulario/images/cerchio/corona.gif&quot; width=&quot;173&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;segmento circolare - segmento a due basi - quadrante&quot; height=&quot;172&quot; src=&quot;http://www.math.it/formulario/images/cerchio/quadrante.gif&quot; width=&quot;171&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema della corda:&lt;/span&gt;&amp;nbsp;(vedi anche il&lt;a href=&quot;http://www.math.it/formulario/triangolo.htm&quot; style=&quot;text-decoration: none;&quot;&gt;terorema dei seni&lt;/a&gt;)&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi8.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi9.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; /&gt;&amp;nbsp;&amp;nbsp;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;dove&amp;nbsp;&lt;span class=&quot;greco&quot; style=&quot;font-family: Courier, Times, Arial, Helvetica, sans-serif; font-size: 1.6em; font-style: italic; letter-spacing: 0.2em;&quot;&gt;α&lt;/span&gt;&amp;nbsp;è uno qualsiasi degli angoli alla circonferenza inscritti nell&#39;arco maggiore&amp;nbsp;&lt;i&gt;AB .&lt;/i&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;div class=&quot;nota&quot; style=&quot;line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Qui sopra puoi sperimentare il&amp;nbsp;&lt;b&gt;Teorema della corda&lt;/b&gt;, variando l&#39;ampiezza dell&#39;angolo&amp;nbsp;&lt;span class=&quot;greco&quot; style=&quot;font-family: Courier, Times, Arial, Helvetica, sans-serif; font-size: 1.6em; font-style: italic; letter-spacing: 0.2em;&quot;&gt;α&lt;/span&gt;&lt;/span&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema delle corde&lt;/span&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi11.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; /&gt;&amp;nbsp;&amp;nbsp;, ossia&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi12.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Qui sopra puoi verificare la validità del&amp;nbsp;&lt;b&gt;Teorema delle corde&lt;/b&gt;.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema delle secanti&lt;/span&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi13.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; /&gt;&amp;nbsp;&amp;nbsp;, ossia&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img align=&quot;absmiddle&quot; alt=&quot;formula&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi14.gif&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td rowspan=&quot;2&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Prova a muovere i punti A o B dei due segmenti o il punto P esterno alla circonferenza per vedere come varia la situazione geometrica descritta dal&amp;nbsp;&lt;b&gt;teorema delle secanti&lt;/b&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Se muovi un estremo del segmento lungo la circonferenza, per es. D, fino a farlo coincidere con l&#39;altro, C, ottieni la situazione descritta nel&amp;nbsp;&lt;b&gt;teorema della tangente e della secante&lt;/b&gt;, dove C=D=T.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;Teorema della tangente e della secante&lt;/span&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi15.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; /&gt;&amp;nbsp;, ossia&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; src=&quot;http://www.math.it/formulario/images/cerchio/cerchi16.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/8910932593913220953/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/cerchio-e-circonferenza.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8910932593913220953'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8910932593913220953'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/cerchio-e-circonferenza.html' title='Cerchio e circonferenza'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-7040422529474058097</id><published>2016-03-13T16:26:00.002-07:00</published><updated>2016-03-13T16:31:31.519-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria del piano"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>Triangoli rettangoli</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align=&quot;center&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;Prova a muovere i vertici del triangolo per vedere come variano i suoi elementi.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;b&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;LEGENDA&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;AB =&amp;nbsp;&lt;i&gt;c (cateto)&lt;/i&gt;, AC =&amp;nbsp;&lt;i&gt;b&lt;/i&gt;&amp;nbsp;(cateto), BC =&amp;nbsp;&lt;i&gt;a&lt;/i&gt;(ipotenusa)&lt;i&gt;&lt;br /&gt;&lt;/i&gt;BAC = a = 90°, ABC = b, ACB = g&lt;br /&gt;AH =&amp;nbsp;&lt;i&gt;h&lt;/i&gt;, altezza&lt;br /&gt;AM =&amp;nbsp;&lt;i&gt;m&lt;/i&gt;, mediana&lt;br /&gt;&lt;i&gt;A&amp;nbsp;&lt;/i&gt;= area&lt;/span&gt;&lt;br /&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;indicatore&quot; class=&quot;img-middle&quot; height=&quot;9&quot; src=&quot;http://www.math.it/images/frecver.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;9&quot; /&gt;&lt;a href=&quot;http://www.math.it/formulario/triangolo.htm&quot; style=&quot;text-decoration: none;&quot;&gt;vedi anche triangoli qualsiasi&lt;/a&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Teorema di Pitagora:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;In un triangolo rettangolo il quadrato costruito sull&#39;ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula del teorema di Pitagora&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image658.gif&quot; width=&quot;126&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td rowspan=&quot;3&quot; style=&quot;font-size: 0.9em;&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;nota&quot; height=&quot;1&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;Qui sopra puoi sperimentare sia il Teorema di Pitagora (&lt;a href=&quot;http://www.math.it/cabri/pitagora.htm&quot; style=&quot;text-decoration: none;&quot;&gt;vedi costruzione&lt;/a&gt;), sia il 1° Teorema di Euclide (&lt;a href=&quot;http://www.math.it/cabri/euclide1.htm&quot; style=&quot;text-decoration: none;&quot;&gt;vedi costruzione&lt;/a&gt;).&lt;br /&gt;Qui sotto puoi verificare la validità del 2° Teorema di Euclide (&lt;a href=&quot;http://www.math.it/cabri/euclide2.htm&quot; style=&quot;text-decoration: none;&quot;&gt;vedi costruzione&lt;/a&gt;).&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Primo teorema di Euclide:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;In un triangolo rettangolo il quadrato costruito su un cateto è equivalente al rettangolo che ha per dimensioni la sua proiezione sull&#39;ipotenusa e l&#39;ipotenusa stessa.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula del primo teorema di euclide&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image659.gif&quot; width=&quot;106&quot; /&gt;&amp;nbsp;;&amp;nbsp;&lt;img alt=&quot;formula del primo teorema di euclide&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image660.gif&quot; width=&quot;107&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Secondo teorema di Euclide:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;In un triangolo rettangolo l&#39;altezza è media proporzionale tra le proiezioni dei due cateti sull&#39;ipotenusa.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula del secondo teorema di euclide&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image661.gif&quot; width=&quot;111&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Proprietà della mediana&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image662.gif&quot; width=&quot;118&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Calcolo dell&#39;area&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image663.gif&quot; width=&quot;58&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image664.gif&quot; width=&quot;61&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Misura dell&#39;altezza noti i lati&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image665.gif&quot; width=&quot;55&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Relazione fra i lati e il raggio della circonferenza inscritta&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image666.gif&quot; width=&quot;91&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;1° teorema sui triangoli rettangoli&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;In un triangolo rettangolo la misura di un cateto è uguale al prodotto dell&#39;ipotenusa per il seno dell&#39;angolo opposto o per il coseno dell&#39;angolo adiacente&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image667.gif&quot; width=&quot;145&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image668.gif&quot; width=&quot;146&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;2° teorema sui triangoli rettangoli&lt;/b&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;In un triangolo rettangolo la misura di un cateto è uguale al prodotto dell&#39;altro cateto per la tangente dell&#39;angolo opposto o per la cotangente dell&#39;angolo adiacente&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;background-color: white; color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image669.gif&quot; width=&quot;130&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangoloretto/Image670.gif&quot; width=&quot;130&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/7040422529474058097/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/triangoli-rettangoli.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/7040422529474058097'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/7040422529474058097'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/triangoli-rettangoli.html' title='Triangoli rettangoli'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-8773577264441671144</id><published>2016-03-13T16:21:00.000-07:00</published><updated>2016-03-13T16:31:31.523-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="Geometria del piano"/><category scheme="http://www.blogger.com/atom/ns#" term="medie"/><title type='text'>GEOMETRIA PIANA. Triangoli qualsiasi</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; class=&quot;cornice&quot; style=&quot;border: 1px solid rgb(238, 238, 238); line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il tuo browser non visualizza le applet Java.&lt;br /&gt;Sul computer che utilizzi deve essere installata la Java Virtual Machine, in una versione 1.4 o successiva.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td class=&quot;nota&quot; style=&quot;color: #777777; font-size: 0.9em; line-height: 1.3em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Prova a muovere i vertici del triangolo per vedere come variano i suoi elementi.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;LEGENDA&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;AB =&amp;nbsp;&lt;i&gt;c&lt;/i&gt;, AC =&amp;nbsp;&lt;i&gt;b&lt;/i&gt;, BC =&amp;nbsp;&lt;i&gt;a&amp;nbsp;&lt;/i&gt;BAC = a, ABC = b, ACB = g&lt;br /&gt;&lt;b&gt;AH&lt;/b&gt;&amp;nbsp;=&amp;nbsp;&lt;i&gt;h&lt;/i&gt;, altezza&lt;br /&gt;&lt;b&gt;AM&lt;/b&gt;&amp;nbsp;=&amp;nbsp;&lt;i&gt;m&lt;/i&gt;, mediana&lt;br /&gt;&lt;b&gt;AI&lt;/b&gt;&amp;nbsp;=&amp;nbsp;&lt;i&gt;l&lt;/i&gt;, bisettrice&lt;br /&gt;&lt;b&gt;AD&lt;/b&gt;&amp;nbsp;= bisettrice angolo esterno&lt;br /&gt;&lt;i&gt;p&lt;/i&gt;&amp;nbsp;= ½(&lt;i&gt;a&lt;/i&gt;&amp;nbsp;+&amp;nbsp;&lt;i&gt;b&lt;/i&gt;&amp;nbsp;+&amp;nbsp;&lt;i&gt;c&lt;/i&gt;), semiperimetro&lt;br /&gt;&lt;i&gt;A&amp;nbsp;&lt;/i&gt;= area&lt;/span&gt;&lt;br /&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;indicatore&quot; class=&quot;img-middle&quot; height=&quot;9&quot; src=&quot;http://www.math.it/images/frecver.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;9&quot; /&gt;&lt;a href=&quot;http://www.math.it/formulario/triangoloretto.htm&quot; style=&quot;text-decoration: none;&quot;&gt;&amp;nbsp;Vedi anche: triangoli rettangoli&lt;/a&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Proprietà&lt;/b&gt;:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image607.gif&quot; width=&quot;117&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image608.gif&quot; width=&quot;118&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image609.gif&quot; width=&quot;118&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image610.gif&quot; width=&quot;102&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image611.gif&quot; width=&quot;93&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Calcolo dell&#39;area&lt;/b&gt;:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image612.gif&quot; width=&quot;59&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image613.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;207&quot; /&gt;&amp;nbsp;formula di Erone&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image614.gif&quot; width=&quot;257&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image615.gif&quot; width=&quot;153&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image616.gif&quot; width=&quot;162&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Note le coordinate dei tre vertici P&lt;sub&gt;1&lt;/sub&gt;(x&lt;sub&gt;1&lt;/sub&gt;;y&lt;sub&gt;1&lt;/sub&gt;), P&lt;sub&gt;2&lt;/sub&gt;(x&lt;sub&gt;2&lt;/sub&gt;;y&lt;sub&gt;2&lt;/sub&gt;), P&lt;sub&gt;3&lt;/sub&gt;(x&lt;sub&gt;3&lt;/sub&gt;;y&lt;sub&gt;3&lt;/sub&gt;), l’Area si calcola con il determinante:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image658.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;149&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Lunghezza delle mediane&lt;/b&gt;:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image617.gif&quot; width=&quot;161&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image618.gif&quot; width=&quot;159&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image619.gif&quot; width=&quot;159&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b class=&quot;evidenziato&quot; style=&quot;letter-spacing: 0.1em;&quot;&gt;Teorema della mediana&lt;/b&gt;:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;29&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image621.gif&quot; width=&quot;196&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b class=&quot;evidenziato&quot; style=&quot;letter-spacing: 0.1em;&quot;&gt;Bisettrici&lt;/b&gt;:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image622.gif&quot; width=&quot;183&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image623.gif&quot; width=&quot;183&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image624.gif&quot; width=&quot;183&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image625.gif&quot; width=&quot;111&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image626.gif&quot; width=&quot;113&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image627.gif&quot; width=&quot;110&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;b&gt;Teorema della bisettrice dell&#39;angolo interno&lt;/b&gt;:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image628.gif&quot; width=&quot;121&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Teorema della bisettrice dell&#39;angolo esterno:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;18&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image629.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;130&quot; /&gt;&amp;nbsp;(se i segmenti esistono)&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Raggio della circonferenza circoscritta:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image630.gif&quot; width=&quot;62&quot; /&gt;&amp;nbsp;,&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image631.gif&quot; width=&quot;85&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image632.gif&quot; width=&quot;83&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image633.gif&quot; width=&quot;83&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Raggio della circonferenza inscritta:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image634.gif&quot; width=&quot;42&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image635.gif&quot; width=&quot;189&quot; /&gt;&amp;nbsp;,&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image636.gif&quot; width=&quot;109&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image637.gif&quot; width=&quot;110&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image638.gif&quot; width=&quot;106&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Raggio delle circonferenze exinscritte:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image639.gif&quot; width=&quot;162&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image640.gif&quot; width=&quot;162&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image641.gif&quot; width=&quot;162&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image642.gif&quot; width=&quot;82&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image643.gif&quot; width=&quot;83&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image644.gif&quot; width=&quot;79&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Altezze:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image645.gif&quot; width=&quot;273&quot; /&gt;&amp;nbsp;,&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image646.gif&quot; width=&quot;271&quot; /&gt;&amp;nbsp;,&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image647.gif&quot; width=&quot;271&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Teorema dei seni (o di Eulero)&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;In un triangolo è&amp;nbsp;&lt;i&gt;costante&lt;/i&gt;&amp;nbsp;il rapporto tra la misura di un lato e il seno dell&#39;angolo opposto:&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image648.gif&quot; width=&quot;144&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Teorema della corda&lt;/span&gt;&lt;/div&gt;&lt;div class=&quot;dividisopra&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;In un triangolo il rapporto tra la misura di un lato e il seno dell&#39;angolo opposto è uguale al diametro della circonferenza circoscritta:&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;43&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image648.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;144&quot; /&gt;&amp;nbsp;=&amp;nbsp;&lt;i&gt;2r&lt;/i&gt;&lt;/span&gt;&lt;/div&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Teorema delle proiezioni:&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;In un triangolo qualunque, la misura di un lato è uguale alla somma dei prodotti delle misure di ciascuno degli altri due per il coseno degli angoli che essi formano con il primo.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image652.gif&quot; width=&quot;145&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image653.gif&quot; width=&quot;144&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;v&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image654.gif&quot; width=&quot;145&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Teorema del coseno (o di Carnot)&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;In un triangolo il quadrato di un lato è uguale alla somma dei quadrati degli altri due diminuita del prodotto di questi due lati per il coseno dell&#39;angolo fra essi compreso:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image649.gif&quot; width=&quot;168&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image650.gif&quot; width=&quot;170&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image651.gif&quot; width=&quot;168&quot; /&gt;.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Formule di Briggs:&lt;/span&gt;&lt;/b&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image655.gif&quot; width=&quot;166&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image656.gif&quot; width=&quot;169&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image657.gif&quot; width=&quot;166&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image436.gif&quot; width=&quot;134&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image437.gif&quot; width=&quot;136&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;49&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image438.gif&quot; width=&quot;132&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;54&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image439.gif&quot; width=&quot;160&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;54&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image440.gif&quot; width=&quot;161&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;54&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image441.gif&quot; width=&quot;160&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; height=&quot;54&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image442.gif&quot; width=&quot;166&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;54&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image443.gif&quot; width=&quot;169&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;54&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image444.gif&quot; width=&quot;166&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisopra&quot; colspan=&quot;2&quot; style=&quot;border-top-color: rgb(102, 0, 102); border-top-style: solid; border-top-width: 1px; font-size: 0.9em;&quot;&gt;&lt;div class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Teorema delle tangenti (o di&amp;nbsp;&lt;i&gt;Nepero&lt;/i&gt;)&lt;/span&gt;&lt;/div&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;In un triangolo qualsiasi la somma di due lati sta alla loro differenza come la tangente della semisomma degli angoli opposti ai suddetti lati sta alla tangente della loro semidifferenza:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;80&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image445.gif&quot; width=&quot;110&quot; /&gt;&lt;br /&gt;che si può anche scrivere:&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;80&quot; src=&quot;http://www.math.it/formulario/images/triangolo/Image446.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;109&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/8773577264441671144/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-piana-triangoli-qualsiasi.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8773577264441671144'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/8773577264441671144'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/geometria-piana-triangoli-qualsiasi.html' title='GEOMETRIA PIANA. Triangoli qualsiasi'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-867005685686612874</id><published>2016-03-13T12:04:00.002-07:00</published><updated>2016-03-13T12:53:42.573-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="algebra"/><category scheme="http://www.blogger.com/atom/ns#" term="matematica"/><title type='text'>determinante di una matrice quadrata. Regola di Sarrus</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table align=&quot;center&quot; border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;5&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Definizione di&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;matrice&lt;/b&gt;&lt;/span&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Un insieme di numeri ordinati secondo righe e colonne è detto&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;em&gt;matrice&lt;/em&gt;&lt;/span&gt;&amp;nbsp;di ordine&amp;nbsp;&lt;em&gt;&lt;b&gt;m&lt;/b&gt;&lt;/em&gt;&amp;nbsp;x&amp;nbsp;&lt;em&gt;&lt;b&gt;n&lt;/b&gt;&lt;/em&gt;, ove&amp;nbsp;&lt;em&gt;m&lt;/em&gt;&amp;nbsp;è il numero delle righe e&amp;nbsp;&lt;em&gt;n&lt;/em&gt;&amp;nbsp;il numero delle colonne.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Una&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;em&gt;matrice&lt;/em&gt;&lt;/span&gt;&amp;nbsp;si dice&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;em&gt;quadrata&lt;/em&gt;&lt;/span&gt;&amp;nbsp;se&amp;nbsp;&lt;img alt=&quot;m=n&quot; class=&quot;img-middle&quot; height=&quot;14&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image370.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;41&quot; /&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il generico&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;i&gt;elemento&lt;/i&gt;&lt;/span&gt;&amp;nbsp;della&amp;nbsp;&lt;i&gt;matrice&lt;/i&gt;&amp;nbsp;&lt;img alt=&quot;matrice Aij&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image371.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;29&quot; /&gt;&amp;nbsp;si indica con&amp;nbsp;&lt;img alt=&quot;aij&quot; class=&quot;img-middle&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image372.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;24&quot; /&gt;. Esso occupa la posizione individuata dall&#39;intersezione tra la&amp;nbsp;&lt;em&gt;i-esima&lt;/em&gt;&amp;nbsp;riga e la&amp;nbsp;&lt;em&gt;j-esima&lt;/em&gt;&amp;nbsp;colonna della matrice.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;matrice&quot; height=&quot;146&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image373.gif&quot; width=&quot;321&quot; /&gt;, con&amp;nbsp;&lt;img align=&quot;absmiddle&quot; alt=&quot;indici&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image374.gif&quot; width=&quot;123&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;La&amp;nbsp;&lt;b&gt;teoria dei&amp;nbsp;&lt;em&gt;DETERMINANTI&lt;/em&gt;&lt;/b&gt;&amp;nbsp;è stata sviluppata per poter risolvere i sistemi di equazioni lineari e trovare l&#39;inversa di una matrice quadrata. Per questo fine è stato necessario associare ad ogni matrice quadrata un valore numerico. Tale numero è il&amp;nbsp;&lt;i&gt;determinante della matrice&lt;/i&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ad ogni matrice quadrata&amp;nbsp;&lt;i&gt;A&lt;/i&gt;&amp;nbsp;di ordine&amp;nbsp;&lt;i&gt;n&lt;/i&gt;&amp;nbsp;può essere associato un numero che si chiama il suo determinante e si indica con&amp;nbsp;&lt;i&gt;det A.&lt;/i&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;strong&gt;»&amp;nbsp;&lt;/strong&gt;&lt;b&gt;Determinante di matrici quadrate del secondo ordine&lt;/b&gt;&lt;/span&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;em&gt;determinante&lt;/em&gt;&lt;/span&gt;&lt;em&gt;&amp;nbsp;di una matrice quadrata del&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;secondo ordine&lt;/span&gt;&lt;/em&gt;&amp;nbsp;(2 righe e 2 colonne)&amp;nbsp;&lt;img alt=&quot;matrice&quot; class=&quot;img-middle&quot; height=&quot;50&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image375.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;103&quot; /&gt;&amp;nbsp;si calcola:&lt;br /&gt;&lt;img alt=&quot;determinante secondo ordine&quot; class=&quot;img-middle&quot; height=&quot;50&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image376.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;240&quot; /&gt;&lt;br /&gt;Il&amp;nbsp;&lt;em&gt;determinante di una matrice quadrata del secondo ordine&lt;/em&gt;&amp;nbsp;è uguale alla differenza dei prodotti degli elementi delle due diagonali (principale meno secondaria).&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Determinante di matrici quadrate del terzo ordine&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Il calcolo del&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;em&gt;determinante&lt;/em&gt;&lt;/span&gt;&lt;em&gt;&amp;nbsp;di una matrice quadrata del&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;terzo ordine&lt;/span&gt;&lt;/em&gt;&amp;nbsp;(3 righe e 3 colonne)&amp;nbsp;&lt;img alt=&quot;matrice&quot; class=&quot;img-middle&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image377.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;139&quot; /&gt;&amp;nbsp;si sviluppa secondo gli elementi di una riga o di una colonna. Nell&#39;esempio sviluppiamo secondo la prima riga.&lt;i&gt;&lt;br /&gt;&lt;img alt=&quot;determinante terzo ordine&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image378.gif&quot; width=&quot;463&quot; /&gt;.&lt;/i&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Ogni elemento della prima riga viene moltiplicato con il suo&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;em&gt;MINORE COMPLEMENTARE&lt;/em&gt;&lt;/span&gt;, ovvero il determinante del secondo ordine ottenuto sopprimendo la prima riga e la prima colonna; i prodotti vengono poi sommati algebricamente tra loro considerando il segno positivo se la somma degli indici dell&#39;elemento considerato è pari, o negativo se è dispari.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Sviluppando i tre determinanti del secondo ordine, si ottiene:&lt;/span&gt;&lt;br /&gt;&lt;i&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;determinante terzo ordine&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image379.gif&quot; width=&quot;590&quot; /&gt;.&lt;/span&gt;&lt;/i&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;È utile notare che il determinante di una matrice quadrata non cambia se lo sviluppo viene eseguito rispetto ad una qualsiasi altra riga (non solo la prima) o un&#39;altra colonna.&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;dividisotto&quot; style=&quot;border-bottom-color: rgb(102, 0, 102); border-bottom-style: solid; border-bottom-width: 1px; font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Un&amp;nbsp;&lt;b&gt;secondo metodo&lt;/b&gt;&amp;nbsp;per il calcolo dei&amp;nbsp;&lt;em&gt;determinanti del terzo ordine&lt;/em&gt;&amp;nbsp;è indicato dalla&lt;i&gt;&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;REGOLA DI SARRUS&lt;/b&gt;&lt;/span&gt;&lt;/i&gt;&lt;strong&gt;.&lt;/strong&gt;Per la sua applicazione è conveniente disporre, accanto alla matrice data, copia delle prime due colonne ed eseguire i prodotti indicati, presi in segno positivo seguendo le frecce rosse e negativi seguendo le frecce blu.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;determinante Regola di Sarrus&quot; height=&quot;128&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image381.gif&quot; width=&quot;375&quot; /&gt;&amp;nbsp;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;determinante Regola di Sarrus&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image382.gif&quot; width=&quot;590&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Principali&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; letter-spacing: 0.1em;&quot;&gt;proprietà&lt;/span&gt;&lt;/span&gt;&lt;/b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;i) il valore di un determinante non cambia se si scambiano le righe con le colonne:&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;determinanti proprietà&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image383.gif&quot; width=&quot;217&quot; /&gt;&lt;/span&gt;&lt;/blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;ii) lo scambio di due righe o di due colonne di un determinante equivale a cambiarne il segno, ovvero a moltiplicarlo per -1 :&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;determinanti proprietà&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image384.gif&quot; width=&quot;238&quot; /&gt;&lt;/span&gt;&lt;/blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;iii) moltiplicare tutti gli elementi di una riga o di una colonna per uno stesso numero&amp;nbsp;&lt;i&gt;k&lt;/i&gt;&amp;nbsp;equivale a moltiplicare il determinante per&amp;nbsp;&lt;i&gt;k&lt;/i&gt;&amp;nbsp;:&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;determinanti proprietà&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image385.gif&quot; width=&quot;288&quot; /&gt;&lt;/span&gt;&lt;/blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;iv) se tutti gli elementi di una riga o di una colonna sono nulli, il valore del determinante è nullo:&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;determinanti proprietà&quot; height=&quot;74&quot; src=&quot;http://www.math.it/formulario/images/determinanti/Image386.gif&quot; width=&quot;117&quot; /&gt;&lt;/span&gt;&lt;/blockquote&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/867005685686612874/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/determinante-di-una-matrice-quadrata.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/867005685686612874'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/867005685686612874'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/determinante-di-una-matrice-quadrata.html' title='determinante di una matrice quadrata. Regola di Sarrus'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-1907546134434640371</id><published>2016-03-13T12:03:00.006-07:00</published><updated>2016-03-13T12:53:42.536-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="algebra"/><category scheme="http://www.blogger.com/atom/ns#" term="matematica"/><title type='text'>logaritmi</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;3&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;definizione&lt;/b&gt;&lt;/span&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image476.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;137&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image477.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;169&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; letter-spacing: 0.1em;&quot;&gt;proprietà&lt;/span&gt;:&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image478.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;187&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image479.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;161&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image480.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;165&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image479.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;161&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image481.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;134&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image482.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;163&quot; /&gt;&lt;br /&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image483.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;139&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;24&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image484.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;171&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;cambiamento di base&lt;/b&gt;&lt;/span&gt;:&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image485.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;102&quot; /&gt;,&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/logaritmi/Image486.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;194&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/1907546134434640371/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/logaritmi.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1907546134434640371'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/1907546134434640371'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/logaritmi.html' title='logaritmi'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-3630881227147763816</id><published>2016-03-13T12:03:00.002-07:00</published><updated>2016-03-13T12:53:42.554-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="algebra"/><category scheme="http://www.blogger.com/atom/ns#" term="matematica"/><title type='text'>disequazioni irrazionali</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;3&quot; cellspacing=&quot;0&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;divididestra&quot; rowspan=&quot;2&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; width=&quot;48%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Equazioni irrazionali&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;29&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image002.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;100&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;33&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image004.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;110&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; se&amp;nbsp;&lt;em&gt;n&lt;/em&gt;&amp;nbsp;è dispari&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;85&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image006.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;109&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; &amp;nbsp;se&amp;nbsp;&lt;em&gt;n&lt;/em&gt;&amp;nbsp;è pari&lt;/span&gt;&lt;br /&gt;&lt;/td&gt;&lt;td rowspan=&quot;2&quot; style=&quot;font-size: 0.9em;&quot; width=&quot;2%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Disequazioni irrazionali&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;1° caso&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image008.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;96&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;29&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image010.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;108&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; &amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; se&amp;nbsp;&lt;em&gt;n&lt;/em&gt;&amp;nbsp;è dispari&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;le soluzioni si ottengono imponendo e risolvendo i due sistemi&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;51&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image012.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;213&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; &amp;nbsp;se&amp;nbsp;&lt;em&gt;n&lt;/em&gt;&amp;nbsp;è pari&lt;/span&gt;&lt;br /&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td style=&quot;font-size: 0.9em;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;2° caso&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;28&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image014.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;96&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;27&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image016.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;100&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; se&amp;nbsp;&lt;em&gt;n&lt;/em&gt;&amp;nbsp;è dispari&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;le soluzioni si ottengono imponendo e risolvendo il sistema&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&amp;nbsp;&lt;img alt=&quot;&quot; class=&quot;img-middle&quot; height=&quot;77&quot; src=&quot;http://www.math.it/formulario/images/disequazioni_irraz/image018.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;111&quot; /&gt;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; se&amp;nbsp;&lt;em&gt;n&lt;/em&gt;&amp;nbsp;è pari&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/3630881227147763816/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/disequazioni-irrazionali.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/3630881227147763816'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/3630881227147763816'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/disequazioni-irrazionali.html' title='disequazioni irrazionali'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry><entry><id>tag:blogger.com,1999:blog-6749100220509682424.post-2702978713655106426</id><published>2016-03-13T12:02:00.003-07:00</published><updated>2016-03-13T12:53:42.549-07:00</updated><category scheme="http://www.blogger.com/atom/ns#" term="algebra"/><category scheme="http://www.blogger.com/atom/ns#" term="matematica"/><title type='text'>equazione algebrica di secondo grado</title><content type='html'>&lt;div dir=&quot;ltr&quot; style=&quot;text-align: left;&quot; trbidi=&quot;on&quot;&gt;&lt;table border=&quot;0&quot; cellpadding=&quot;5&quot; cellspacing=&quot;5&quot; style=&quot;font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 19.2px; line-height: 1.2em; margin: 0px; padding: 5px; width: 100%px;&quot;&gt;&lt;tbody&gt;&lt;tr valign=&quot;top&quot;&gt;&lt;td class=&quot;divididestra&quot; style=&quot;border-right-color: rgb(102, 0, 102); border-right-style: solid; border-right-width: 1px; font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Un equazione algebrica di 2° grado si presenta nella forma:&amp;nbsp;&lt;img alt=&quot;equazione&quot; class=&quot;img-middle&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image442.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;153&quot; /&gt;.&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Se&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image443.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;77&quot; /&gt;&amp;nbsp;l&#39;equazione si dice in&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;forma completa&lt;/span&gt;&amp;nbsp;e si risolve utilizzando la&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;&lt;b&gt;formula risolutiva&lt;/b&gt;&lt;/span&gt;:&lt;br /&gt;&lt;img alt=&quot;formula risolutiva eq. secondo grado&quot; height=&quot;48&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image444.gif&quot; width=&quot;149&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;blockquote&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;discriminante&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image445.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;87&quot; /&gt;&amp;nbsp;si dice&amp;nbsp;&lt;i&gt;discriminante&lt;/i&gt;;&lt;/span&gt;&lt;/blockquote&gt;&lt;ul&gt;&lt;li style=&quot;line-height: 1.8em; list-style-type: square; margin-left: 1em; padding: 0px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;se&amp;nbsp;&lt;img alt=&quot;discriminante&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image445.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;87&quot; /&gt;&amp;nbsp;&amp;gt; 0 esistono&amp;nbsp;&lt;b&gt;due soluzioni reali e distinte&lt;/b&gt;&amp;nbsp;che si ottengono applicando la&amp;nbsp;&lt;i&gt;formula risolutiva&lt;/i&gt;&lt;/span&gt;&lt;/li&gt;&lt;li style=&quot;line-height: 1.8em; list-style-type: square; margin-left: 1em; padding: 0px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;se&amp;nbsp;&lt;img alt=&quot;discriminante&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image445.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;87&quot; /&gt;&amp;nbsp;= 0 esistono&amp;nbsp;&lt;b&gt;due soluzioni reali e coincidenti&lt;/b&gt;&amp;nbsp;&lt;img alt=&quot;soluzioni&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image446.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;99&quot; /&gt;&lt;/span&gt;&lt;/li&gt;&lt;li style=&quot;line-height: 1.8em; list-style-type: square; margin-left: 1em; padding: 0px;&quot;&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;se&amp;nbsp;&lt;img alt=&quot;discriminante&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image445.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;87&quot; /&gt;&amp;nbsp;&amp;lt; 0 esistono&amp;nbsp;&lt;b&gt;due soluzioni complesse e coniugate.&lt;/b&gt;&lt;/span&gt;&lt;/li&gt;&lt;/ul&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Se&amp;nbsp;&lt;img alt=&quot;soluzioni&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image447.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;77&quot; /&gt;&amp;nbsp;l&#39;equazione si dice&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;pura&lt;/span&gt;&amp;nbsp;e diventa&amp;nbsp;&lt;img alt=&quot;soluzioni&quot; class=&quot;img-middle&quot; height=&quot;22&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image448.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;75&quot; /&gt;.&lt;br /&gt;Le due soluzioni sono&amp;nbsp;&lt;img alt=&quot;soluzioni&quot; class=&quot;img-middle&quot; height=&quot;46&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image449.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;78&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Se&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;21&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image450.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;77&quot; /&gt;&amp;nbsp;l&#39; equazione si dice&amp;nbsp;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; font-weight: bold; letter-spacing: 0.1em;&quot;&gt;spuria&lt;/span&gt;&amp;nbsp;e si risolve raccogliendo&amp;nbsp;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;26&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image451.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;88&quot; /&gt;&amp;nbsp;per cui le soluzioni sono&amp;nbsp;&lt;img alt=&quot;soluzioni&quot; class=&quot;img-middle&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image452.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;102&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;td style=&quot;font-size: 0.9em;&quot; width=&quot;50%&quot;&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;&lt;span class=&quot;evidenziato&quot; style=&quot;background-color: #eeeeee; letter-spacing: 0.1em;&quot;&gt;Formula ridotta&lt;/span&gt;&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;Se&amp;nbsp;&lt;i&gt;b&lt;/i&gt;&amp;nbsp;è pari, può essere più comodo applicare la formula risolutiva ridotta:&lt;br /&gt;&lt;img alt=&quot;formula ridotta risolutiva eq. secondo grado&quot; height=&quot;73&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image453.gif&quot; width=&quot;162&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Relazione tra le soluzioni e i coefficienti&amp;nbsp;&lt;i&gt;a, b, c&lt;/i&gt;&amp;nbsp;dell&#39;equazione:&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image454.gif&quot; width=&quot;89&quot; /&gt;&amp;nbsp;,&amp;nbsp;&lt;img alt=&quot;formula&quot; height=&quot;41&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image455.gif&quot; width=&quot;72&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;formula&quot; class=&quot;img-middle&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image456.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;186&quot; /&gt;&lt;/span&gt;&lt;br /&gt;&lt;b&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;b&gt;»&amp;nbsp;&lt;/b&gt;Scomposizione del trinomio di 2° grado:&lt;/span&gt;&lt;/b&gt;&lt;br /&gt;&lt;span style=&quot;color: #0b5394;&quot;&gt;&lt;img alt=&quot;scomposizione&quot; class=&quot;img-middle&quot; height=&quot;25&quot; src=&quot;http://www.math.it/formulario/images/equazioni2/Image457.gif&quot; style=&quot;border: none; margin-bottom: 1px; margin-right: 1px; vertical-align: middle;&quot; width=&quot;212&quot; /&gt;&lt;/span&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt;&lt;/div&gt;</content><link rel='replies' type='application/atom+xml' href='http://matematicasolo.blogspot.com/feeds/2702978713655106426/comments/default' title='Commenti sul post'/><link rel='replies' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/equazione-algebrica-di-secondo-grado.html#comment-form' title='0 Commenti'/><link rel='edit' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/2702978713655106426'/><link rel='self' type='application/atom+xml' href='http://www.blogger.com/feeds/6749100220509682424/posts/default/2702978713655106426'/><link rel='alternate' type='text/html' href='http://matematicasolo.blogspot.com/2016/03/equazione-algebrica-di-secondo-grado.html' title='equazione algebrica di secondo grado'/><author><name>jonny</name><uri>http://www.blogger.com/profile/10108773898165712609</uri><email>[email protected]</email><gd:image rel='http://schemas.google.com/g/2005#thumbnail' width='29' height='32' src='http://4.bp.blogspot.com/_hSXv9Ixza8U/SvrwK2EwRzI/AAAAAAAAAho/80_cmKzrOig/S220/1231407127.jpg'/></author><thr:total>0</thr:total></entry></feed>

If you would like to create a banner that links to this page (i.e. this validation result), do the following:

  1. Download the "valid Atom 1.0" banner.

  2. Upload the image to your own server. (This step is important. Please do not link directly to the image on this server.)

  3. Add this HTML to your page (change the image src attribute if necessary):

If you would like to create a text link instead, here is the URL you can use:

http://www.feedvalidator.org/check.cgi?url=http%3A//matematicasolo.blogspot.com/feeds/posts/default

Copyright © 2002-9 Sam Ruby, Mark Pilgrim, Joseph Walton, and Phil Ringnalda